Laplace–Beltrami Operator on Digital Surfaces Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon

Total Page:16

File Type:pdf, Size:1020Kb

Laplace–Beltrami Operator on Digital Surfaces Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon Laplace–Beltrami Operator on Digital Surfaces Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon To cite this version: Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon. Laplace–Beltrami Operator on Digital Surfaces. Journal of Mathematical Imaging and Vision, Springer Verlag, 2019, 61 (3), pp.359-379. 10.1007/s10851-018-0839-4. hal-01717849v3 HAL Id: hal-01717849 https://hal.archives-ouvertes.fr/hal-01717849v3 Submitted on 28 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Laplace–Beltrami Operator on Digital Surfaces Thomas Caissard · David Coeurjolly · Jacques-Olivier Lachaud · Tristan Roussillon Received: date / Accepted: date Abstract This article presents a novel discretization of the Laplace–Beltrami operator on digital surfaces.We adapt an existing convolution technique proposed by Belkin et al. [5] for triangular meshes to topological border of subsets of n Z . The core of the method relies on first-order estimation of measures associated with our discrete elements (such as length, area etc.). We show strong consistency (i.e. pointwise convergence) of the operator and compare it against various other discretizations. Keywords Laplace–Beltrami Operator · Digital Surface · Discrete Geometry · Differential Geometry Fig. 1 A digital surface of dimension two embedded in R3. 1 Introduction Computer graphics, and particularly the field of geometry It is used for example as a basis for Functional Maps [48] or processing, revolves around studying discrete embedded mesh compression [42]. Other applications are for example surfaces (in many cases 2D surfaces in 3D). The surface fairing, mesh smoothing, remeshing or feature Laplace–Beltrami operator (the Laplacian on a manifold) is extractions (see [42]). The operator is also related to a fundamental tool in geometry as it holds many properties diffusion and the heat equation on a surface and connected of the surface. Eigenfunctions of the operator form a natural to a large field of classical mathematics linking geometry of basis for square integrable functions on the manifold, in the manifold to properties of the heat flow (see for example same manner as Fourrier harmonics for functions on a circle. [56]). This work has been partly funded by C O M E D I C ANR-15-CE40- Many characterizations of discrete surfaces exist such 0006 research grant. We would like to thank the anonymous reviewers as triangular, quadrangular meshes (or more generally sim- for their detailed comments and suggestions for the manuscript. plicial complexes), points clouds, etc. Our model of surface Thomas Caissard · David Coeurjolly · Tristan Roussillon comes from the Digital Geometry theory [35], where the Univ de Lyon, CNRS, INSA-Lyon, LIRIS, UMR 5205, F-69621, France discrete structure is the topological boundary of a subset of d+ E-mail: [email protected] points in Z 1 called a digital surface (an example of this ob- E-mail: [email protected] E-mail: [email protected] ject is pictured in Fig. 1). Such surfaces can be constructed from mathematical modeling or from boundaries of parti- Jacques-Olivier Lachaud tions in volumetric images. Indeed, digital objects naturally Laboratoire de Mathematiques´ (LAMA), UMR 5127 CNRS, Universite´ arise in many material sciences or medical imaging applica- Savoie Mont Blanc, Chambery,´ France tions as tomographic volumetric acquisition devices usually E-mail: [email protected] generate regularly spaced data (e.g [29,22]). 2 Thomas Caissard et al. Our goal here is to present a discretization of the Laplace– A more versatile expression of discrete exterior calcu- Beltrami operator on digital surfaces which satisfies strong lus comes with Hirani’s thesis [33] and the monograph of consistency (i.e. pointwise convergence) with respect to the Desbrun, Hirani, Leok and Marsden [16]. Their primal-dual Laplace–Beltrami operator on the underlying manifold when construction does not impose the use of triangular meshes. the digital surface is the boundary of the digitization of a con- The discretization is not an approximation of the smooth tinuous object. As we demonstrate in our experiments, pre- calculus, but rather a discrete analog: vious works fail to efficiently estimate the Laplace–Beltrami operator on these specific surfaces. The main obstacle is the We do not prove that these definitions converge to the smooth counterparts. The definitions are chosen so as to make some fact that normal vectors to these surfaces do not converge to important theorems like the generalized Stokes’ theorem true the normal vectors of the underlying manifold, whatever the by definition, to preserve naturality with respect to pullbacks, sampling rate. and to ensure that operators are local. We adapt the operator of Belkin et al. [5] to our spe- [33,16] cific data. The method uses an accurate estimation of areas Metrics play a role in musical operators (flat and sharp associated with digital surface elements. This estimation is which convert vector field to k-forms and conversely) and achieved through a multigrid convergent digital normal esti- Hodge stars. Note that discrete exterior calculus coincides mator of Coeurjolly et al. [11]. This paper is a direct follow- with the cotangent scheme on triangular meshes when the up on [6] where we experimentally investigate applications Voronoi dual is used. such as heat diffusion or shape approximation through the In parallel, another discrete calculus emerges in the im- eigenvectors decomposition. We show strong consistency of age, graph, electric circuits and network analysis communi- the discrete operator, and compare it experimentally with var- ties, summed up in Grady and Polimeni’s book [24]. Met- ious other discretizations adapted on digital surfaces. rics are also incorporated, although without the relation with the ambient space. This feature was desired since people frequently wish to analyze data without any knowledge of Discretization schemes overview. The Laplacian being a sec- an embedding. Authors then show how classical filtering ond order differential operator, a discrete calculus framework procedures and (discrete versions of) energy models (e.g. is required to define this operator on embedded combinato- Mumford-Shah, Total Variation) fit well within this frame- rial structures such as meshes or digital surfaces. The first work. elements of discrete calculus may be traced back to Regge A much-alike discrete calculus on “chainlets” appears in calculus [55] for quantum physics, where discrete domains geometric measure theory, for the mathematical analysis of are modeled with adjacent tetrahedra and metrics are only general compact shapes like fractals [25,26]. The exterior determined by edge lengths. The discrete Laplacian has also derivative, a Hodge star and Laplace–Beltrami are defined been present in spectral analysis of graphs since the 1950s. there for very general spaces. However computational as- Then, with the development of geometric acquisition devices pects are unclear. We can also mention a complex analysis and modeling techniques, interest grew toward a calculus approach to discrete calculus for 2D digital surfaces [44,45] working on meshes and more generally simplicial complexes. with applications to digital surface parametrization and tex- Early works include the widely studied cotangent formula ture mapping [8]. [58,59,17,50,23,43,46,49] for various applications, which Operators for point clouds can be found in [4] and more may be derived directly from standard finite element method recently in [54]. A discretization on polygonal surfaces was (e.g. see [42]). proposed by Alexa and Wardetzky [2]. As digital surfaces Discrete exterior calculus was then developed in the com- being specific quadrangulated polygonal surface, such ap- putational mathematics and geometry processing community, proach perfectly fits with our data. However, we show in with a particular focus on triangulated meshes. The “German the experiments such polygonal Laplace–Beltrami operator school” of discrete calculus developed an exact 2D calcu- gives inconsistent results. Indeed, digital surface quads are lus which generalizes the cotangent Laplacian, and is based axis-aligned quads and do not capture the metric of the un- on (conforming and non-conforming) finite elements [51], derlying continuous object properly. Note that Alexa and thus obtaining expected theoretical results such as Stokes’ Wardetzky polygonal operator matches with the cotangent theorem and Hodge decomposition. Its applications range one on triangular meshes. Other operators on polyhedral sur- widely: exact integration allows accurate remeshing via L2 faces can be found in [31,64,32] (see discussion below). projection, shape morphing by prescribing first-order data on the surface, etc. This theory provides a sound base for Convergence and consistency of the operator. We clarify no- actual computation, with one important limitation: the neces- tions of convergences for operators. Suppose that you want to sity to only use triangles (and, furthermore, triangles with solve the equation Au = f where A : X ! Y is a bounded lin- good aspect ratios, for positive Laplacian). ear operator between two Banach spaces and f 2 Y is given. Laplace–Beltrami Operator on Digital Surfaces 3 Suppose also that you have an approximate Ae of A and fe This setting is called the weak consistency and is related to of f and that ue is the solution of Ae ue = fe .(e.g. we can the weak form of the Laplace–Beltrami operator (see Wardet- consider e as the grid step for example). We say that the zky’s thesis for a proper definition [64]).
Recommended publications
  • Arxiv:1507.07356V2 [Math.AP]
    TEN EQUIVALENT DEFINITIONS OF THE FRACTIONAL LAPLACE OPERATOR MATEUSZ KWAŚNICKI Abstract. This article discusses several definitions of the fractional Laplace operator ( ∆)α/2 (α (0, 2)) in Rd (d 1), also known as the Riesz fractional derivative − ∈ ≥ operator, as an operator on Lebesgue spaces L p (p [1, )), on the space C0 of ∈ ∞ continuous functions vanishing at infinity and on the space Cbu of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner’s subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain. 1. Introduction We consider the fractional Laplace operator L = ( ∆)α/2 in Rd, with α (0, 2) and d 1, 2, ... Numerous definitions of L can be found− in− literature: as a Fourier∈ multiplier with∈{ symbol} ξ α, as a fractional power in the sense of Bochner or Balakrishnan, as the inverse of the−| Riesz| potential operator, as a singular integral operator, as an operator associated to an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semigroup of contractions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic extension problem. Equivalence of these definitions for sufficiently smooth functions is well-known and easy. The purpose of this article is to prove that, whenever meaningful, all these definitions are equivalent in the Lebesgue space L p for p [1, ), ∈ ∞ in the space C0 of continuous functions vanishing at infinity, and in the space Cbu of bounded uniformly continuous functions.
    [Show full text]
  • Line, Surface and Volume Integrals
    Line, Surface and Volume Integrals 1 Line integrals Z Z Z Á dr; a ¢ dr; a £ dr (1) C C C (Á is a scalar ¯eld and a is a vector ¯eld) We divide the path C joining the points A and B into N small line elements ¢rp, p = 1;:::;N. If (xp; yp; zp) is any point on the line element ¢rp, then the second type of line integral in Eq. (1) is de¯ned as Z XN a ¢ dr = lim a(xp; yp; zp) ¢ rp N!1 C p=1 where it is assumed that all j¢rpj ! 0 as N ! 1. 2 Evaluating line integrals The ¯rst type of line integral in Eq. (1) can be written as Z Z Z Á dr = i Á(x; y; z) dx + j Á(x; y; z) dy C CZ C +k Á(x; y; z) dz C The three integrals on the RHS are ordinary scalar integrals. The second and third line integrals in Eq. (1) can also be reduced to a set of scalar integrals by writing the vector ¯eld a in terms of its Cartesian components as a = axi + ayj + azk. Thus, Z Z a ¢ dr = (axi + ayj + azk) ¢ (dxi + dyj + dzk) C ZC = (axdx + aydy + azdz) ZC Z Z = axdx + aydy + azdz C C C 3 Some useful properties about line integrals: 1. Reversing the path of integration changes the sign of the integral. That is, Z B Z A a ¢ dr = ¡ a ¢ dr A B 2. If the path of integration is subdivided into smaller segments, then the sum of the separate line integrals along each segment is equal to the line integral along the whole path.
    [Show full text]
  • Chapter 8 Change of Variables, Parametrizations, Surface Integrals
    Chapter 8 Change of Variables, Parametrizations, Surface Integrals x0. The transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it is often a good idea to change variables and try to simplify the integral. The formula which allows one to pass from the original integral to the new one is called the transformation formula (or change of variables formula). It should be noted that certain conditions need to be met before one can achieve this, and we begin by reviewing the one variable situation. Let D be an open interval, say (a; b); in R , and let ' : D! R be a 1-1 , C1 mapping (function) such that '0 6= 0 on D: Put D¤ = '(D): By the hypothesis on '; it's either increasing or decreasing everywhere on D: In the former case D¤ = ('(a);'(b)); and in the latter case, D¤ = ('(b);'(a)): Now suppose we have to evaluate the integral Zb I = f('(u))'0(u) du; a for a nice function f: Now put x = '(u); so that dx = '0(u) du: This change of variable allows us to express the integral as Z'(b) Z I = f(x) dx = sgn('0) f(x) dx; '(a) D¤ where sgn('0) denotes the sign of '0 on D: We then get the transformation formula Z Z f('(u))j'0(u)j du = f(x) dx D D¤ This generalizes to higher dimensions as follows: Theorem Let D be a bounded open set in Rn;' : D! Rn a C1, 1-1 mapping whose Jacobian determinant det(D') is everywhere non-vanishing on D; D¤ = '(D); and f an integrable function on D¤: Then we have the transformation formula Z Z Z Z ¢ ¢ ¢ f('(u))j det D'(u)j du1::: dun = ¢ ¢ ¢ f(x) dx1::: dxn: D D¤ 1 Of course, when n = 1; det D'(u) is simply '0(u); and we recover the old formula.
    [Show full text]
  • Curl, Divergence and Laplacian
    Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1.
    [Show full text]
  • An Introduction to Space–Time Exterior Calculus
    mathematics Article An Introduction to Space–Time Exterior Calculus Ivano Colombaro * , Josep Font-Segura and Alfonso Martinez Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; [email protected] (J.F.-S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +34-93-542-1496 Received: 21 May 2019; Accepted: 18 June 2019; Published: 21 June 2019 Abstract: The basic concepts of exterior calculus for space–time multivectors are presented: Interior and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces, circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior derivatives with circulation and flux, respectively, are derived. As an application, it is shown how the exterior-calculus space–time formulation of the electromagnetic Maxwell equations and Lorentz force recovers the standard vector-calculus formulations, in both differential and integral forms. Keywords: exterior calculus; exterior algebra; electromagnetism; Maxwell equations; differential forms; tensor calculus 1. Introduction Vector calculus has, since its introduction by J. W. Gibbs [1] and Heaviside, been the tool of choice to represent many physical phenomena. In mechanics, hydrodynamics and electromagnetism, quantities such as forces, velocities and currents are modeled as vector fields in space, while flux, circulation, divergence or curl describe operations on the vector fields themselves. With relativity theory, it was observed that space and time are not independent but just coordinates in space–time [2] (pp. 111–120). Tensors like the Faraday tensor in electromagnetism were quickly adopted as a natural representation of fields in space–time [3] (pp. 135–144). In parallel, mathematicians such as Cartan generalized the fundamental theorems of vector calculus, i.e., Gauss, Green, and Stokes, by means of differential forms [4].
    [Show full text]
  • Surface Integrals
    VECTOR CALCULUS 16.7 Surface Integrals In this section, we will learn about: Integration of different types of surfaces. PARAMETRIC SURFACES Suppose a surface S has a vector equation r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k (u, v) D PARAMETRIC SURFACES •We first assume that the parameter domain D is a rectangle and we divide it into subrectangles Rij with dimensions ∆u and ∆v. •Then, the surface S is divided into corresponding patches Sij. •We evaluate f at a point Pij* in each patch, multiply by the area ∆Sij of the patch, and form the Riemann sum mn * f() Pij S ij ij11 SURFACE INTEGRAL Equation 1 Then, we take the limit as the number of patches increases and define the surface integral of f over the surface S as: mn * f( x , y , z ) dS lim f ( Pij ) S ij mn, S ij11 . Analogues to: The definition of a line integral (Definition 2 in Section 16.2);The definition of a double integral (Definition 5 in Section 15.1) . To evaluate the surface integral in Equation 1, we approximate the patch area ∆Sij by the area of an approximating parallelogram in the tangent plane. SURFACE INTEGRALS In our discussion of surface area in Section 16.6, we made the approximation ∆Sij ≈ |ru x rv| ∆u ∆v where: x y z x y z ruv i j k r i j k u u u v v v are the tangent vectors at a corner of Sij. SURFACE INTEGRALS Formula 2 If the components are continuous and ru and rv are nonzero and nonparallel in the interior of D, it can be shown from Definition 1—even when D is not a rectangle—that: fxyzdS(,,) f ((,))|r uv r r | dA uv SD SURFACE INTEGRALS This should be compared with the formula for a line integral: b fxyzds(,,) f (())|'()|rr t tdt Ca Observe also that: 1dS |rr | dA A ( S ) uv SD SURFACE INTEGRALS Example 1 Compute the surface integral x2 dS , where S is the unit sphere S x2 + y2 + z2 = 1.
    [Show full text]
  • Arxiv:2109.03250V1 [Astro-Ph.EP] 7 Sep 2021 by TESS
    Draft version September 9, 2021 Typeset using LATEX modern style in AASTeX62 Efficient and precise transit light curves for rapidly-rotating, oblate stars Shashank Dholakia,1 Rodrigo Luger,2 and Shishir Dholakia1 1Department of Astronomy, University of California, Berkeley, CA 2Center for Computational Astrophysics, Flatiron Institute, New York, NY Submitted to ApJ ABSTRACT We derive solutions to transit light curves of exoplanets orbiting rapidly-rotating stars. These stars exhibit significant oblateness and gravity darkening, a phenomenon where the poles of the star have a higher temperature and luminosity than the equator. Light curves for exoplanets transiting these stars can exhibit deviations from those of slowly-rotating stars, even displaying significantly asymmetric transits depending on the system’s spin-orbit angle. As such, these phenomena can be used as a protractor to measure the spin-orbit alignment of the system. In this paper, we introduce a novel semi-analytic method for generating model light curves for gravity-darkened and oblate stars with transiting exoplanets. We implement the model within the code package starry and demonstrate several orders of magnitude improvement in speed and precision over existing methods. We test the model on a TESS light curve of WASP-33, whose host star displays rapid rotation (v sin i∗ = 86:4 km/s). We subtract the host’s δ-Scuti pulsations from the light curve, finding an asymmetric transit characteristic of gravity darkening. We find the projected spin orbit angle is consistent with Doppler +19:0 ◦ tomography and constrain the true spin-orbit angle of the system as ' = 108:3−15:4 .
    [Show full text]
  • Vector Calculus and Differential Forms with Applications To
    Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level.
    [Show full text]
  • Surface Integrals
    V9. Surface Integrals Surface integrals are a natural generalization of line integrals: instead of integrating over a curve, we integrate over a surface in 3-space. Such integrals are important in any of the subjects that deal with continuous media (solids, fluids, gases), as well as subjects that deal with force fields, like electromagnetic or gravitational fields. Though most of our work will be spent seeing how surface integrals can be calculated and what they are used for, we first want to indicate briefly how they are defined. The surface integral of the (continuous) function f(x,y,z) over the surface S is denoted by (1) f(x,y,z) dS . ZZS You can think of dS as the area of an infinitesimal piece of the surface S. To define the integral (1), we subdivide the surface S into small pieces having area ∆Si, pick a point (xi,yi,zi) in the i-th piece, and form the Riemann sum (2) f(xi,yi,zi)∆Si . X As the subdivision of S gets finer and finer, the corresponding sums (2) approach a limit which does not depend on the choice of the points or how the surface was subdivided. The surface integral (1) is defined to be this limit. (The surface has to be smooth and not infinite in extent, and the subdivisions have to be made reasonably, otherwise the limit may not exist, or it may not be unique.) 1. The surface integral for flux. The most important type of surface integral is the one which calculates the flux of a vector field across S.
    [Show full text]
  • Surface Integrals, Stokes's Theorem and Gauss's Theorem
    Surface Integrals, Stokes's Theorem and Gauss's Theorem Specifying a surface: ² Parametric form: X(s; t) = (x(s; t); y(s; t); z(s; t)) in some region D in R2. ² Explicit function: z = g(x; y) where g is a function in some region D in R2. ² Implicit function: g(x; y; z) = 0, for some function g of three variables. Normal vector and unit normal vector: Normal vectors and unit normal vectors to a surface play an important role in surface integrals. Here are some ways to obtain these vectors. ² Geometric reasoning. For surfaces of simple shape (e.g., planes or spherical surfaces), the easiest way to get normal vectors is by geometric arguments. For example, if the surface is spherical and centered at the origin, then x is a normal vector. If the surface is horizontal or vertical, one can take one of the unit basis vectors (or its negative) as normal vectors. Such geometric reasoning requires virtually no calculation, and is usually the quickest way to evaluate a surface integral in situations where it can be applied. ² Surfaces given by an equation g(x; y; z) = 0. In this case, the gradient of g, rg, is normal to the surface. Normalizing this vector, we get a unit normal vector, n = rg=krgk. Similarly, if the surface is given by an equation z = g(x; y), the vector (gx; gy; 1) is normal to the surface. ² Surfaces given by a parametric representation X(s; t). In this case, the vector N = Ts£ Tt is a normal vector, called the standard normal vector of the given parametrization.
    [Show full text]
  • Stokes' Theorem
    V13.3 Stokes’ Theorem 3. Proof of Stokes’ Theorem. We will prove Stokes’ theorem for a vector field of the form P (x, y, z) k . That is, we will show, with the usual notations, (3) P (x, y, z) dz = curl (P k ) · n dS . � C � �S We assume S is given as the graph of z = f(x, y) over a region R of the xy-plane; we let C be the boundary of S, and C ′ the boundary of R. We take n on S to be pointing generally upwards, so that |n · k | = n · k . To prove (3), we turn the left side into a line integral around C ′, and the right side into a double integral over R, both in the xy-plane. Then we show that these two integrals are equal by Green’s theorem. To calculate the line integrals around C and C ′, we parametrize these curves. Let ′ C : x = x(t), y = y(t), t0 ≤ t ≤ t1 be a parametrization of the curve C ′ in the xy-plane; then C : x = x(t), y = y(t), z = f(x(t), y(t)), t0 ≤ t ≤ t1 gives a corresponding parametrization of the space curve C lying over it, since C lies on the surface z = f(x, y). Attacking the line integral first, we claim that (4) P (x, y, z) dz = P (x, y, f(x, y))(fxdx + fydy) . � C � C′ This looks reasonable purely formally, since we get the right side by substituting into the left side the expressions for z and dz in terms of x and y: z = f(x, y), dz = fxdx + fydy.
    [Show full text]
  • Generalized Stokes' Theorem
    Chapter 4 Generalized Stokes’ Theorem “It is very difficult for us, placed as we have been from earliest childhood in a condition of training, to say what would have been our feelings had such training never taken place.” Sir George Stokes, 1st Baronet 4.1. Manifolds with Boundary We have seen in the Chapter 3 that Green’s, Stokes’ and Divergence Theorem in Multivariable Calculus can be unified together using the language of differential forms. In this chapter, we will generalize Stokes’ Theorem to higher dimensional and abstract manifolds. These classic theorems and their generalizations concern about an integral over a manifold with an integral over its boundary. In this section, we will first rigorously define the notion of a boundary for abstract manifolds. Heuristically, an interior point of a manifold locally looks like a ball in Euclidean space, whereas a boundary point locally looks like an upper-half space. n 4.1.1. Smooth Functions on Upper-Half Spaces. From now on, we denote R+ := n n f(u1, ... , un) 2 R : un ≥ 0g which is the upper-half space of R . Under the subspace n n n topology, we say a subset V ⊂ R+ is open in R+ if there exists a set Ve ⊂ R open in n n n R such that V = Ve \ R+. It is intuitively clear that if V ⊂ R+ is disjoint from the n n n subspace fun = 0g of R , then V is open in R+ if and only if V is open in R . n n Now consider a set V ⊂ R+ which is open in R+ and that V \ fun = 0g 6= Æ.
    [Show full text]