(12) Patent Application Publication (10) Pub. No.: US 2014/0079836A1 Mcdaniel (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2014/0079836A1 Mcdaniel (43) Pub US 20140079836A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0079836A1 McDaniel (43) Pub. Date: Mar. 20, 2014 (54) METHODS AND COMPOSITIONS FOR (52) U.S. Cl. ALTERING HEALTH, WELLBEING AND CPC ............... A61K 36/74 (2013.01); A61 K3I/122 LIFESPAN (2013.01) USPC ............. 424/777; 514/690: 435/375; 506/16; (71) Applicant: LifeSpan Extension, LLC, Virginia 435/6.12 Beach, VA (US) (72) Inventor: David H. McDaniel, Virginia Beach, VA (57) ABSTRACT (US) Described herein are the results of comprehensive genetic (73) Assignee: LifeSpan Extension, LLC expression and other molecular analysis p the effect s anti oxidants on biological systems, including specifically differ (21) Appl. No.: 14/084,553 ent human cells. Based on these analyses, methods and com (22) Filed: Nov. 19, 2013 positions are described for modifying or influencing the lifespan of cells, tissues, organs, and organisms. In various Related U.S. Application Data embodiments, there are provided methods for modulating the activity of the gene maintenance process in order to influence (60) Continuation of application No. 13/898.307, filed on the length and/or structural integrity of the telomere in living May 20, 2013, which is a division of application No. cells, as well as methods for modulating the rate/efficiency of 12/629,040, filed on Dec. 1, 2009, now abandoned. the cellular respiration provided by the mitochondria, mito (60) Provisional application No. 61/118,945, filed on Dec. chondrial biogenesis, and maintenance of the mitochondrial 1, 2008. membrane potential. Exemplary lifespan altering compounds include natural and synthetic antioxidants, such as plant anti Publication Classification oxidant and polyphenol compounds derived from coffee cherry, tea, berry, and so forth, including but not limited to (51) Int. Cl. caffeic acid, chlorogenic acid, ferulic acid, quinic acid, proan A6 IK36/74 (2006.01) thocyanidins, ubiquinone, idebenone, or a synthetic form or A6 IK3I/122 (2006.01) derivatives thereof. Patent Application Publication Mar. 20, 2014 Sheet 1 of 23 US 2014/0079836A1 Figure 1 Patent Application Publication Mar. 20, 2014 Sheet 2 of 23 US 2014/0079836A1 ***3. *• Patent Application Publication Mar. 20, 2014 Sheet 3 of 23 US 2014/0079836A1 Q §338&#3 {{{2}#33-*?.~~~+~$3 8·~ Patent Application Publication Mar. 20, 2014 Sheet 4 of 23 US 2014/0079836A1 o'º.ul^[][].— }}{} Patent Application Publication Mar. 20, 2014 Sheet 5 of 23 US 2014/0079836A1 ,!^^^^^^<>+~~~~); ~º„aeropae Patent Application Publication Mar. 20, 2014 Sheet 6 of 23 US 2014/0079836A1 Figure 3 The Coffee Cherry Fruit • Pulp (exocarp & outer finesocarp) • Nucilage finner triesocarp} go thu of hisk :'''''''''''' (endocarpi.. 8 Seeds (green beans. Figure 4 Ros?Free Radicais XN. Eacity Estokisses s ifie3ssificiis Cacer Ericicki: &etatiocyte&:ys Eyssuiciis. toes: 8&laysics; 3EEaciosis infantatio. 383 ge. Breakiswa Premature Aging Patent Application Publication Mar. 20, 2014 Sheet 7 of 23 US 2014/0079836A1 Figure 5 Causes of Premature Agrig Cancer NA & Beiere fantration Strictite E3riage i.e.:3. Membrane Camage oysfunction Dysfiriction Ribosernal Eysfunction histochondrial Ramagef E?ectron Transport Systern Cysfutction Patent Application Publication Mar. 20, 2014 Sheet 8 of 23 US 2014/0079836A1 Figure 7 8Green Tea E3cedefore Figure 8 Human Cardiac Myocytes in Response to Coffeeberry 9 s d d S b d b o s Sgs 0.01% 0.00% 0.000%, 0.0000% 0.00000% Coffeeberry Patent Application Publication Mar. 20, 2014 Sheet 9 of 23 US 2014/0079836A1 Figure 9 Expression of VEGFA in human fibroblast 24 hours after exposure to coffee cherry 1.5 Concentration of CoffeeCherry 0.01% O.OOO1% OOOOOO1% Figure 10 Expression of HMOX1 in human fibroblast 24 hours after exposure to coffee cherry Concentration of CoffeeCherry O.01% OOOO% OOOOOO1% Patent Application Publication Mar. 20, 2014 Sheet 10 of 23 US 2014/0079836A1 Figure 11 Expression of CCL41 in human skin fibroblasts 24 hours after exposure to chlorogenic acid or coffee cherry O - - O.OOOOO1%, O.OOO1%, 0.01% CoffeeCherry -1 -O.OOOOOO5%,O.OOOO5%, O .005%, Chlorogenic Acid -2 Figure 12 Expression of DDC in human skin fibroblasts 24 hours 5 after exposure to chlorogenic acid or coffee cherry 4. 3 s s 2 g - - 0.000001%, 0.0003%, 0.01% CoffeeCherry 5 1 -0.0000005%,0.00005%, O .005%, Chlorogenic Acid O -1. -2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Patent Application Publication Mar. 20, 2014 Sheet 11 of 23 US 2014/0079836A1 Figure 13 Expression of NOS2A in human skin fibroblasts 24 hours after exposure to chlorogenic acid or coffee cherry 4. -1.-------------------------- a Y 3 :--------------------------------------------------- 1 Y d 2 :----------------------------- 1------------------------------------------------------------------------------------ Y Y Y - - O.OOOOO1%, 0.0001%, 0.01% CoffeeCherry -0.0000005%,0.00005%, O .005%, Chlorogenic Acid O -1. -2. ---------------------------------------------------------------------------------------------------------------------- 3. 2 3 Figure 14 Expression of SIRT1 in human skin fibroblasts 24 hours - - - - - - - - - - - - - -after exposure to chlorogenicacid or coffeecherry 2 1. cap O S. - - 0.00000%, 0.0001%, 0.01% CoffeeCherry 5-1 -0.0000005%,0.00005%, O .005%, Chlorogenic Acid -2 -3 -4 . Patent Application Publication Mar. 20, 2014 Sheet 12 of 23 US 2014/0079836A1 Figure 15 Expression of TERT in human skin fibroblasts 24 hours 5 after exposure to chlorogenic acid or coffee cherry 4. --------------------------------------------------------------------------------------------------------------------------------------------------------2-1.------------ M Y Y w Y 3 :---------------------------------------------->- a-------------------------------------------------------, Y Y s a 2 1---------------------------------------------------------------------------- 9. Y 1 a -0.000001%, 0.0001%, 0.01% CoffeeCherry S -O.OOOOOO5%,O,OOOO5%, O .005%, Chlorogenic Acid Figure 16 Expression of PTGS2 in human skin fibroblasts 24 hours after exposure to chlorogenic acid or coffee cherry w - - 0.000001%, 0.0001%, 0.01% w CoffeeCherry Y -0.0000005%,0.00005%, O 0.05%, Chlorogenic Acid Patent Application Publication Mar. 20, 2014 Sheet 13 of 23 US 2014/0079836A1 Figure 17 Expression of F144 in human skin fibroblasts 24 hours after exposure to chlorogenicacid or coffee cherry N - - 0.000.001%, 0.0001%, 0.01% 4. V CoffeeCherry : Y -0.0000005%,0.00005%, O -6 to V------------------------------------ .005%, Chlorogenic Acid Relative expression of SIRT1-4 in human skin fibroblasts 24 hours after exposure to coffee cherry 2.0 10 OO SRT1 N SIRT4 - 1.0 - - - - re- ---. -- a -2.0 screer-T. - - - - - - - - 0.000.001% CoffeeCherry --- 0.0001%. CoffeeCherry -0.01%. CoffeeCherry Patent Application Publication Mar. 20, 2014 Sheet 14 of 23 US 2014/0079836A1 Figure 19(a) Relative expression of select genes in human skin fibroblasts 24 hours after exposure to chlorogenic acid & 0.000005%, Chlorogenic Acid -4 i.--------------------------------------------------------------------------&t.005% Chlorogenic Acid : 0.0005% Chlorogenic Acid Gene & 0.005%, Chlorogenic Acid Figure 19(b) Relative expression of select genes in human skin fibroblasts 24 hours after exposureto chlorogenic acid & CEO00005% Chlorogenic Acid & 0000005% Chlorogenic Acid & 0.00005% Chlorogenic Acid Gene : 0.05% Chlorogenic Acid & 0.005% Chlorogenic Acid Patent Application Publication Mar. 20, 2014 Sheet 15 of 23 US 2014/0079836A1 Figure 19(c) Relative expression of select genes in human skin fibroblasts 24 hours after exposure to chlorogenic acid 2 th & 0.0000005% chlorogenic Acid ...9 ...A. ... f.soooooos. chlorogenic Acid W W A f '. 0.00005% Chlorogenic Acid 1. M. '. a.0005% Chlorogenic Acid A A. 80.005% Chlorogenic Acid Figure 20(a) Relative expression of select genes in human fibroblasts 24 hours after exposure to coffee cherry & 0.000001%CoffeeCherry : 0.0001%. CoffeeCherry & 0.02% CoffeeCherry Patent Application Publication Mar. 20, 2014 Sheet 16 of 23 US 2014/0079836A1 Figure 20(b) Relative expression of Select genes in human fibroblast 24 hours after exposure to coffee cherry 80.000003%CoffeeCherry 12 . .8.0.0001% coffeecherry & 0.01% CoffeeCherry Figure 20(c) Relative expression of select genes in human ... fibroblasts 24 hours after exposure to coffee cherry A. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 -:- 1 . 0 t 38.Y.S&S&S&S88:S:38&S&3&X. - - - - - - - - - - - - - - - - - - - - - - - - -8-8-83& . & . .8. - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 :- - - - - - - - - - - - - - - - - - - - - - - & 0.000003%CoffeeCherry : 0.0002% CoffeeCherry X 0.01%. CoffeeCherry Patent Application Publication Mar. 20, 2014 Sheet 17 of 23 US 2014/0079836A1 Figure 20(d) Relative expression of select genes in human fibroblasts 24 hoursafter exposure to coffee cherry s . s e & 0.000001%. CoffeeCherry 4 ir: (.0001% Coffeecherry & 0.01%. Coffeecherry Figure 20(e) Relative expression of select
Recommended publications
  • The Role of PARP1 in Monocyte and Macrophage
    cells Review The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors Maciej Sobczak 1, Marharyta Zyma 2 and Agnieszka Robaszkiewicz 1,* 1 Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] 2 Department of Immunopathology, Medical University of Lodz, 7/9 Zeligowskiego, Bldg 2, Rm177, 90-752 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-6354449; Fax: +48-42-6354449 or +48-42-635-4473 Received: 4 August 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing.
    [Show full text]
  • Telomeres.Pdf
    Telomeres Secondary article Elizabeth H Blackburn, University of California, San Francisco, California, USA Article Contents . Introduction Telomeres are specialized DNA–protein structures that occur at the ends of eukaryotic . The Replication Paradox chromosomes. A special ribonucleoprotein enzyme called telomerase is required for the . Structure of Telomeres synthesis and maintenance of telomeric DNA. Synthesis of Telomeric DNA by Telomerase . Functions of Telomeres Introduction . Telomere Homeostasis . Alternatives to Telomerase-generated Telomeric DNA Telomeres are the specialized chromosomal DNA–protein . Evolution of Telomeres and Telomerase structures that comprise the terminal regions of eukaryotic chromosomes. As discovered through studies of maize and somes. One critical part of this protective function is to fruitfly chromosomes in the 1930s, they are required to provide a means by which the linear chromosomal DNA protect and stabilize the genetic material carried by can be replicated completely, without the loss of terminal eukaryotic chromosomes. Telomeres are dynamic struc- DNA nucleotides from the 5’ end of each strand of this tures, with their terminal DNA being constantly built up DNA. This is necessary to prevent progressive loss of and degraded as dividing cells replicate their chromo- terminal DNA sequences in successive cycles of chromo- somes. One strand of the telomeric DNA is synthesized by somal replication. a specialized ribonucleoprotein reverse transcriptase called telomerase. Telomerase is required for both
    [Show full text]
  • Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y
    Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y. Park, Seok Jin Kang, M.D., Ph.D., Byung Kee Kim, M.D., Ph.D., Sang In Shim, M.D., Ph.D., Chang Suk Kang, M.D., Ph.D. Department of Pathology, St. Vincent’s Hospital, Catholic University, Suwon, South Korea esis of gastric cancer and may reflect, along with Telomerase is an RNA-dependent DNA polymerase enhanced hTR, the malignant potential of the tu- that synthesizes TTAGGG telomeric DNA onto chro- mor. It is noteworthy that methacarn-fixed tissue mosome ends to compensate for sequence loss dur- cannot as yet substitute for the frozen section in the ing DNA replication. It has been detected in 85–90% TRAP assay. of all primary human cancers, implicating that the telomerase seems to be reactivated in tumors and KEY WORDS: hTR, Stomach cancer, Telomerase, that such activity may play a role in the tumorigenic TERT. process. The purpose of this study was to evaluate Mod Pathol 2003;16(7):700–707 telomerase activity, human telomerase RNA (hTR), and telomerase reverse transcriptase (TERT) in Recent studies of stomach cancer have been di- stomach cancer and to determine their potential rected toward gaining a better understanding of relationships to clinicopathologic parameters. Fro- tumor biology. Molecular analysis has suggested zen and corresponding methacarn-fixed paraffin- that alterations in the structures and functions of embedded tissue samples were obtained from 51 oncogenes and tumor suppressor genes, genetic patients with gastric adenocarcinoma and analyzed instability, as well as the acquisition of cell immor- for telomerase activity by using a TRAPeze ELISA tality may be of relevance in the pathogenesis of kit.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Roles of Telomeres and Telomerase in Cancer, and Advances in Telomerase- Targeted Therapies Mohammad A
    Jafri et al. Genome Medicine (2016) 8:69 DOI 10.1186/s13073-016-0324-x REVIEW Open Access Roles of telomeres and telomerase in cancer, and advances in telomerase- targeted therapies Mohammad A. Jafri1, Shakeel A. Ansari1, Mohammed H. Alqahtani1 and Jerry W. Shay1,2* Abstract Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Biochemical Studies of Dna Polymerase Theta A
    BIOCHEMICAL STUDIES OF DNA POLYMERASE THETA A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Ahmet Y Ozdemir May 2019 Examining Committee Members: Richard T Pomerantz,PhD, Advisory Chair, Fels Institute for Cancer Research and Molecular Biology & Medical Genetics and Molecular Biochemistry Xavier Graña-Amat,PhD, Fels Institute for Cancer Research and Molecular Biology & Medical Genetics and Molecular Biochemistry Tomasz Skorski, MD, PhD, DSc, Fels Institute for Cancer Research and Molecular Biology & Microbiology and Immunology Italo Tempera, PhD, Fels Institute for Cancer Research and Molecular Biology & Microbiology and Immunology Alexander Mazin, PhD, External Member, Biochemistry & Molecular Biology, Drexel University © Copyright 2019 by Ahmet Y Ozdemir All Rights Reserved ii ABSTRACT POLQ is a unique multifunctional replication and repair gene that encodes a multidomain protein with a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1– 894) efficiently unwinds DNA with 3'–5' polarity, including DNA with 3' or 5' overhangs, blunt- ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA- DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • Antiviral Properties of Chalcones and Their Synthetic Derivatives: a Mini Review
    Pharmacia 67(4): 325–337 DOI 10.3897/pharmacia.67.e53842 Review Article Antiviral properties of chalcones and their synthetic derivatives: a mini review Radoslav Marinov1, Nadezhda Markova2, Stefka Krumova1, Kamelia Yotovska3, Maya M. Zaharieva4, Petia Genova-Kalou1 1 Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A Gen. Stoletov Blvd., 1233 Sofia, Bulgaria 2 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria 3 Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria 4 Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25, 1113 Sofia, Bulgaria Corresponding author: Petia Genova-Kalou ([email protected]) Received 2 May 2020 ♦ Accepted 24 May 2020 ♦ Published 27 November 2020 Citation: Marinov R, Markova N, Krumova S, Yotovska K, Zaharieva MM, Genova-Kalou P (2020) Antiviral properties of chalcones and their synthetic derivatives: a mini review. Pharmacia 67(4): 325–337. https://doi.org/10.3897/pharmacia.67.e53842 Abstract Chalcones (natural or synthetic derivatives) are aromatic ketones possessing a central backbone that form a core for variety import- ant compounds with different substitutions. Recent scientific advances show that chalcones exhibit different bio-medical activities, including antiviral, which is related to the variety substitutions. This review provides general information on the origin, sources, virucidal and direct antiviral properties of chalcones in vitro, as well as a brief overview of the possible application and molecular modes of action of these compounds.
    [Show full text]
  • Interactions of Dna Polymerase Theta and Ku70/80 With
    INTERACTIONS OF DNA POLYMERASE THETA AND KU70/80 WITH OXIDATIVE DNA DAMAGE by Daniel Laverty A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, MD Submitted June 2018 Abstract Oxidized abasic sites (L, C4-AP, and DOB) are formed by ionizing radiation, reactive oxygen species, and some chemotherapeutics. Like abasic sites (AP), these lesions are cytotoxic and mutagenic and must be repaired, primarily by base excision repair (BER). If left unrepaired, abasic lesions stall replication and induce mutations. Repair of oxidized abasic lesions exhibits unique challenges, however. C4-AP and DOB inactivate the lyase activity of the repair enzymes DNA polymerase β and λ. Recently, several other enzymes were shown to possess lyase activity, allowing them to excise abasic lesions. Among these are DNA polymerase θ (Pol θ) and Ku70/80 (Ku). As Pol θ promotes resistance to cancer therapies which form oxidized abasic sites, the repair and replication of these lesions by Pol θ is potentially important. Ku is a core factor for non-homologous end-joining and removes AP from double strand breaks (DSBs). The interaction of Ku with oxidized abasic sites near DSB termini is potentially important for the response to ionizing radiation, which is used as a cancer treatment. Synthetic oligonucleotides containing abasic and oxidized abasic sites were prepared, and their repair or replication by Pol θ was analyzed. Pol θ bypasses C4-AP and L with reduced efficiency relative to AP and has a strong propensity to induce frameshift mutations during bypass of AP, C4-AP, L, and the oxidized nucleobase, thymidine glycol.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • RNA Binding Domain of Telomerase Reverse Transcriptase Cary Lai University of San Francisco, [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Biology Faculty Publications Biology 2001 RNA Binding Domain of Telomerase Reverse Transcriptase Cary Lai University of San Francisco, [email protected] James R. Mitchell Kathleen Collins Follow this and additional works at: http://repository.usfca.edu/biol_fac Part of the Biology Commons Recommended Citation Cary K. Lai, James R. Mitchell, and Kathleen Collins. RNA Binding Domain of Telomerase Reverse Transcriptase. Mol Cell Biol. 2001 Feb; 21(4): 990–1000. This Article is brought to you for free and open access by the Biology at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. MOLECULAR AND CELLULAR BIOLOGY, Feb. 2001, p. 990–1000 Vol. 21, No. 4 0270-7306/01/$04.00ϩ0 DOI: 10.1128/MCB.21.4.990–1000.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. RNA Binding Domain of Telomerase Reverse Transcriptase CARY K. LAI, JAMES R. MITCHELL, AND KATHLEEN COLLINS* Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204 Received 23 October 2000/Returned for modification 20 November 2000/Accepted 28 November 2000 Telomerase is a ribonucleoprotein reverse transcriptase that extends the ends of chromosomes. The two telomerase subunits essential for catalysis in vitro are the telomerase reverse transcriptase (TERT) and the telomerase RNA. Using truncations and site-specific mutations, we identified sequence elements of TERT and telomerase RNA required for catalytic activity and protein-RNA interaction for Tetrahymena thermophila telo- merase.
    [Show full text]