<<

Journal of Mathematical Inequalities 14, Number 3 (2020), 661–671 doi:10.7153/jmi-2020-14-42

SOME MULTIPLE INEQUALITIES VIA THE THEOREM

SILVESTRU SEVER DRAGOMIR

(Communicated by J. Pecari´ˇ c)

Abstract. In this paper, by the use of the , we establish some inequalities for functions defined on closed and bounded subsets of the Rn, n  2.

1. Introduction

Let ∂D be a simple, closed counterclockwise curve bounding a region D and f defined on an open set containing D and having continuous partial on D. In the recent paper [4], by the use of Green’s identity, we have shown among others that 1 f (x,y)dxdy− [(β − y) f (x,y)dx+(x − α) f (x,y)dy] D 2 ∂D 1 ∂ f (x,y) ∂ f (x,y)  |α − x| + |β − y| dxdy =: M (α,β; f ) (1.1) 2 D ∂x ∂y for all α, β ∈ C and ⎧ ⎪ ∂ f |α − | + ∂ f |β − | ⎪ ∂ D x dxdy ∂ D y dxdy; ⎪ x D,∞ y D,∞ ⎪ ⎪ ⎨⎪ ∂ / ∂ / f ( |α − x|q dxdy)1 q + f ( |β − y|q dxdy)1 q (α,β )  ∂x , D ∂y , D M ; f ⎪ D p D p ⎪ where p, q > 1, 1 + 1 = 1; ⎪ p q ⎪ ⎪ ⎩⎪ |α − | ∂ f + |β − | ∂ f , sup(x,y)∈D x ∂ sup(x,y)∈D y ∂ x D,1 y B,1 (1.2)

Mathematics subject classification (2010): 26D15. Keywords and phrases: Multiple integral inequalities, divergence theorem, Green identity, Gauss- Ostrogradsky identity.

 Ð c ,Zagreb 661 Paper JMI-14-42 662 S. S. DRAGOMIR

· where D,p are the usual Lebesgue norms, we recall that ⎧ ⎨ ( | ( , )|p )1/p ,  D g x y dxdy p 1;   = g D,p : ⎩ | ( , )|, = ∞. sup(x,y)∈D g x y p

Applications for rectangles and disks were also provided in [4]. For some recent double integral inequalities see [1], [2]and[3]. We also considered similar inequalities for 3-dimensional bodies as follows, see [5]. Let B be a solid in the three dimensional space R3 bounded by an orientable closed surface ∂B.Iff : B → C is a continuously differentiable function defined on a open set containing B, then by making use of the Gauss-Ostrogradsky identity,we have obtained the following 1 f (x,y,z)dxdydz− (x − α) f (x,y,z)dy∧ dz B 3 ∂B + (y − β) f (x,y,z)dz∧ dx+ (z − γ) f (x,y,z)dx∧ dy ∂B ∂B 1 ∂ f (x,y,z) ∂ f (x,y,z) ∂ f (x,y,z)  |α − x| + |β − y| + |γ − z| dxdydz 3 B ∂x ∂y ∂z =:M (α,β,γ; f ) (1.3) for all α, β, γ complex numbers. Moreover, we have the bounds

M (α,β,γ; f ) ⎧ ⎪ ∂ f |α − | + ∂ f |β − | ⎪ ∂ B x dxdydz ∂ B y dxdydz ⎪ x B,∞ y B,∞ ⎪ ⎪ + ∂ f |γ − | ⎪ ∂ B z dxdydz; ⎪ z B,∞ ⎪ ⎪ ⎪ ∂ / ∂ / ⎨ f ( |α − x|q dxdydz)1 q + f ( |β − y|q dxdydz)1 q 1 ∂x , B ∂y , B  Bp B p (1.4) 3 ⎪ + ∂ f ( |γ − | )1/q , , > , 1 + 1 = ⎪ ∂z B z dxdydz p q 1 p q 1; ⎪ B,p ⎪ ⎪ ⎪ ∂ f ∂ f ⎪ sup( , , )∈ |α − x| + sup( , , )∈ |β − y| ⎪ x y z B ∂x , x y z B ∂y , ⎪ B1 B 1 ⎩ + |γ − | ∂ f . sup(x,y,z)∈B z ∂ z B,1

Applications for 3-dimensional balls were also given in [5]. For some triple inte- gral inequalities see [6]and[9]. Motivated by the above results, in this paper we establish several similar inequali- ties for multiple for functions defined on bonded subsets of Rn (n  2) with smooth (or piecewise smooth) boundary ∂B. To achieve this goal we make use of the well known divergence theorem for multiple integrals as summarized below. SOME MULTIPLE INTEGRAL INEQUALITIES 663

2. Some preliminary facts

Let B be a bounded open subset of Rn (n  2) with smooth (or piecewise smooth) n boundary ∂B.LetF =(F1,...,Fn) be a smooth vector field defined in R , or at least in B∪ ∂B.Letn be the unit outward-pointing normal of ∂B. Then the Divergence Theorem states, see for instance [8]: divFdV = F · ndA, (2.1) B ∂B where n ∂ = ∇ · = Fk , divF F ∑ ∂ k=1 xk dV is the element of volume in Rn and dA is the element of surface on ∂B. If n =(n1,...,nn), x =(x1,...,xn) ∈ B and use the notation dx for dV we can write (2.1) more explicitly as

n n ∂Fk (x) ∑ dx = ∑ Fk (x)nk (x)dA. (2.2) ∂ ∂ k=1 B xk k=1 B By taking the real and imaginary part, we can extend the above equality for com- plex valued functions Fk, k ∈{1,...,n} defined on B. If n = 2, the normal is obtained by rotating the vector through 90◦ (in the correct direction so that it points out). The quantity tds can be written (dx1,dx2) along the surface, so that ndA := nds =(dx2,−dx1) Here t is the tangent vector along the boundary curve and ds is the element of arc-length. From (2.2)wegetforB ⊂ R2 that ∂F1 (x1,x2) ∂F2 (x1,x2) dx1dx2+ dx1dx2 = F1 (x1,x2)dx2− F2 (x1,x2)dx1, B ∂x1 B ∂x2 ∂B ∂B (2.3) which is Green’s theorem in plane. Ifn = 3andif∂B is described as a level-set of a function of 3 variables i.e. 3 ∂B = x1,x2,x3 ∈ R | G(x1,x2,x3)=0 , then a vector pointing in the direction of n is gradG. We shall use the case where G(x1,x2,x3)=x3 − g(x1,x2), (x1,x2) ∈ D, a domain in R2 for some differentiable function g on D and B corresponds to the inequality x3 < g(x1,x2), namely 3 B = (x1,x2,x3) ∈ R | x3 < g(x1,x2) .

Then (−g ,−g ,1) / = x1 x2 , = + 2 + 2 1 2 n / dA 1 gx gx dx1dx2 1 + g2 + g2 1 2 1 2 x1 x2 664 S. S. DRAGOMIR and =(− ,− , ) . ndA gx1 gx2 1 dx1dx2 From (2.2)weget ∂F (x ,x ,x ) ∂F (x ,x ,x ) ∂F (x ,x ,x ) 1 1 2 3 + 2 1 2 3 + 3 1 2 3 dx dx dx ∂x ∂x ∂x 1 2 3 B 1 2 3 = − ( , , ( , )) ( , ) − ( , , ( , )) ( , ) F1 x1 x2 g x1 x2 gx1 x1 x2 dx1dx2 F1 x1 x2 g x1 x2 gx2 x1 x2 dx1dx2 D D

+ F3 (x1,x2,g(x1,x2))dx1dx2 (2.4) D which is the Gauss-Ostrogradsky theorem in space.

3. Identities of interest

We have the following identity of interest:

THEOREM 1. Let B be a bounded open subset of Rn (n  2) with smooth (or piecewise smooth) boundary ∂B. Let f be a continuously differentiable function de- n fined in R ,oratleastinB∪ ∂B and with complex values. If αk, βk ∈ C for ∈{ ,..., } ∑n α = , k 1 n with k=1 k 1 then n ∂ f (x) n f (x)dx= ∑ (βk − αkxk) dx+ ∑ (αkxk − βk) f (x)nk (x)dA. (3.1) ∂ ∂ B k=1 B xk k=1 B We also have 1 n ∂ f (x) 1 n f (x)dx = ∑ (γk − xk) dx + ∑ (xk − γk) f (x)nk (x)dA (3.2) ∂ ∂ B n k=1 B xk n k=1 B for all γk ∈ C,wherek∈{1,...,n}.

Proof. Let x =(x1,...,xn) ∈ B. We consider

Fk (x)=(αkxk − βk) f (x), k ∈{1,...,n}

∂ ( ) and take the partial derivatives Fk x to get ∂xk

∂Fk (x) ∂ f (x) = αk f (x)+(αkxk − βk) , k ∈{1,...,n}. ∂xk ∂xk If we sum this equality over k from 1 to n we get n ∂ ( ) n n ∂ ( ) n ∂ ( ) Fk x = α ( )+ (α − β ) f x = ( )+ (α − β ) f x ∑ ∂ ∑ k f x ∑ kxk k ∂ f x ∑ kxk k ∂ k=1 xk k=1 k=1 xk k=1 xk (3.3) SOME MULTIPLE INTEGRAL INEQUALITIES 665 for all x =(x1,...,xn) ∈ B. Now, if we take the integral in the equality (3.3) over (x1,...,xn) ∈ B we get n ∂ ( ) n ∂ ( ) Fk x = ( ) + (α − β ) f x . ∑ ∂ dx f x dx ∑ kxk k ∂ dx (3.4) B k=1 xk B k=1 B xk By the Divergence Theorem (2.2)wealsohave n n ∂Fk (x) ∑ dx = ∑ (αkxk − βk) f (x)nk (x)dA (3.5) ∂ ∂ B k=1 xk k=1 B and by making use of (3.4)and(3.5)weget n ∂ f (x) n f (x)dx + ∑ (αkxk − βk) dx = ∑ (αkxk − βk) f (x)nk (x)dA ∂ ∂ B k=1 B xk k=1 B which gives the desired representation (3.1). α = 1 β = 1 γ , ∈{ ,..., }. The identity (3.2) follows by (3.1)for k n and k n k k 1 n For the body B we consider the coordinates for the centre of gravity

G(xB,1,...,xB,n) defined by 1 xB,k := xkdx, k ∈{1,...,n}, V (B) B where V (B) := xdx B is the volume of B.

COROLLARY 1. With the assumptions of Theorem 1 we have n ∂ f (x) n f (x)dx = ∑ αk xB,k − xk dx + ∑ αk xk − xB,k f (x)nk (x)dA ∂ ∂ B k=1 B xk k=1 B (3.6) and, in particular, 1 n ∂ f (x) 1 n f (x)dx = ∑ xB,k − xk dx + ∑ xk − xB,k f (x)nk (x)dA. ∂ ∂ B n k=1 B xk n k=1 B (3.7)

The proof follows by (3.1)ontakingβk = αkxB,k, k ∈{1,...,n}. For a function f as in Theorem 1 above, we define the points ∂ f (x) xk ∂ dx = B xk , ∈{ ,..., }, xB,∂ f ,k : ∂ ( ) k 1 n f x dx B ∂xk provided that all denominators are not zero. 666 S. S. DRAGOMIR

COROLLARY 2. With the assumptions of Theorem 1 we have n f (x)dx = ∑ αk xk − xB,∂ f ,k f (x)nk (x)dA (3.8) ∂ B k=1 B and, in particular, 1 n f (x)dx = ∑ xk − xB,∂ f ,k f (x)nk (x)dA. (3.9) ∂ B n k=1 B

The proof follows by (3.1)ontakingβk = αkxB,∂ f ,k, k ∈{1,...,n} and observing that n ∂ ( ) n ∂ ( ) (β − α ) f x = α − f x = . ∑ k kxk ∂ dx ∑ k xB,∂ f ,k xk ∂ dx 0 k=1 B xk k=1 B xk For a function f as in Theorem 1 above, we define the points ( ) ( ) , = ∂B xk f x nk x dA, ∈{ ,..., } x∂B, f k : ( ) ( ) k 1 n ∂B f x nk x dA provided that all denominators are not zero.

COROLLARY 3. With the assumptions of Theorem 1 we have n ∂ ( ) ( ) = α , − f x f x dx ∑ k x∂B, f k xk ∂ dx (3.10) B k=1 B xk and, in particular, n ∂ ( ) ( ) = 1 , − f x . f x dx ∑ x∂B, f k xk ∂ dx (3.11) B n k=1 B xk

The proof follows by (3.1)ontakingβk = αkx∂B, f ,k , k ∈{1,...,n} and observing that n ∑ (αkxk − βk) f (x)nk (x)dA = 0. ∂ k=1 B

4. Some integral inequalities

We have the following result generalizing the inequalities from the introduction:

THEOREM 2. Let B be a bounded open subset of Rn (n  2) with smooth (or piecewise smooth) boundary ∂B. Let f be a continuously differentiable function de- n fined in R ,oratleastinB∪ ∂B and with complex values. If αk, βk ∈ C for SOME MULTIPLE INTEGRAL INEQUALITIES 667

∈{ ,..., } ∑n α = , k 1 n with k=1 k 1 then n ( ) − (α − β ) ( ) ( ) f x dx ∑ kxk k f x nk x dA B = ∂B k 1 ⎧ ⎪ ∑n |β − α | ∂ f (x) ⎪ k=1 B k kxk dx ∂ ⎪ xk B,∞ ⎪ ⎪ ⎪ / ∂ ( ) n ⎨ n q 1 q f x ∂ f (x) ∑ = ( |βk − αkxk| dx) ∂ k 1 B xk ,  ∑ |βk − αkxk| dx  B p (4.1) ∂ ⎪ 1 1 k=1 B xk ⎪ where p, q > 1, + = 1; ⎪ p q ⎪ ⎪ ⎩⎪ n |β − α | ∂ f (x) ∑k=1 supx∈B k kxk ∂ xk B,1

We also have n ( ) − 1 ( − γ ) ( ) ( ) f x dx ∑ xk k f x nk x dA B n = ∂B k 1 ⎧ ⎪ ∑n |γ − | ∂ f (x) ⎪ k=1 B k xk dx ∂ ⎪ xk B,∞ ⎪ ⎪ ⎪ / ∂ ( ) n ⎨ n q q 1 q f x 1 ∂ f (x) 1 ∑ = |γk − xk| dx ∂ k 1 B xk ,  ∑ |γk − xk| dx  B p (4.2) ∂ ⎪ 1 1 n k=1 B xk n ⎪ where p, q > 1, + = 1; ⎪ p q ⎪ ⎪ ⎩⎪ n |γ − | ∂ f (x) ∑k=1 supx∈B k xk ∂ xk B,1 for all γk ∈ C,wherek∈{1,...,n}.

Proof. By the identity (3.1)wehave n f (x)dx− ∑ (αkxk − βk) f (x)nk (x)dA B ∂B k=1 n ∂ ( ) n ∂ ( ) = (β − α ) f x  (β − α ) f x ∑ k kxk ∂ dx ∑ k kxk ∂ dx k=1 B xk k=1 B xk n ∂ ( )  (β − α ) f x , ∑ k kxk ∂ dx k=1 B xk which proves the first inequality in (4.1). 668 S. S. DRAGOMIR

By H¨older’s integral inequality for multiple integrals we have ∂ f (x) (βk − αkxk) dx ∂x B k ⎧ ⎧ ∂ ⎪ ∂ f (x) |β − α | ⎪ |β − α | f ⎪ supx∈B ∂ k kxk dx ⎪ B k kxk dx ∂x ⎪ xk B ⎪ k B,∞ ⎪ ⎪ ⎪ ⎪ ⎪ p 1/p ⎪ / ∂ ⎨ ∂ f (x) q 1/q ⎨ q 1 q f ( |β − α | ) ( |βk − αkxk| dx) ∂  B ∂x B k kxk dx = B xk , , ⎪ k ⎪ B p ⎪ , > , 1 + 1 = ⎪ where p, q > 1, 1 + 1 = 1; ⎪ where p q 1 p q 1; ⎪ p q ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ |β − α | ∂ f (x) ⎩⎪ |β − α | ∂ f supx∈B k kxk ∂ dx supx∈B k kxk ∂ B xk xk B,1 which proves the last part of (4.1).

COROLLARY 4. With the assumptions of Theorem 2 we have n ( ) − 1 − ( ) ( ) f x dx ∑ xk xB,k f x nk x dA B n = ∂B k 1 ⎧ ⎪ ∑n − ∂ f (x) ⎪ k=1 B xB,k xk dx ∂ ⎪ xk B,∞ ⎪ ⎪ ⎪ / ∂ ( ) n ⎨ n q q 1 q f x 1 ∂ f (x) 1 ∑ = xB,k − xk dx ∂ k 1 B xk ,  ∑ xB,k − xk dx  B p (4.3) ∂ ⎪ 1 1 n k=1 B xk n ⎪ where p, q > 1, + = 1; ⎪ p q ⎪ ⎪ ⎩⎪ n − ∂ f (x) ∑k=1 supx∈B xB,k xk ∂ xk B,1 and n ∂ ( ) ( ) 1 , − f x f x dx ∑ x∂B, f k xk dx B n B ∂x ⎧k=1 k ⎪ ∑n , − ∂ f (x) ⎪ k=1 B x∂B, f k xk dx ∂ ⎪ xk B,∞ ⎪ ⎪ ⎪ / ⎨ ∑n q , − q 1 q ∂ f (x) 1 k=1 B x∂B, f k xk dx ∂  xk B,p (4.4) n ⎪ , > , 1 + 1 = ⎪ where p q 1 p q 1; ⎪ ⎪ ⎪ ∂ ( ) ⎩ ∑n , − f x . k=1 supx∈B x∂B, f k xk ∂ xk B,1

We also have the dual result: SOME MULTIPLE INTEGRAL INEQUALITIES 669

THEOREM 3. With the assumption of Theorem 2 we have n ∂ ( ) ( ) − (β − α ) f x f x dx ∑ k kxk ∂ dx B k=1 B xk ⎧ n ⎪  f ∂ ,∞ ∑ = ∂ |αkxk − βk||nk (x)|dA; ⎪ B k 1 B ⎪ ⎨⎪ n   ∑n ( |α −β |q| ( )|q )1/q f ∂B,p k=1 ∂B kxk k nk x dA  ∑ |αkxk − βk||nk (x)||f (x)|dA  ∂ ⎪ , > , 1 + 1 = k=1 B ⎪ where p q 1 p q 1; ⎪ ⎪ ⎩   n ||α − β || ( )||, f ∂B,1 ∑k=1 supx∈∂B kxk k nk x (4.5) where ⎧ ⎨ ( | ( )|p )1/p ,  ∂B f x dA p 1;   = f ∂B,p : ⎩ | ( )|, = ∞. supx∈∂B f x p

In particular, n ∂ ( ) ( ) − 1 (γ − ) f x f x dx ∑ k xk dx B n = B ∂xk k 1 ⎧ n ⎪  f ∂ ,∞ ∑ = ∂ |γk − xk||nk (x)|dA; ⎪ B k 1 B ⎪ ⎨⎪ n   ∑n ( |γ − |q | ( )|q )1/q 1 1 f ∂B,p k=1 ∂B k xk nk x dA  ∑ |γk − xk||nk (x)||f (x)|dA  n ∂ n ⎪ where p, q > 1, 1 + 1 = 1; k=1 B ⎪ p q ⎪ ⎩⎪   ∑n [|γ − || ( )|]. f ∂B,1 k=1 supx∈∂B k xk nk x (4.6)

Proof. From the identity (3.1)wehave n ∂ f (x) f (x)dx− ∑ (βk − αkxk) dx B B ∂xk k=1 n n =∑ (αkxk − βk) f (x)nk (x)dA  ∑ (αkxk − βk) f (x)nk (x)dA ∂ ∂ k=1 B k=1 B n  ∑ |(αkxk − βk) f (x)nk (x)|dA, ∂ k=1 B which proves the first inequality in (4.5). 670 S. S. DRAGOMIR

By H¨older’s inequality for functions defined on ∂B we have ⎧ ⎪ ∂ |αkxk − βk||nk (x)|dA f ∂ ,∞ ; ⎪ B B ⎪ ⎨⎪ ( |α − β |q | ( )|q )1/q   ∂B kxk k nk x dA f ∂B,p |αkxk − βk||nk (x)||f (x)|dA  ∂ ⎪ , > , 1 + 1 = B ⎪ where p q 1 p q 1; ⎪ ⎪ ⎩ ||α − β || ( )||  , supx∈∂B kxk k nk x f ∂B,1 which proves the second part of the inequality (4.5). We also have:

COROLLARY 5. With the assumptions of Theorem 2 we have n ∂ ( ) ( ) − 1 − f x f x dx ∑ xB,k xk ∂ dx B n k=1 B xk n 1  ∑ xB,k − xk |nk (x)||f (x)|dA n = ∂B ⎧k 1 ⎪   ∑n − | ( )| ⎪ f ∂B,∞ k=1 ∂B xB,k xk nk x dA; ⎪ ⎪ ⎨ n q q 1/q 1  f  ∑ x , − x |n (x)| dA  ∂B,p k=1 ∂B B k k k (4.7) n ⎪ where p, q > 1, 1 + 1 = 1; ⎪ p q ⎪ ⎩⎪   ∑n − | ( )| f ∂B,1 k=1 supx∈∂B xB,k xk nk x and n 1 f (x)dx  ∑ xB,∂ f ,k − xk |nk (x)||f (x)|dA B n = ∂B ⎧k 1   n − | ( )| ⎪ f ∂ ,∞ ∑ = ∂ xB,∂ f ,k xk nk x dA; ⎪ B k 1 B ⎪ ⎪ / ⎨ n q q 1 q 1  f  ∑ x ,∂ , − x |n (x)| dA  ∂B,p k=1 ∂B B f k k k (4.8) n ⎪ where p, q > 1, 1 + 1 = 1; ⎪ p q ⎪ ⎩⎪   n − | ( )| . f ∂B,1 ∑k=1 supx∈∂B xB,∂ f ,k xk nk x

If we take n = 2 in Theorem 3, then we get other results from [4], while for n = 3 we recapture some results from [5].

REFERENCES

[1] H. BUDAK AND M. Z. SARIKAYA, Generalized weighted Cebysevˇ and Ostrowski type inequalities for double integrals, TWMS J. Appl. Eng. Math. 7 (2017), no. 2, 272–281. SOME MULTIPLE INTEGRAL INEQUALITIES 671

[2] H. BUDAK AND M. Z. SARIKAYA, On weighted Gr¨uss type inequalities for double integrals,Com- mun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 66 (2017), no. 2, 53–61. [3]S.S.DRAGOMIR, Double integral inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Analysis (Berlin) 37 (2017), no. 1, 13–22. [4]S.S.DRAGOMIR, Some inequalities for double and path integrals on general domains via Green’s identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 55, 17 pp. Online http://rgmia.org/papers/v22/v22a55.pdf. [5] S. S. DRAGOMIR, Some triple integral inequalities for functions defined on 3-dimensional bodies via Gauss-Ostrogradsky identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 60, 21 pp. Online http://rgmia.org/papers/v22/v22a60.pdf. [6] B. G. PACHPATTE, New inequalities of Ostrowski and Gr¨uss type for triple integrals, Tamkang J. Math. 40 (2009), no. 2, 117–127. [7] D. B. PACHPATTE, Some Ostrowski type inequalities for double integrals on time scales, Acta Appl. Math. 161 (2019), 1–11. [8] M. SINGER, The divergence theorem, Online https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/divthm.pdf. [9]W.T.SULAIMAN, Integral inequalities concerning triple integrals, J. Concr. Appl. Math. 8 (2010), no. 4, 585–593.

(Received June 26, 2019) Silvestru Sever Dragomir Mathematics, College of Engineering & Science Victoria University PO Box 14428, Melbourne City, MC 8001, Australia DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences School of Computer Science & Applied Mathematics, University of the Witwatersrand Private Bag 3, Johannesburg 2050, South Africa e-mail: [email protected]

Journal of Mathematical Inequalities www.ele-math.com [email protected]