The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Biology Faculty Publications Biology 2001 RNA Binding Domain of Telomerase Reverse Transcriptase Cary Lai University of San Francisco,
[email protected] James R. Mitchell Kathleen Collins Follow this and additional works at: http://repository.usfca.edu/biol_fac Part of the Biology Commons Recommended Citation Cary K. Lai, James R. Mitchell, and Kathleen Collins. RNA Binding Domain of Telomerase Reverse Transcriptase. Mol Cell Biol. 2001 Feb; 21(4): 990–1000. This Article is brought to you for free and open access by the Biology at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact
[email protected]. MOLECULAR AND CELLULAR BIOLOGY, Feb. 2001, p. 990–1000 Vol. 21, No. 4 0270-7306/01/$04.00ϩ0 DOI: 10.1128/MCB.21.4.990–1000.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. RNA Binding Domain of Telomerase Reverse Transcriptase CARY K. LAI, JAMES R. MITCHELL, AND KATHLEEN COLLINS* Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204 Received 23 October 2000/Returned for modification 20 November 2000/Accepted 28 November 2000 Telomerase is a ribonucleoprotein reverse transcriptase that extends the ends of chromosomes. The two telomerase subunits essential for catalysis in vitro are the telomerase reverse transcriptase (TERT) and the telomerase RNA. Using truncations and site-specific mutations, we identified sequence elements of TERT and telomerase RNA required for catalytic activity and protein-RNA interaction for Tetrahymena thermophila telo- merase.