Mineral Chemistry of the Tissint Meteorite: Indications of Two-Stage Crystallization in a Closed System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking the Chassigny Meteorite and the Martian Surface Rock Backstay: Insights Into Igneous Crustal Differentiation Processes on Mars
Meteoritics & Planetary Science 44, Nr 6, 853–869 (2009) Abstract available online at http://meteoritics.org Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars Hanna NEKVASIL*, Francis M. MCCUBBIN, Andrea HARRINGTON, Stephen ELARDO, and Donald H. LINDSLEY Department of Geosciences, Stony Brook University, Stony Brook, New York 11794–2100, USA *Corresponding author. E-mail: [email protected] (Received 05 August 2008; revision accepted 18 March 2009) Abstract–In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle-derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle-derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids. -
Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J. -
Petrography and Geochemistry of the Enriched Basaltic Shergottite Northwest Africa 2975
Meteoritics & Planetary Science 50, Nr 12, 2024–2044 (2015) doi: 10.1111/maps.12571 Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975 Qi HE1*, Long XIAO1, J. Brian BALTA2, Ioannis P. BAZIOTIS3, Weibiao HSU4, and Yunbin GUAN5 1Planetary Science Institute, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2Department of Geology and Planetary Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15217, USA 3Agricultural University of Athens, Laboratory of Mineralogy and Geology, Athens 11855, Greece 4Laboratory for Astrochemistry and Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 30 July 2013; revision accepted 30 September 2015) Abstract–We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium-grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA-ICP-MS) analyses as a best-available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI-normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. -
The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. -
The Tissint Martian Meteorite As Evidence for the Largest Impact Excavation
ARTICLE Received 17 Jul 2012 | Accepted 20 Dec 2012 | Published 29 Jan 2013 DOI: 10.1038/ncomms2414 The Tissint Martian meteorite as evidence for the largest impact excavation Ioannis P. Baziotis1, Yang Liu1,2, Paul S. DeCarli3, H. Jay Melosh4, Harry Y. McSween1, Robert J. Bodnar5 & Lawrence A. Taylor1 High-pressure minerals in meteorites provide clues for the impact processes that excavated, launched and delivered these samples to Earth. Most Martian meteorites are suggested to have been excavated from 3 to 7 km diameter impact craters. Here we show that the Tissint meteorite, a 2011 meteorite fall, contains virtually all the high-pressure phases (seven minerals and two mineral glasses) that have been reported in isolated occurrences in other Martian meteorites. Particularly, one ringwoodite (75 Â 140 mm2) represents the largest grain observed in all Martian samples. Collectively, the ubiquitous high-pressure minerals of unusually large sizes in Tissint indicate that shock metamorphism was widely dispersed in this sample (B25 GPa and B2,000 1C). Using the size and growth kinetics of the ring- woodite grains, we infer an initial impact crater with B90 km diameter, with a factor of 2 uncertainty. These energetic conditions imply alteration of any possible low-T minerals in Tissint. 1 Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA. 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. 3 Poulter Laboratory, SRI International, Menlo Park, California 94025, USA. 4 Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. 5 Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA. -
Reviewing Martian Atmospheric Noble Gas Measurements: from Martian Meteorites to Mars Missions
geosciences Review Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions Thomas Smith 1,* , P. M. Ranjith 1, Huaiyu He 1,2,3,* and Rixiang Zhu 1,2,3 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Box 9825, Beijing 100029, China; [email protected] (P.M.R.); [email protected] (R.Z.) 2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (T.S.); [email protected] (H.H.) Received: 10 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios. -
Magmas Parental to the Chassigny Meteorite: New Considerations
Sixth International Conference on Mars (2003) 3041.pdf MAGMAS PARENTAL TO THE CHASSIGNY METEORITE: NEW CONSIDERATIONS. H. Nekvasil1, J. Filiberto1, M. Whitaker1, and D.H. Lindsley1, 1Department of Geosciences, State University of New York, Stony Brook, NY 11794-2100, [email protected]. Introduction: Comparisons with plume-associated basalt - ne-hawaiite - ne-mugearite - phonolite se- magmas on Earth suggest major similarities between the quence as well as the nephelinites of Hawaii, Tristan da Chassigny mineral assemblages and those that frac- Cunha, and Gough Island [8]. This trend typifies what tionate along the hy(hypersthene)-normative sodic most petrologists refer to as "alkalic". alkalic trend exemplified by lavas from certain ocean island, continental hotspot and continental rift regimes. Plume-associated magmas on Earth are character- ized by extreme diversity of associated rocks, with rocks ranging from alkali basalt, olivine tholeiite, and biotite gabbro to anorthosite, syenite, comendite, pantellerite, phonolite and potassic granite, and span- ning the spectrum from silica-undersaturated to silica- oversaturated units, including peralkaline types. How- ever, viewed globally, plume-associated magmatic suites, as defined by spatially and temporally associ- ated rock units, fall into distinct patterns. These pat- terns emerge as four major trends (Fig. 1a). Trend 1 shows the variation in bulk lava composi- tions of the sodic hy-normative mildly alkalic suites as a function of silica content. Rocks along this trend ex- tend through the sequence alkalic basalt-hawaiite- mugearite-benmoreite-trachyte-rhyolite with occasional Figure 1a. Four primary trends of bulk rocks in plume- peralkaline members. This trend is exemplified by rock associated magmatic suites. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
Critically Testing Olivine-Hosted Putative Martian Biosignatures in the Yamato 000593
1 Critically testing olivine-hosted putative Martian biosignatures in the Yamato 000593 2 meteorite - geobiological implications 3 4 Abstract: 5 On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust 6 produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock 7 interaction on Mars comes from iddingsite alteration veins found in Martian meteorites. In the 8 Yamato 000593 meteorite putative biosignatures have been reported from altered olivines in the 9 form of microtextures and associated organic material that have been compared to tubular 10 bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here we use a suite of 11 correlative, high-sensitivity, in-situ chemical and morphological analyses to characterize and re- 12 evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow sub- 13 surface of Mars. We show that the altered olivine crystals have angular and micro-brecciated 14 margins and are also highly strained due to impact induced fracturing. The shape of the olivine 15 microalteration textures is in no way comparable to microtunnels of inferred biological origin 16 found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 17 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration 18 textures and contains amorphous organic carbon occurring as bands and sub-spherical 19 concentrations <300 nm across. We propose that a Martian impact event produced the micro- 20 brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form 21 iddingsite containing organic carbon derived from abiotic sources. -
Carbonaceous Particles in Rock of the Tissint Martian Meteorite
EPSC Abstracts Vol. 7 EPSC2012-906 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Carbonaceous particles in rock of the Tissint martian meteorite N. Miyake (1), M.K. Wallis (1,2), J. Wallis (3), S. Al-Mufti (1) and N.C. Wickramsinghe (1,2) 1 Buckingham Centre for Astrobiology, University of Buckingham, Buckingham MK18 1EG, UK 2 Cardiff University, 49b Park Place, Cardiff CF10 3AT, UK 3 School of Mathematics, Cardiff University, Cardiff, UK Abstract 2. Present Study Carbon-rich globules and plates sized 10-50µm in the Our sample of Tissint showed no fusion crust [2] Tissint martian meteorite lie within the fragile rock, from atmospheric friction, implying it was an interior made up of loosely consolidated micro-fragments. It fragment. We broke it up (clean handling in laminar is interpreted as wind-blown martian dust with rather flow cabinet) to find fresh interior surfaces for study. few carbonaceous spheroids that became buried in We found several 10-50µm globules and plates in the regolith until the impact ejection event. SEM images, embedded in the porous rocky matrix 1. Introduction to various extents, which EDAX spectra showed to The Tissint meteorite is one of the few meteorites be carbon/oxygen-rich. The 10µm egg-shaped observed on arrival in July 2011 and pieces were globule in Fig. A was reported earlier [3] and is here picked up after 3 months in the Moroccan desert [0]. shown in the very rough substrate of scale 1-10µm Most of the 60 or so martian meteorites have been with a diagonal crack that shows bulk coherence. -
Spectrum Winter.Pmd
SPECTRUM Winter 2006, Vol. 31, No. 3 The Journal of the Illinois Science Teachers Association In this Issue: Meteorites and Moon Rocks Physical Science Teaching Strategies ista Literacy Infusion Plan Ahead: ISTA Conference - November 3-4, 2006 Science in the South - March 10, 2006 EEAI Conference - May 4-6, 2006 Illinois Science Teachers Spectrum Association The Journal of the Illinois Science Teachers Association Volume 31, Number 3 Executive Committee Raymond J. Dagenais President Illinois Mathematics and Science Academy Spectrum is published three times per year, in spring, fall, and 1500 W. Sulllivan Road winter, by the Illinois Science Teachers Association, Illinois Math- Aurora, IL 60506 ematics and Science Academy, 1500 W. Sullivan Rd., Aurora, IL [email protected] 60506. Subscription rates are found with the membership informa- tion. Subscription inquiries should be directed to Sherry Duncan Marylin Lisowski (email: [email protected]). Past-President Eastern Illinois University Send submissions and inquiries to the editor. Articles should be 600 Lincoln Avenue directed to individual area focus editors (see next page and write Charleston, IL 61920 for the SPECTRUM information). [email protected] Judith A. Scheppler, Ph.D. Denny Moore Coordinator of Student Inquiry Vice President Director of the Grainger Center for Imagination and Inquiry John Deere Middle School Illinois Mathematics and Science Academy 2035 11th St. 1500 West Sullivan Road Moline, IL 61265 Aurora, IL 60506 [email protected] [email protected] Jill Carter On the cover: When is it Time for Science? (See article on page President-Elect 14.) Photographs courtesy of the Center@IMSA. Pekin Community H.S. 320 Stadium Dr. -
Extra-Terrestrial Igneous Granites and Related Rocks: a Review of Their Occurrence and Petrogenesis
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Lithos 153 (2012) 3–24 Contents lists available at SciVerse ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis Bernard Bonin ⁎ UMR8148 ‘IDES’, CNRS, Département des Sciences de la Terre, Université de Paris-Sud, F-91405 ORSAY CEDEX, France article info abstract Article history: The telluric planets and the asteroid belt display the same internal structure with a metallic inner core and a Received 4 November 2011 silicate outer shell. Experimental data and petrological evidence in silicate systems show that granite can be Accepted 4 April 2012 produced by extreme igneous differentiation through various types of igneous processes. Available online 14 April 2012 On Moon, 4.4–3.9 Ga granite clasts display dry mineral assemblages. They correspond to at least 8 discrete intru- sive events. Large K/Ca enrichment and low REE abundances in granite relative to KREEP are consistent with sil- Keywords: icate liquid immiscibility, a process observed in melt inclusions within olivine of lunar basalts and in lunar Planetary granites fi A-type meteorites.