Real-Time Hourly Objective Analysis of Surfcace Data At

Total Page:16

File Type:pdf, Size:1020Kb

Real-Time Hourly Objective Analysis of Surfcace Data At th 90 AMS Annual Meeting 20th Conf on Probability and Statistics 17–21 January 2010, Atlanta, Georgia 219 REAL-TIME OBJECTIVE ANALYSIS OF SURFACE DATA AT THE METEOROLOGICAL DEVELOPMENT LABORATORY Jung-Sun Im*, Bob Glahn, and Judy E. Ghirardelli Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland 1. INTRODUCTION analyses of the surface observations, we found various issues such as inconsistent site informa- As part of the Localized Aviation Model Output tion for stationary stations, redundant stations re- Statistics (MOS; Glahn and Lowry 1972) Program porting data at the same locations with different (LAMP; Ghirardelli 2005), the Meteorological De- station names and types, simultaneous multiple velopment Laboratory (MDL) is analyzing surface reports with different station types, stations re- data reports on an hourly basis. The analysis peatedly reporting the same values, and spatial scheme used by MDL for gridding MOS forecasts and temporal discontinuities in the analyses. (Glahn et al. 2009) has been tailored to analyze surface observations. MDL is making the analy- In this paper, we describe the intensive effort ses to assess the accuracy of gridded MOS and needed to 1) assure the metadata are correct for LAMP forecasts. In addition to providing verifica- each location, 2) develop efficient quality control tion grids for gridded MOS and LAMP forecasts, it procedures, 3) assign a representative land, is our goal to add gridded LAMP nowcasts to the ocean, or inland water flag to each station, and gridded LAMP forecast suite. These accurate 4) alleviate spatial and temporal discontinuities in high-resolution analyses will eventually help fore- the analyses. This paper focuses on the analyses casters create and verify the National Digital Fore- of temperature and dewpoint over the contermi- cast Database (NDFD; Glahn and Ruth 2003). nous United States (CONUS) on the 5-km resolu- tion NDFD grid with surface observations archived Real-time and retrospective analyses at both a since August 2007. high spatial and temporal resolution are required to establish an Analysis of Record (AOR; Horel 2. THE BCDG ANALYSIS METHOD and Colman 2005), and to create the NDFD fore- casts as well as to verify their accuracy. As a first In support of NDFD, MDL has produced grid- step, a prototype Real-Time Mesoscale Analysis ded MOS forecasts since 2006 (Glahn et al. (RTMA; De Pondeca et al. 2007a; Benjamin et al. 2009). The objective analysis scheme used to 2007) was produced at the National Centers for produce gridded MOS is based on the successive Environmental Prediction (NCEP) in collaboration correction technique called Bergthorssen- with the Earth System Research Laboratory Cressman-Doos (BCD; Glahn et al. 1985; Cress- (ESRL). It represents a fast-track, proof-of-concept man 1959; Bergthorssen and Doos 1955). This of the AOR program and establishes a benchmark successive correction technique consists of mak- for future AOR efforts (De Pondeca et al. 2007b). ing multiple passes over the data, correcting each In addition to RTMA, MDL analyses can be used grid point on each pass by comparing with the to judge the quality of an AOR. data in the immediate vicinity. For gridded MOS, this BCD technique was modified by implementing High quality surface weather observations and the following specific features: effective quality control processes are critical to generate high-resolution objective analyses. The 1) separate analysis systems for land, inland hourly surface observations for the analyses are water, and ocean combined into one, to ac- obtained from NCEP in real time and are addition- commodate the different characteristics as- ally quality controlled at MDL. While performing sociated with land and water, 2) computation on-the-fly of vertical change of a weather element with elevation, so that the * Corresponding author address: Jung-Sun Im, vertical change varies with the location, time National Weather Service, Meteorological Development of day, day of the year, and synoptic situa- Laboratory, 1325 East-West Highway, W/OST21, Silver Spring, MD 20910; email: [email protected] tion, 1 3) a variable radius of influence (R) for land threshold, S is accepted. Otherwise, S is not used and for water points for each specific correc- on this pass. tive pass to account for highly varying data densities, More detailed information on the BCDG tech- 4) error detection which employs a buddy nique such as the gridpoint correction algorithm, check when a datum is in serious question, determination of vertical change with elevation, and and accommodation for land and water can be 5) a terrain-following smoother. found in Glahn et al. (2009). Based on extensive experimentation performed at MDL, we adopted With theses major extensions, the BCD scheme the BCDG options used in gridded MOS, which was thereafter called Bergthorssen-Cressman- incorporate a first-guess grid composed of the av- Doos-Glahn (BCDG; Glahn et al. 2009). erage value of the element, a four-pass setup to capture the desired detail in the analysis, limitation The BCDG analysis system has many options of unusual lapse rates when the computed vertical that can be used to tune the system based on data change is of the opposite sign than expected, and density relative to gridpoint density, variation in a terrain-following smoother. data density over the grid, choice of first-guess field, number of corrective passes, smoothness 3. DATA COLLECTION AND INITIAL QUALITY versus detail desired in the analysis, and error CONTROL characteristics of the data. In analyzing surface observation data, BCDG’s error checking capabil- Hourly surface observations are obtained from ity is an essential part of the analysis of the data. NCEP in real time and are additionally quality con- The BCDG software performs this error checking trolled at MDL. The first set of quality control on each pass based on an acceptable difference checks at MDL ensures that all temperature and (threshold) between the station value and the dewpoint observations are in an acceptable range value interpolated from the analysis. Based on for the station’s geographical area, and the tem- considerable testing and meteorological judgment, peratures are greater than or equal to the dew- we have determined the threshold values for each points (Glahn and Dallavalle 2000; Allen 2001). In pass. The procedures of BCDG’s error checking preparing input observation data to be used in the are summarized in Fig. 1. On each pass, the dif- hourly analyses, we collect data observed be- ference between a station’s value (S) and the tween 15 minutes prior and subsequent to the value interpolated from the 1st guess or previous analysis hour. If more than one observation is pass analysis (ΙS) is computed before making an reported for a station, we select the report closest analysis. If the difference is less than or equal to to 10 minutes prior to the analysis hour. The the threshold (Th) specified for each pass, S is analysis system for temperature and dewpoint as- accepted for that pass, but if it exceeds 1.5 times similates six types of observations obtained from the threshold, S is discarded; if it exceeds the METAR (roughly translated as Aviation Routine threshold, but is less than or equal to 1.5 times the Weather Report; OFCM 1995), mesonet, synoptic, threshold, then the two closest neighbors’ values moored buoy, Coastal-Automated Marine Network to S (N1 and N2) are found to perform buddy (C-MAN), and tide gauge stations. checks before S is discarded. The differences of N1 from its interpolated value (ΙN1) and N2 from its 3.1 METAR interpolated value (ΙN2) are computed. If either one of the two neighbors’ differences is greater METAR reports typically come from airports or than 0.6 times the threshold, and the differences permanent weather observation stations. Obser- of both S and its neighbor are of the same sign, vations are taken by automated devices or trained then S is accepted. If not accepted, one more personnel. Some stations have automated obser- check is performed. If either one of the two vations augmented by human observers. METAR neighbors’ differences is less than or equal to 0.6 reports are of high quality, and we have found that times the threshold and the difference between S they are more reliable than all other observational and the neighbor’s value adjusted for terrain data sets. (AN1 or AN2 accordingly) is within 0.6 times the 2 0 0.6∗∗∗Th Th 1.5∗∗∗Th |S-ΙΙΙS| ≤≤≤ Th Th < |S-ΙS| ≤≤≤ 1.5∗∗∗Th |S-ΙΙΙS| > 1.5∗∗∗Th Accept S Buddy Check Discard S Two closest neighbors (N1, N2) are found to perform “buddy checks” before S is discarded. |N1- ΙΙΙN1| > 0.6∗∗∗Th & (S-ΙΙΙS)(N1- ΙΙΙN1) > 0 (Errors in the same direction) Or |N2- ΙΙΙN2| > 0.6∗∗∗Th & (S-ΙΙΙS)(N2- ΙΙΙN2) > 0 (Errors in the same direction) Accept S If not accepted |N1- ΙΙΙN1| ≤≤≤ 0.6∗∗∗Th & |S-AN1| ≤≤≤ 0.6∗∗∗Th Or |N2- ΙΙΙN2| ≤≤≤ 0.6∗∗∗Th & |S-AN2| ≤≤≤ 0.6∗∗∗Th Accept S FIG. 1. BCDG’s error checking procedures. 3.2 Mesonet 3.3 Synoptic Mesonet observations are obtained from local, Synoptic data are comprised of manual and state, and federal agencies and private mesonet automatic observations, and are available every sites. These sites are quite dense compared to 3 or 6 hours. In many cases, these data are re- METAR sites. In fact, over 80% of the stations dundant to the METAR data at the same location used in the BCDG analysis consist of mesonet (this issue will be discussed in section 4.2). type stations. 3 3.4 Buoy, C-MAN, and tide gauge tion that 1°F is an allowable error range in a tem- perature analysis (1°F corresponds to a change in We use observations obtained from moored elevation of 280 ft in the standard atmosphere of buoy, C-MAN, and tide gauge stations.
Recommended publications
  • 2020 Infra Surface Weather Observations
    Surface Weather Observations Comparison of Various Observing Systems Scott Landolt & Matthias Steiner National Center for Atmospheric Research [email protected] USHST Infrastructure Summit 12 – 13 March 2020 in Washington, DC © 2020 University Corporation for Atmospheric Research 1 Surface Stations & Reporting Frequency Station Type Frequency of Reports Automated Surface 5 minutes Observing System (ASOS) (limited access to 1 minute data) Automated Weather 20 minutes Observing System (AWOS) 15 minutes (standard), can be Road Weather Information more frequent but varies state to System (RWIS) state and even site to site 5 – 15 minutes, can vary from Mesonet station to station Iowa station network © 2020 University Corporation for Atmospheric Research 2 Reporting Variables Weather Variable ASOS AWOS RWIS Mesonet Temperature X X X X Relative X X X X Humidity/Dewpoint Wind Speed/Direction X X X X Barometric Pressure X X X X Ceiling Height X X X X Visibility X X X X Present Weather X X X X Precipitation X X X X Accumulation Road Condition X X X X X – All Stations Report X – Some Stations Report X – No Stations Report © 2020 University Corporation for Atmospheric Research 3 Station Siting Requirements Station Type Siting Areal Representativeness Automated Surface Miles (varies depending on Airport grounds, unobstructed Observing System (ASOS) local conditions & weather) Automated Weather Miles (varies depending on Airport grounds, unobstructed Observing System (AWOS) local conditions & weather) Next to roadways, can be in canyons, valleys, mountain
    [Show full text]
  • Relative Forecast Impact from Aircraft, Profiler, Rawinsonde, VAD, GPS-PW, METAR and Mesonet Observations for Hourly Assimilation in the RUC
    16.2 Relative forecast impact from aircraft, profiler, rawinsonde, VAD, GPS-PW, METAR and mesonet observations for hourly assimilation in the RUC Stan Benjamin, Brian D. Jamison, William R. Moninger, Barry Schwartz, and Thomas W. Schlatter NOAA Earth System Research Laboratory, Boulder, CO 1. Introduction A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3h-12h duration) wind, temperature, and relative humidity forecasts at different vertical levels. This assessment of the value of 7 different observation data types (aircraft (AMDAR and TAMDAR), profiler, rawinsonde, VAD (velocity azimuth display) winds, GPS precipitable water, METAR, and mesonet) on short-range numerical forecasts was carried out for a 10-day period from November- December 2006. 2. Background Observation system experiments (OSEs) have been found very useful to determine the impact of particular observation types on operational NWP systems (e.g., Graham et al. 2000, Bouttier 2001, Zapotocny et al. 2002). This new study is unique in considering the effects of most of the currently assimilated high-frequency observing systems in a 1-h assimilation cycle. The previous observation impact experiments reported in Benjamin et al. (2004a) were primarily for wind profiler and only for effects on wind forecasts. This new impact study is much broader than that the previous study, now for more observation types, and for three forecast fields: wind, temperature, and moisture. Here, a set of observational sensitivity experiments (Table 1) were carried out for a recent winter period using 2007 versions of the Rapid Update Cycle assimilation system and forecast model.
    [Show full text]
  • Weatherscope Weatherscope Application Information: Weatherscope Is a Stand-Alone Application That Makes Viewing Weather Data Easier
    User Guide - Macintosh http://earthstorm.ocs.ou.edu WeatherScope WeatherScope Application Information: WeatherScope is a stand-alone application that makes viewing weather data easier. To run WeatherScope, Mac OS X version 10.3.7, a minimum of 512MB of RAM, and an accelerated graphics card with 32MB of VRAM are required. WeatherScope is distributed freely for noncommercial and educational use and can be used on both Apple Macintosh and Windows operating systems. How do I Download WeatherScope? To download the application, go to http://earthstorm.ocs.ou.edu, select Data, Software, Download, or go to http://www. ocs.ou.edu/software. There will be three options: WeatherBuddy, WeatherScope, and WxScope Plugin. You will want to choose WeatherScope. There are two options under the application: Macintosh or Windows. Choose Macintosh to download the application. The installation wizard will automatically save to your desktop. Go to your desktop and double click on the icon that says WeatherScope- x.x.x.pkg. Several dialog messages will appear. The fi rst message will inform you that you are about to install the application. The next message tells you about computer system requirements in order to download the application. The following message is the Software License Agreement. It is strongly suggested that you read this agreement. If you agree, click Agree. If you do not agree, click Disagree and the software will not be installed onto your computer. The next message asks you to select a destination drive (usually your hard drive). The setup will run and install the software on your computer. You may then press Close.
    [Show full text]
  • Reading Mesonet Rain Maps
    Oklahoma’s Weather Network Lesson 2 - Rain Maps Reading Mesonet Rain Maps Estimated Lesson Time: 30 minutes Introduction Every morning when you get ready for school, you decide what you are going to wear for the day. Often you might ask your parents what the weather is like or check the weather yourself before getting dressed. Then you can decide if you will wear a t-shirt or sweater, flip-flops or rain boots. The Oklahoma Mesonet, www.mesonet.org, is a weather and climate network covering the state. The Mesonet collects measurements such as air tempera- ture, rainfall, wind speed, and wind direction, every five minutes . These mea- surements are provided free to the public online. The Mesonet has 120 remote weather stations across the state collecting data. There is at least one in every county which means there is one located near you. Our data is used by people across the state. Farmers use our data to grow their crops, and firefighters use it to help put out a fire. Emergency managers in your town use it to warn you of tornadoes, and sound the town’s sirens. Mesonet rainfall data gives a statewide view, updated every five minutes. When reading the Mesonet rainfall accumulation maps, notice each Mesonet site displays accumulated rainfall. The map also displays the National Weather Service (NWS) River Forecast Center’s rainfall estimates (in color) across Oklahoma based on radar (an instrument that can locate precipitation and its motion). For example, areas in blue have lower rainfall than areas in red or purple.
    [Show full text]
  • Alternative Earth Science Datasets for Identifying Patterns and Events
    https://ntrs.nasa.gov/search.jsp?R=20190002267 2020-02-17T17:17:45+00:00Z Alternative Earth Science Datasets For Identifying Patterns and Events Kaylin Bugbee1, Robert Griffin1, Brian Freitag1, Jeffrey Miller1, Rahul Ramachandran2, and Jia Zhang3 (1) University of Alabama in Huntsville (2) NASA MSFC (3) Carnegie Mellon Universityv Earth Observation Big Data • Earth observation data volumes are growing exponentially • NOAA collects about 7 terabytes of data per day1 • Adds to existing 25 PB archive • Upcoming missions will generate another 5 TB per day • NASA’s Earth observation data is expected to grow to 131 TB of data per day by 20222 • NISAR and other large data volume missions3 Over the next five years, the daily ingest of data into the • Other agencies like ESA expect data EOSDIS archive is expected to grow significantly, to more 4 than 131 terabytes (TB) of forward processing. NASA volumes to continue to grow EOSDIS image. • How do we effectively explore and search through these large amounts of data? Alternative Data • Data which are extracted or generated from non-traditional sources • Social media data • Point of sale transactions • Product reviews • Logistics • Idea originates in investment world • Include alternative data sources in investment decision making process • Earth observation data is a growing Image Credit: NASA alternative data source for investing • DMSP and VIIRS nightlight data Alternative Data for Earth Science • Are there alternative data sources in the Earth sciences that can be used in a similar manner? •
    [Show full text]
  • TC Modelling and Data Assimilation
    Tropical Cyclone Modeling and Data Assimilation Jason Sippel NOAA AOML/HRD 2021 WMO Workshop at NHC Outline • History of TC forecast improvements in relation to model development • Ongoing developments • Future direction: A new model History: Error trends Official TC Track Forecast Errors: • Hurricane track forecasts 1990-2020 have improved markedly 300 • The average Day-3 forecast location error is 200 now about what Day-1 error was in 1990 100 • These improvements are 1990 2020 largely tied to improvements in large- scale forecasts History: Error trends • Hurricane track forecasts have improved markedly • The average Day-3 forecast location error is now about what Day-1 error was in 1990 • These improvements are largely tied to improvements in large- scale forecasts History: Error trends Official TC Intensity Forecast Errors: 1990-2020 • Hurricane intensity 30 forecasts have only recently improved 20 • Improvement in intensity 10 forecast largely corresponds with commencement of 0 1990 2020 Hurricane Forecast Improvement Project HFIP era History: Error trends HWRF Intensity Skill 40 • Significant focus of HFIP has been the 20 development of the HWRF better 0 Climo better HWRF model -20 -40 • As a result, HWRF intensity has improved Day 1 Day 3 Day 5 significantly over the past decade HWRF skill has improved up to 60%! Michael Talk focus: How better use of data, particularly from recon, has helped improve forecasts Michael Talk focus: How better use of data, particularly from recon, has helped improve forecasts History: Using TC Observations
    [Show full text]
  • Evaluating NEXRAD Multisensor Precipitation Estimates for Operational Hydrologic Forecasting
    JUNE 2000 YOUNG ET AL. 241 Evaluating NEXRAD Multisensor Precipitation Estimates for Operational Hydrologic Forecasting C. BRYAN YOUNG,A.ALLEN BRADLEY,WITOLD F. K RAJEWSKI, AND ANTON KRUGER Iowa Institute of Hydraulic Research and Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa MARK L. MORRISSEY Environmental Veri®cation and Analysis Center, University of Oklahoma, Norman, Oklahoma (Manuscript received 9 August 1999, in ®nal form 10 January 2000) ABSTRACT Next-Generation Weather Radar (NEXRAD) multisensor precipitation estimates will be used for a host of applications that include operational stream¯ow forecasting at the National Weather Service River Forecast Centers (RFCs) and nonoperational purposes such as studies of weather, climate, and hydrology. Given these expanding applications, it is important to understand the quality and error characteristics of NEXRAD multisensor products. In this paper, the issues involved in evaluating these products are examined through an assessment of a 5.5-yr record of multisensor estimates from the Arkansas±Red Basin RFC. The objectives were to examine how known radar biases manifest themselves in the multisensor product and to quantify precipitation estimation errors. Analyses included comparisons of multisensor estimates based on different processing algorithms, com- parisons with gauge observations from the Oklahoma Mesonet and the Agricultural Research Service Micronet, and the application of a validation framework to quantify error characteristics. This study reveals several com- plications to such an analysis, including a paucity of independent gauge data. These obstacles are discussed and recommendations are made to help to facilitate routine veri®cation of NEXRAD products. 1. Introduction WSR-88D radars and a network of gauges that report observations to the RFC in near±real time (Fulton et al.
    [Show full text]
  • Mesorefmatl.PM6.5 For
    What is the Oklahoma Mesonet? Overview The Oklahoma Mesonet is a world-class network of environ- mental monitoring stations. The network was designed and implemented by scientists at the University of Oklahoma (OU) and at Oklahoma State University (OSU). The Oklahoma Mesonet consists of 114 automated stations covering Oklahoma. There is at least one Mesonet station in each of Oklahoma’s 77 counties. Definition of “Mesonet” “Mesonet” is a combination of the words “mesoscale” and “network.” • In meteorology, “mesoscale” refers to weather events that range in size from a few kilometers to a few hundred kilo- meters. Mesoscale events last from several minutes to several hours. Thunderstorms and squall lines are two examples of mesoscale events. • A “network” is an interconnected system. Thus, the Oklahoma Mesonet is a system designed to mea- sure the environment at the size and duration of mesoscale weather events. At each site, the environment is measured by a set of instru- ments located on or near a 10-meter-tall tower. The measure- ments are packaged into “observations” every 5 minutes, then the observations are transmitted to a central facility every 15 minutes – 24 hours per day year-round. The Oklahoma Climatological Survey (OCS) at OU receives the observations, verifies the quality of the data and provides the data to Mesonet customers. It only takes 10 to 20 minutes from the time the measurements are acquired until they be- come available to customers, including schools. OCS Weather Series Chapter 1.1, Page 1 Copyright 1997 Oklahoma Climatological Survey. All rights reserved. As of 1997, no other state or nation is known to have a net- Fun Fact work that boasts the capabilities of the Oklahoma Mesonet.
    [Show full text]
  • Observations of Extreme Variations in Radiosonde Ascent Rates
    Observations of Significant Variations in Radiosonde Ascent Rates Above 20 km. A Preliminary Report W.H. Blackmore Upper air Observations Program Field Systems Operations Center NOAA National Weather Service Headquarters Ryan Kardell Weather Forecast Office, Springfield, Missouri NOAA National Weather Service Latest Edition, Rev D, June 14, 2012 1. Introduction: Commonly known measurements obtained from radiosonde observations are pressure, temperature, relative humidity (PTU), dewpoint, heights and winds. Yet, another measurement of significant value, obtained from high resolution data, is the radiosonde ascent rate. As the balloon carrying the radiosonde ascends, its' rise rate can vary significantly owing to vertical motions in the atmosphere. Studies on deriving vertical air motions and other information from radiosonde ascent rate data date from the 1950s (Corby, 1957) to more recent work done by Wang, et al. (2009). The causes for the vertical motions are often from atmospheric gravity waves that are induced by such phenomena as deep convection in thunderstorms (Lane, et al. 2003), jet streams, and wind flow over mountain ranges. Since April, 1995, the National Weather Service (NWS) has archived radiosonde data from the MIcroART upper air system at six second intervals for nearly all stations in the NWS 92 station upper air network. With the network deployment of the Radiosonde Replacement System (RRS) beginning in August, 2005, the resolution of the data archived increased to 1 second intervals and also includes the GPS radiosonde height data. From these data, balloon ascent rate can be derived by noting the rate of change in height for a period of time The purpose of this study is to present observations of significant variations of radiosonde balloon ascent rates above 20 km in the stratosphere taken close to (less than 150 km away) and near the time of severe and non- severe thunderstorms.
    [Show full text]
  • (BOW ECHO and MCV EXPERIMENT) NCAR/ATD -OCTOBER 2002 OFAP MEETING Submitted on 15 June 2002
    REQUEST FOR NRL P-3, ELDORA, MGLASS, ISFF, DROPSONDE AND SONDE SUPPORT BAMEX (BOW ECHO AND MCV EXPERIMENT) NCAR/ATD -OCTOBER 2002 OFAP MEETING Submitted on 15 June 2002 PART I: GENERAL INFORMATION Corresponding Principal Investigator Name Chris Davis Institution NCAR/MMM Address P.O. Box 3000, Boulder, Colorado 80307 Phone 303-497-8990 FAX 303-497-8181 Email [email protected] Project Description Project Title Bow Echo and MCV Experiment (BAMEX) Co-Investigator(s) and Affiliation(s) Facility PIs: Michael Biggerstaff, University of Oklahoma Roger Wakimoto, UCLA Christopher Davis, NCAR David Jorgensen, NSSL Kevin Knupp, University of Alabama, Huntsville Morris Weisman (NCAR) David Dowell (NCAR) Other Co-investigators (major contributors to science planning): George Bryan, Penn State University Robert Johns, Storm Prediction Center Brian Klimowski, NWSFO, Rapid City, S.D. Ron Przybylinski, NWSFO, St. Louis, Missouri Gary Schmocker, NWSFO, St. Louis, Missouri Jeffrey Trapp, NSSL Stanley Trier, NCAR Conrad Ziegler, NSSL A complete list of expected participants appears in Appendix A of the Science Overview Document (SOD). Location of Project St. Louis, Missouri Start and End Dates of Project 20 May - 6 July 2003 Version 01-10 Davis et al. –BAMEX – NRL P-3, ELDORA, Dropsondes, MGLASS, ISFF, sondes ABSTRACT OF PROPOSED PROJECT BAMEX is a study using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related programs to investigate (a) bow echoes, principally those which produce damaging surface winds and last at least 4 hours and (b) larger convective systems which produce long lived mesoscale convective vortices (MCVs).
    [Show full text]
  • The Impact of Unique Meteorological Phenomena Detected by the Oklahoma Mesonet and ARS Micronet on Automated Quality Control Christopher A
    The Impact of Unique Meteorological Phenomena Detected by the Oklahoma Mesonet and ARS Micronet on Automated Quality Control Christopher A. Fiebrich and Kenneth C. Crawford Oklahoma Climatological Survey, Norman, Oklahoma ABSTRACT To ensure quality data from a meteorological observing network, a well-designed quality control system is vital. Automated quality assurance (QA) software developed by the Oklahoma Mesonetwork (Mesonet) provides an effi- cient means to sift through over 500 000 observations ingested daily from the Mesonet and from a Micronet spon- sored by the Agricultural Research Service of the United States Department of Agriculture (USDA). However, some of nature's most interesting meteorological phenomena produce data that fail many automated QA tests. This means perfectly good observations are flagged as erroneous. Cold air pooling, "inversion poking," mesohighs, mesolows, heat bursts, variations in snowfall and snow cover, and microclimatic effects produced by variations in vegetation are meteorological phenomena that pose a problem for the Mesonet's automated QA tests. Despite the fact that the QA software has been engineered for most observa- tions of real meteorological phenomena to pass the various tests—but is stringent enough to catch malfunctioning sensors—erroneous flags are often placed on data during extreme events. This manuscript describes how the Mesonet's automated QA tests responded to data captured from microscale meteorological events that, in turn, were flagged as erroneous by the tests. The Mesonet's operational plan is to cata- log these extreme events in a database so QA flags can be changed manually by expert eyes. 1. Introduction and personnel at the central processing site for the Oklahoma Mesonet in Norman, Oklahoma.
    [Show full text]
  • Jp2.5 Madis Support for Urbanet
    To be presented at the 14th Symposium on Meteorological Observations and Instrumentation January 14 - 18, 2007, San Antonio, Texas JP2.5 MADIS SUPPORT FOR URBANET Patricia A. Miller*, Michael F. Barth, and Leon A. Benjamin1 NOAA Research – Earth System Research Laboratory (ESRL) Boulder, Colorado Richard S. Artz and William R. Pendergrass NOAA Research – Air Resources Laboratory (ARL) Silver Spring, Maryland 1. INTRODUCTION (API) that provides users with easy access to the data and QC information. The API allows each user to specify NOAA’s Earth System Research Laboratory’s station and observation types, as well as QC choices, Global Systems Division (ESRL/GSD) has established and domain and time boundaries. Many of the the MADIS (Meteorological Assimilation Data Ingest implementation details that arise in data ingest programs System) project to make integrated, quality-controlled are automatically performed, greatly simplifying user datasets available to the greater meteorological access to the disparate datasets, and effectively community. The goals of MADIS are to promote integrating the database by allowing, for example, users comprehensive data collection and distribution of to access NOAA surface observations, and non-NOAA operational and experimental observation systems, to surface mesonets through a single interface. decrease the cost and time required to access new MADIS datasets were first made publicly available observing systems, to blend and coordinate other- in July 2001, and have proven to be popular within the agency observations with NOAA observations, and to meteorological community. GSD now supports hundreds make the integrated observations easily accessible and of MADIS users, including NWS forecast offices, the usable to the greater meteorological community.
    [Show full text]