BMC Genomics Biomed Central

Total Page:16

File Type:pdf, Size:1020Kb

BMC Genomics Biomed Central BMC Genomics BioMed Central Research article Open Access Cross genome comparisons of serine proteases in Arabidopsis and rice Lokesh P Tripathi and R Sowdhamini* Address: National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India Email: Lokesh P Tripathi - [email protected]; R Sowdhamini* - [email protected] * Corresponding author Published: 09 August 2006 Received: 11 April 2006 Accepted: 09 August 2006 BMC Genomics 2006, 7:200 doi:10.1186/1471-2164-7-200 This article is available from: http://www.biomedcentral.com/1471-2164/7/200 © 2006 Tripathi and Sowdhamini; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa) genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results: Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively). Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion: The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species. Background olysis plays a major role in diverse cellular processes by The proper functioning of a cell is ensured by the precise regulating biochemical activities of proteins in concert regulation of protein levels that in turn are regulated by a with other cellular mechanisms such as post-translational balance between the rates of protein synthesis and degra- modification[1,2]. Serine proteases are one of the largest dation. Protein degradation is mediated by proteolysis, groups of proteolytic enzymes involved in numerous reg- which paves the way for recycling of amino acids into the ulatory processes. They catalyse the hydrolysis of specific cellular pool. In addition to degradation, regulated prote- peptide bonds in their substrates and this activity depends Page 1 of 31 (page number not for citation purposes) BMC Genomics 2006, 7:200 http://www.biomedcentral.com/1471-2164/7/200 on a set of amino acids in the active site of the enzyme, This paper reports the first bioinformatics genome-wide one of which is always a serine. They include both survey of plant serine proteases and cross-comparisons of exopeptidases that act on the termini of polypeptide several serine protease families across monocots and chains and endopeptidases that act in the interior of dicots. Species-specific proteases and existence of evolu- polypeptide chains and belong to many different protein tionary changes like lateral gene transfer and gene shuf- families that are grouped into clans[3,4]. A clan is defined fling were observed at the catalytic domain. Further as a group of families, the members of which are likely to experimental characterization of Arabidopsis and rice ser- have a common ancestor. Currently there are over 50 ser- ine proteases that are likely to be involved in basic func- ine-protease families known as classified by MEROPS tions associated with various physiological processes in database[5], an information resource for peptidases and plants would be useful in expanding the current under- their inhibitors. standing of these processes in regulating plant growth and development. This would prove beneficial in understand- Serine proteases appear to be the largest class of proteases ing protease processes in plants and application of this in plants[2]. Consistent with their regulatory role, plant knowledge to important crop species. serine proteases have been shown to be involved in diverse processes regulating plant development and Results and discussion defense responses[2,6-8]. In addition, some of plant ser- Despite the differences in genome sizes between Arabidop- ine carboxypeptidases (Family S10) function as acyltrans- sis and rice (125 Mb and 389 Mb respectively) and ferases rather than hydrolases, suggesting diversification encoded number of genes (25,498 and 37,544 non-trans- of function to regulate secondary metabolism in plants [9- posable-element-related-protein-coding[14,15] and 11]. However, the function and regulation of plant pro- 55,890 in total as in TIGR[20] rice database), the two teases is poorly understood primarily due to lack of iden- plant species appear to encode a very similar number of tification of their physiological substrates. While there is serine protease-like proteins (206 and 222 putative num- extensive literature available on plant serine proteases, bers, respectively; Table 1; see additional files 1.2: Table particularly in Arabidopsis thaliana, most of these studies S1.pdf, Table S2.pdf). These include several putative ser- are either restricted to specific families [11-13] or specific ine protease homologues that are apparently catalytically physiological aspects (please see the references above). inactive, since they either lack the amino acid residues Arabidopsis thaliana and Oryza sativa constitute model sys- that are believed to be essential for catalysis or carry tems for Dicotyledons and Monocotyledons respectively, amino acid substitutions at positions corresponding to the major evolutionary lineages in angiosperms[14,15]. catalytically active sites. Such inactive-enzyme homo- The availability of the complete genomic sequence of logues are not restricted to serine proteases, but have been these two species renders it possible to carry out a compre- identified in diverse enzyme families, chiefly among pro- hensive analysis of serine-protease families to gain teins involved in signaling pathways and proteins that are insights into their function and to ascertain their evolu- apparently extracellular in function and are conserved tionary relationships. across metazoan species. They are believed to have acquired newer and more distinct functions, in the course The current analysis aims at the identification and analysis of evolution, thereby adding to the complexity of various of serine protease families encoded in the genomes of the regulatory networks in the cell[21]. We discuss below the two plant species. The domain organization of the puta- occurrence, phylogenetic patterns of serine protease tive serine proteases in the two plant genomes have been domains in the plant genomes by grouping according to analysed employing several sensitive sequence search MEROPS classification[5]. Only serine protease families methods [16-18] that have provided insights into differ- with non-zero occurrence of putative members in the two ent domain architectures. To understand the evolutionary genomes are discussed. relationships among the Arabidopsis and rice serine pro- tease-like proteins, phylogenetic analysis was performed DegP proteases (Family S1) based at their protease domains. Cross genome compari- DegP proteases are a group of ATP-independent serine son of the serine proteases across the two genomes has led proteases that belong to MEROPS[5] family S1 (trypsin to the identification of members likely to be conserved family). E.Coli DegP is a peripheral membrane protein across the two species. Predictions of the sub-cellular located in the periplasmic side of the plasma membrane. localizations of serine protease-like proteins to obtain fur- It is a heat-shock protein that combines both chaperone ther insight into their possible functional associations and proteolytic activities that switch in a temperature- were carried out using TargetP[19]. Comparison of plant dependent manner. The chaperone activity is predomi- serine proteases with other major eukaryotic lineages nant at low temperatures, while the proteolytic activity reveals selective expansion of serine protease families in takes over at higher temperatures[22]. Crystal structure of plants and identification of plant specific serine proteases. E.coli DegP reveals that the
Recommended publications
  • Recombinant E. Coli Lon Protease (C-6His)
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-7101: Recombinant E. coli Lon Protease (C-6His) Gene : lon Gene ID : 945085 Uniprot ID : P0A9M0 Description Source: E.coli. MW :88.6kD. Recombinant E.coli Lon Protease is produced by our E.coli expression system and the target gene encoding Asn2-Lys784 is expressed with a 6His tag at the C-terminus. Lon Protease, is a member of the Lon protease family. They are found in archaea, bacteria and eukaryotes. Lon protease is ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short-lived regulatory proteins, including some antitoxins. It required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. It degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long and binds to DNA in a double-stranded, site- specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator SoxS, and UmuD. Its overproduction specifically inhibits translation through at least two different pathways, one of them being the YoeB- YefM toxin-antitoxin system. Product Info Amount : 10 µg / 50 µg Content : Supplied as a 0.2 µm filtered solution of 50mM TrisHCl, 100mM KCl, 10% Glycerol, pH 7.5 . Storage condition : Store at -20°C, stable for 6 months after receipt. Please minimize freeze-thaw cycles. Amino Acid : MGNPERSERIEIPVLPLRDVVVYPHMVIPLFVGREKSIRCLEAAMDHDKKIMLVAQKEASTDEPGVN
    [Show full text]
  • In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia Coli Strains
    eISSN 2234-0742 Genomics Inform 2017;15(2):69-80 G&I Genomics & Informatics https://doi.org/10.5808/GI.2017.15.2.69 ORIGINAL ARTICLE In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia coli Strains Maryam Javadi, Mana Oloomi*, Saeid Bouzari Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran In this study, cytolethal distending toxin (CDT) producer isolates genome were compared with genome of pathogenic and commensal Escherichia coli strains. Conserved genomic signatures among different types of CDT producer E. coli strains were assessed. It was shown that they could be used as biomarkers for research purposes and clinical diagnosis by polymerase chain reaction, or in vaccine development. cdt genes and several other genetic biomarkers were identified as signature sequences in CDT producer strains. The identified signatures include several individual phage proteins (holins, nucleases, and terminases, and transferases) and multiple members of different protein families (the lambda family, phage-integrase family, phage-tail tape protein family, putative membrane proteins, regulatory proteins, restriction-modification system proteins, tail fiber-assembly proteins, base plate-assembly proteins, and other prophage tail-related proteins). In this study, a sporadic phylogenic pattern was demonstrated in the CDT-producing strains. In conclusion, conserved signature proteins in a wide range of pathogenic bacterial strains can potentially be used in modern vaccine-design strategies. Keywords: biomarkers, cytolethal distending toxin, genomic signature, multiple alignments, pathogenic Escherichia coli In this study, comparative genome analysis of CDT-pro- Introduction ducer E. coli isolates with other pathogenic and commensal strains was performed. Alignments between multiple The co-evolution of pathogenic bacteria and their hosts genomes led to the identification of a set of distinct leads to the generation of functional pathogen-host inter- (“signature”) sequence motifs.
    [Show full text]
  • Ovarian Dysgenesis and Premature Ovarian Failure (POF)
    The Genes Involved in Hearing and Endocrine Disorders A Thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences. 2012 Emma Mary Jenkinson School of Medicine CONTENTS Content Page List of Tables 7 List of Figures 10 Abstract 16 Declaration 17 Copyright statement 17 Acknowledgment 19 Abbreviations 20 Chapter 1: Introduction 24 1. Introduction 25 1.1. Sensorineural Hearing Loss 25 1.1.1 Genes which Regulate Ion Homeostasis in the Cochlear 28 1.1.2 Genes Responsible for Formation and Maintenance of the 29 Hair bundles 1.1.3 Genes Responsible for Maintenance of the Extracellular 32 Matrix 1.1.4 Transcription Factor Genes 34 1.1.5 Genes of Poorly Established Function 35 1.1.6 The Need for Further Research in Deafness Genetics 37 1.2 Hypothalamic Pituitary Gonadal axis 37 1.2.1 Hypogonadotropic Hypogonadism 39 1.2.2 Hypergonadotropic Hypogonadism: Premature Ovarian 52 Failure (POF) and Ovarian Dysgenesis 1.2.3 Premature Ovarian Failure and Sensorineural Hearing 71 Loss: Perrault Syndrome 1.3 The Evolution of Techniques in Genetic Medicine 80 1.3.1 Linkage Mapping 80 1.3.2 From Locus to Gene Mutation 83 1.3.3 Next Generation Sequencing 84 1.4 Aim 89 Chapter 2: Materials and Methods 91 2.Materials and Methods 92 2 2.1 Suppliers 92 2.2 Nucleic Acid procedures 92 2.2.1 DNA Extraction 92 2.2.2 RNA Extraction 92 2.2.3 Quantification of Nucleic Acids 93 2.2.4 Standard PCR Reaction 93 2.2.5 Agarose Gel Electrophoresis 94 2.2.6 Purification of PCR Products 95 2.2.7 Sequencing
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Online Proofing
    elsevier_BBABIO_47641 Emerging role of Lon protease as a master regulator of mitochondrial functions Marcello Pintia, 1 Lara Gibellinib, 1 Milena Nasib Sara De Biasib Carlo Augusto Bortolottia Anna Iannonec Andrea Cossarizzab, ⁎ [email protected] aDepartment of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy bDepartment of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy cDepartment of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy ⁎Corresponding author at: Department of Surgery, Medicine, Dentistry, and Morphological Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125 Modena, Italy. 1Equally contributed to the paper. This article is part of a Special Issue entitled '‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2‐–6, 2016'’, edited by Prof. Paolo Bernardi. Abstract Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled '‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2‐–6, 2016'’, edited by Prof.
    [Show full text]
  • Sarah Owdah Alomrani.Pdf
    Expression of the rice cystatin, Oryzacystatin-I (OC-I) influences the plant growth and development Sarah Owdah Alomrani Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Biological Sciences Centre for Plant Sciences September 2020 i The candidate confirms that the work submitted is his/her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2020, The University of Leeds, Sarah Alomrani ii Acknowledgment Today, I have completed the writing of my thesis during the lockdown period which has been enforced due to the COVID-19 pandemic. Before I thank those who have support me through my journey, I would like to mention that, when I got divorced, around five years ago, I felt broken and I will always remember that my father told me: “You can start on your next chapter as an independent Saudi women”. I thought that the only thing that people will know about me was that I had been divorced, but now that is not the case. I have worked hard to obtain a scholarship to study in UK in my favourite subject, plant sciences, and the most important thing about me now is that I’m a strong women who no longer hopes for someone who would bring flowers for her, but I am able to plant my own flowers.
    [Show full text]
  • 203-212 203 Overview and Perspectives on the Transcriptome of Paracoccidioides Brasiliensis
    Review Rev Iberoam Micol 2005; 22: 203-212 203 Overview and perspectives on the transcriptome of Paracoccidioides brasiliensis Rosângela V. Andrade1, Silvana P. da Silva2, Fernando A. G. Torres1, Marcio José Poças-Fonseca1, Ildinete Silva-Pereira1, Andrea Q. Maranhão1, Élida G. Campos1, Lídia Maria P. Moraes1, Rosália S. A. Jesuíno3, Maristela Pereira3, Célia M. A. Soares3, Maria Emília M. T. Walter1, Maria José A. Carvalho1, Nalvo F. Almeida4, Marcelo M. Brígido1 and Maria Sueli S. Felipe1 1Departamento de Biologia Celular, Universidade de Brasília, Brasília; 2Departamento de Bioquímica, Universidade Estadual de Londrina, Londrina; 3Departamento de Bioquímica, Universidade Federal de Goiás, Goiânia; 4Departamento de Computação e Estatística, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil Summary Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespre- ad in Latin America that affects 10 million individuals. Pathogenicity is assumed to be a consequence of the dimorphic transition from mycelium to yeast cells during human infection. This review shows the results of the P. brasiliensis trans- criptome project which generated 6,022 assembled groups from mycelium and yeast phases. Computer analysis using the tools of bioinformatics revealed seve- ral aspects from the transcriptome of this pathogen such as: general and diffe- rential metabolism in mycelium and yeast cells; cell cycle, DNA replication, repair and recombination; RNA biogenesis apparatus; translation and protein fate machineries; cell wall; hydrolytic enzymes; proteases; GPI-anchored proteins; molecular chaperones; insights into drug resistance and transporters; oxidative stress response and virulence. The present analysis has provided a more com- prehensive view of some specific features considered relevant for the understan- ding of basic and applied knowledge of P.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,353,359 B2 Sorek Et Al
    US009353359B2 (12) United States Patent (10) Patent No.: US 9,353,359 B2 Sorek et al. (45) Date of Patent: May 31, 2016 (54) BACTERIAL ANTI-PHAGE DEFENSE OTHER PUBLICATIONS SYSTEMS Copeland et al. 2007; Complete sequence of Pseudomonus (71) Applicant: Yeda Research and Development Co. mendocinaymp. EMBL: ABP83335.* Ltd., Rehovot (IL) Lucas et al. 2008; Complete sequence of Acidithiobacillus fer rooxidans ATCC 53993. EMBL: ACH83539.1. (72) Inventors: Rotem Sorek, Rehovot (IL); Hila Kerfeld et al. 2009; Complete sequence of plasmid of Amonifex Sberro, Rehovot (IL): Azita Leavitt, degensii KC4, EMBL: ACX53253.1.* Rehovot (IL) Lee et al. 2006; Sequence analysis of two cryptic plasmids from Bifidobacterium longump.O10A and construction of a shuttle clon (73) Assignee: Yeda Research and Development Co. ing vector. Applied Environmental Microbiology 72:527-535. Ltd., Rehovot (IL) EMBL: ACD97784.1. Alignment Only Being Sent.* Chenoll et al. 2012; Safety assessment of strain Bifidobacterium (*) Notice: Subject to any disclaimer, the term of this longum CECT 7347, a probiotic able to reduce the toxicity and patent is extended or adjusted under 35 inflammatory potential of gliadin-derived peptides, based on pheno U.S.C. 154(b) by 0 days. typic traits, whole genome sequencing, and murine trials. EMBL: CCK35109.18 (21) Appl. No.: 14/140,793 PajonEMBL et al. Clife2010; The genome sequenceC of Bifidobacterium longumgu Schell et al. 2002; The genome sequence of Bifidobacterium longum (22) Filed: Dec. 26, 2013 reflects its Apato the R gastrointestinal tract. SS (65) Prior Publication Data 12-1427 EMBL: AAN25255.1. Alignment Only Being US 2014/O178353 A1 Jun.
    [Show full text]
  • Emerging Role of Lon Protease As a Master Regulator of Mitochondrial Functions☆
    Biochimica et Biophysica Acta 1857 (2016) 1300–1306 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Emerging role of Lon protease as a master regulator of mitochondrial functions☆ Marcello Pinti a,1, Lara Gibellini b,1,MilenaNasib,SaraDeBiasib,CarloAugustoBortolottia, Anna Iannone c, Andrea Cossarizza b,⁎ a Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy b Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy c Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy article info abstract Article history: Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evo- Received 13 January 2016 lution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, Received in revised form 23 March 2016 and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mi- Accepted 24 March 2016 tochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of Available online 28 March 2016 cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of Keywords: Lon the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled Protease ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’,editedbyProf.
    [Show full text]
  • (10) Patent No.: US 7608700 B2
    USOO7608700B2 (12) United States Patent (10) Patent No.: US 7,608,700 B2 Klaenhammer et al. (45) Date of Patent: Oct. 27, 2009 (54) LACTOBACILLUS ACIDOPHILUS NUCLEIC WO WO 2004/069 178 A2 8, 2004 ACID SEQUENCES ENCODING WO WO 2004/096992 A2 11/2004 STRESS-RELATED PROTEINS AND USES WO WO 2005/001057 A2 1, 2005 THEREFOR WO WO 2005/O12491 A2 2, 2005 (75) Inventors: Todd R. Klaenhammer, Raleigh, NC (US); Eric Altermann, Apex. NC (US); OTHER PUBLICATIONS M. Andrea Azcarate-Peril, Raleigh, NC (US); Olivia McAuliffe, Cork (IE): W. Bowie et al (Science, 1990, 257: 1306-1310).* Michael Russell, Newburgh, IN (US) Journal of Molecular Microbiology and Biotechnology (2002), 4(6), 525-532), abstract only.* (73) Assignee: North Carolina State University, Boehringer Mannheim Biochemicals (1991 Catalog p. 557); Raleigh, NC (US) Stratagene (1991 Product Catalog, p. 66); Gibco BRL (Catalogue & Reference Guide 1992, p. 292).* (*) Notice: Subject to any disclaimer, the term of this Promega (1993/1994 Catalog, pp. 90-91); New England BioLabs patent is extended or adjusted under 35 (Catalog 1986/1987, pp. 60-62).* U.S.C. 154(b) by 262 days. Abee et al. (1994) “Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that formsporation (21) Appl. No.: 11/074,176 complexes in the cytoplasmic membrane' Appl. Environ. Microbiol. 60:1006-1013. (22) Filed: Mar. 7, 2005 Allison and Klaenhammer (1996) “Functional analysis of the gene encoding immunity to lactacin F. lafl. and its use as a Lactobacillus (65) Prior Publication Data specific, food-grade genetic marker Appl.
    [Show full text]
  • Protein Maturation and Proteolysis in Plant Plastids, Mitochondria, and Peroxisomes
    PP66CH04-VanWijk ARI 30 March 2015 20:57 Protein Maturation and Proteolysis in Plant Plastids, Mitochondria, and Peroxisomes Klaas J. van Wijk Department of Plant Biology, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Plant Biol. 2015. 66:75–111 Keywords First published online as a Review in Advance on proteome remodeling, endosymbiotic organelle, degron, proteostasis, January 12, 2015 degradomics, autophagy The Annual Review of Plant Biology is online at plant.annualreviews.org Abstract This article’s doi: Plastids, mitochondria, and peroxisomes are key organelles with dynamic 10.1146/annurev-arplant-043014-115547 proteomes in photosynthetic eukaryotes. Their biogenesis and activity must Copyright c 2015 by Annual Reviews. be coordinated and require intraorganellar protein maturation, degradation, All rights reserved and recycling. The three organelles together are predicted to contain ∼200 Annu. Rev. Plant Biol. 2015.66:75-111. Downloaded from www.annualreviews.org presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar pro- teins, such as N-end degrons and tagging systems, have not been identi- fied, but the substrate recognition mechanisms likely share similarities be- tween organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, Access provided by Chinese Academy of Agricultural Sciences (Agricultural Information Institute) on 05/10/16. For personal use only. degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome.
    [Show full text]
  • PDZ Domains in Microorganisms: Link Between Stress Response 2 and Protein Synthesis
    bioRxiv preprint doi: https://doi.org/10.1101/186510; this version posted September 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 PDZ Domains in Microorganisms: Link between Stress Response 2 and Protein Synthesis 3 Vijaykumar Yogesh Muley1, 2, * and Sanjeev Galande1,* 4 1 Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, 5 Pune, Maharashtra, 411 008, India 6 2 Present Address - Gut Inflammation Group, APC Microbiome Institute, University College 7 Cork, Cork, Ireland 8 * To whom correspondence should be addressed. 9 E mail: SG: [email protected]; VYM: [email protected] 10 11 Abstract The PSD-95/Dlg-A/ZO-1 (PDZ) domain is highly expanded and diversified in 12 metazoan where it is known to assemble diverse signalling components by virtue of interactions 13 with other proteins in sequence-specific manner. In contrast, in bacteria it monitors protein 14 quality control during stress response. The distribution, functions and origin of PDZ domain- 15 containing proteins in prokaryotes are largely unknown. We analyzed 7,852 PDZ domain- 16 containing proteins in 1,474 prokaryotes and fungi. PDZ domains are abundant in eubacteria; 17 and, this study confirms their occurrence also in archaea and fungi. Of all eubacterial PDZ 18 domain-containing proteins, 89% are predicted to be membrane and periplasmic, explaining the 19 depletion of bacterial domain forms in metazoan.
    [Show full text]