Mitochondrial Complex II Has a Key Role in Mitochondrial-Derived Reactive Oxygen Species Influence on Plant Stress Gene Regulation and Defense

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Complex II Has a Key Role in Mitochondrial-Derived Reactive Oxygen Species Influence on Plant Stress Gene Regulation and Defense Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense Cynthia Gleasona,1, Shaobai Huangb,1, Louise F. Thatchera,c, Rhonda C. Foleya, Carol R. Andersona,2, Adam J. Carrolld, A. Harvey Millarb,3, and Karam B. Singha,e,3 aCommonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Wembley, WA 6913, Australia; bAustralian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia; cQueensland Bioscience Precinct, CSIRO Plant Industry, St Lucia, QLD 4067, Australia; dARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT 2600, Australia; and eUniversity of Western Australia Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia Edited* by Bob B. Buchanan, University of California, Berkeley, CA, and approved May 20, 2011 (received for review October 27, 2010) Mitochondria are both a source of ATP and a site of reactive oxygen information about the regulation of gene expression such as novel species (ROS) production. However, there is little information on the transcription factors or other upstream regulatory components sites of mitochondrial ROS (mROS) production or the biological role with roles in plant defense and/or stress responses. of such mROS in plants. We provide genetic proof that mitochon- To gain insights into conserved aspects of biotic, abiotic, and drial complex II (Complex II) of the electron transport chain contrib- chemical signaling pathways, we conducted a forward genetic utes to localized mROS that regulates plant stress and defense screen to identify mutants with changes in GSTF8 promoter ac- responses. We identify an Arabidopsis mutant in the Complex II tivity. In this work, we have characterized an Arabidopsis mutant subunit, SDH1-1, through a screen for mutants lacking GSTF8 gene that showed loss of inducible GSTF8 expression in response to expression in response to salicylic acid (SA). GSTF8 is an early stress- stresses and increased susceptibility to fungal and bacterial path- responsive gene whose transcription is induced by biotic and abiotic ogens. In mitochondrial complex II (Complex II), also known as stresses, and its expression is commonly used as a marker of early succinate dehydrogenase (SDH), we mapped the mutation to the stress and defense responses. Transcriptional analysis of this mu- catalytic subunit (SDH1-1), providing genetic proof that the PLANT BIOLOGY tant, disrupted in stress responses 1 (dsr1), showed that it had al- mitochondrial respiratory electron transport chain (10, 11) con- tered SA-mediated gene expression for specific downstream stress tributes to the propagation of plant stress and defense responses. and defense genes, and it exhibited increased susceptibility to spe- cific fungal and bacterial pathogens. The dsr1 mutant also show- Results ed significantly reduced succinate dehydrogenase activity. Using Identification of an Arabidopsis Mutant with Altered Stress Gene in vivo fluorescence assays, we demonstrated that root cell ROS Responsiveness. GSTF8 promoter activity can be monitored with production occurred primarily from mitochondria and was lower an Arabidopsis thaliana (Columbia-0) transgenic line (JC66) in in the mutant in response to SA. In addition, leaf ROS produc- which 791 bp of the GSTF8 promoter has been fused to a luciferase tion was lower in the mutant after avirulent bacterial infection. This (LUC) reporter (12, 13). Approximately 100,000 M2 seedlings mutation, in a conserved region of SDH1-1, is a unique plant mito- from ethyl methanesulfonate-mutagenized seeds of JC66 were chondrial mutant that exhibits phenotypes associated with lowered screened for altered SA induction of the GSTF8 promoter by mROS production. It provides critical insights into Complex II func- monitoring whole-plant luminescence 4 h after SA treatment. tion with implications for understanding Complex II’s role in mito- Strong promoter activity was observed primarily in the roots of WT chondrial diseases across eukaryotes. (JC66) plants in response to SA (Fig. 1A). We focused our at- tention to a loss-of-function mutant, which showed almost no SA- plant defense | respiration | Pseudomonas syringae | Rhizoctonia solani induced GSTF8 promoter activity, and called this mutant dis- rupted in stress responses 1 (dsr1). lants are barraged by biotic and abiotic stresses that can cause To further characterize the dsr1 mutation, the GSTF8::LUC Plarge annual losses to global food production, and, as a result, response to SA was monitored over a 14-h time course (Fig. 1A). plants have evolved mechanisms to quickly perceive and respond In WT, there was GSTF8 promoter activity after SA treatment, to these external stresses (1, 2). At the gene-expression level, peaking at 8–12 h after treatment. In contrast, the dsr1 mutant plant responses to many biotic and abiotic stresses share con- had significantly less promoter activity induced by SA (Fig. 1A). siderable overlap, particularly during the early stages of the re- sponse, and these responses are controlled by overlapping sets of signaling molecules that include plant hormones, calcium, nitric Author contributions: C.G., S.H., C.R.A., A.J.C., A.H.M., and K.B.S. designed research; C.G., oxide, and reactive oxygen species (ROS) (3–5). The interplay S.H., L.F.T., R.C.F., and C.R.A. performed research; K.B.S. contributed new reagents/ana- lytic tools; C.G., S.H., A.J.C., A.H.M., and K.B.S. analyzed data; and C.G., A.H.M., and K.B.S. between these signaling molecules and their respective down- wrote the paper. stream networks is complex and not fully understood. The authors declare no conflict of interest. One group of genes that are induced by combinations of stress *This Direct Submission article had a prearranged editor. signaling pathways are the glutathione S-transferases (GSTs). GSTs encode ubiquitous enzymes found in both animals and Freely available online through the PNAS open access option. Data deposition: The microarray data reported in this paper have been deposited in the plants that protect tissues against oxidative damage or from toxins Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. produced during xenobiotic metabolism (6). In plants, the tran- GSE22942). scriptional activation of diverse GSTs can be triggered by chem- 1C.G. and S.H. contributed equally to this work. icals [salicylic acid (SA)], auxinic herbicides (e.g., dicamba), and 2Deceased January 24, 2009. ROS (H2O2) as well as both biotic (fungal and bacterial elicitors) 3To whom correspondence may be addressed. E-mail: [email protected], or and abiotic stresses (6). A good example is GSTF8, which has [email protected]. – been used as a marker for early stress/defense gene induction (7 This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 9). Mutants with altered GSTF8 expression could provide critical 1073/pnas.1016060108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1016060108 PNAS Early Edition | 1of6 Downloaded by guest on October 1, 2021 might explain the mannitol-induced osmotic stress tolerance of A 60 WT SA 50 dsr1 (Fig. S2). dsr1 40 Interestingly, there were a greater number of genes specifically 30 20 repressed than induced in SA-induced dsr1 plants compared with 10 WT. When looking at repressed genes in SA-treated dsr1 plants, 140 120 D a large number of genes were involved in plant development and 100 80 biotic stress responses. Peroxidases, glutaredoxins, and trypsin 60 and protease inhibitor family genes comprised some of the biotic 40 20 stress-responsive genes that were significantly repressed in the mutant (Dataset S1, Table S1B). 70 H2O2 Average light units / units seedling light Average 50 In an alternative means of analysis, we considered the 100 most 30 SA-induced genes in WT whose fold induction ranged from 6.7 to 10 163 and looked at the transcriptional response of these genes in 0 2 4 6 8 10 12 14 dsr1 (Dataset S1, Table S1C). Although many responded similarly, Time (hr) a subset of 18 exhibited significantly lower or no induction in dsr1 B 140 (Fig. S3 and Dataset S1, Table S1C). This set of genes contained WT 120 dsr1 largely known SA-responsive genes from published reports, and 100 expression 80 more than half are normally induced in response to exposure of * 60 Arabidopsis to bacterial, fungal, or viral pathogens based on GSTF8 40 * analysis of Genevestigator datasets (Dataset S1, Table S1D). 20 0 Relative Relative mock SA D dsr1 Is More Susceptible to Fungal and Virulent Bacterial Pathogens. Fig. 1. dsr1 shows altered GSTF8 induction in response to certain stresses. Because the dsr1 plants have altered SA-regulated gene expres- (A) Average of the total bioluminescence generated by each seedling (n = sion and SA is an important plant defense signaling molecule, 20) per hour after treatment with SA, dicamba (D), or H2O2.(B) Relative these plants may have altered defense responses to pathogens. expression of GSTF8 in WT and dsr1 plants at 10 h after treatment with Therefore, we challenged dsr1 with different plant pathogens. water (mock), SA, or dicamba (D). Gene-expression experiments using three The necrotrophic root fungus Rhizoctonia solani, which causes biological and two technical repeats were repeated twice with similar bare patches and seedling dampening off, is divided into anas- ’ < results. [Error bars: standard error (SEM); Student s t test, *P 0.05.] tomosis groups (AG) based on the ability of the fungal strains to fuse (15). Previously, we found that WT (Columbia-0) plants are resistant to strain AG8 and susceptible to strain AG2 (16). In- Furthermore, the SA analog 2,6-dichloroisonicotinic acid and the terestingly, although GSTF8 was induced after inoculation with SA precursor benzoic acid also induced GSTF8 promoter activity the nonpathogenic strain AG8, its induction was absent after in- in WT plants to much higher levels than in the dsr1 mutant (Fig.
Recommended publications
  • Alternative Oxidase: a Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants
    Int. J. Mol. Sci. 2013, 14, 6805-6847; doi:10.3390/ijms14046805 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada; E-Mail: [email protected]; Tel.: +1-416-208-2742; Fax: +1-416-287-7676 Received: 16 February 2013; in revised form: 8 March 2013 / Accepted: 12 March 2013 / Published: 26 March 2013 Abstract: Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis.
    [Show full text]
  • Mitochondrial ROS Production Correlates With, but Does Not Directly Regulate Lifespan in Drosophila
    www.impactaging.com AGING, April 2010, Vol. 2. No 4 Research Paper Mitochondrial ROS production correlates with, but does not directly regulate lifespan in drosophila 1 1,2 1 1 Alberto Sanz , Daniel J.M. Fernández‐Ayala , Rhoda KA Stefanatos , and Howard T. Jacobs 1 Institute of Medical Technology and Tampere University Hospital, FI‐33014 University of Tampere, Finland 2 Present address: Centro Andaluz de Biología del Desarrollo (CABD‐CSIC/UPO), Universidad Pablo Olavide, 41013 Seville, Spain Running title: Mitocondrial ROS production and aging in Drosophila Key words: mtROS, aging, Drosophila, mitochondria, longevity, antioxidants, maximum life span A bbreviations: 8‐oxo‐7, 8‐dihydro‐2'‐deoxyguanosine = 8‐oxodG; Alternative Oxidase = AOX; Canton S = CS; Dahomey = DAH; Dietary Restriction = DR; daughterless‐GAL4 = da‐GAL4; Electron Transport Chain = ETC ; Mitochondrial Free Radical Theory of A ging = MFRTA; Maximum Lifespan = MLS; Mitochondrial Reactive Oxygen Species = mtROS; Oregon R = OR; sn‐glycerol‐3‐ p hosphate = S3PG. Corresponden ce: Alberto Sanz, PhD, Institute of Medical Technology, FI‐33014 University of Tampere, Finland Received: 02/18/10; accepted: 04/12/10; published on line: 04/15/10 E ‐mail: [email protected] Copyright: © Sanz et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long‐lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short ‐lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan.
    [Show full text]
  • Disease Models & Mechanisms • DMM • Advance Article
    DMM Advance Online Articles. Posted 14 December 2016 as doi: 10.1242/dmm.027839 Access the most recent version at http://dmm.biologists.org/lookup/doi/10.1242/dmm.027839 Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology Marten Szibora,b,c,*, Praveen K. Dhandapania,b,*, Eric Dufourb, Kira M. Holmströma,b, Yuan Zhuanga, Isabelle Salwigc, Ilka Wittigd,e, Juliana Heidlerd, Zemfira Gizatullinaf, Timur Gainutdinovf, German Mouse Clinic Consortium§, Helmut Fuchsg, Valérie Gailus-Durnerg, Martin Hrabě de Angelisg,h,i, Jatin Nandaniaj, Vidya Velagapudij, Astrid Wietelmannc, Pierre Rustink, Frank N. Gellerichf,l, Howard T. Jacobsa,b, #, Thomas Braunc,# aInstitute of Biotechnology, FI-00014 University of Helsinki, Finland bBioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland cMax Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany dFunctional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, D-60590 Frankfurt am Main, Germany eGerman Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany and Cluster of Excellence “Macromolecular Complexes”, Goethe-University, D-60590 Frankfurt am Main, Germany fLeibniz Institute for Neurobiology, D-39118 Magdeburg, Germany gGerman Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany hChair of Experimental Genetics, Center of Life and
    [Show full text]
  • Exploring Membrane Respiratory Chains☆
    BBABIO-47644; No. of pages: 29; 4C: 6, 8, 16, 19 Biochimica et Biophysica Acta xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Exploring membrane respiratory chains☆ Bruno C. Marreiros, Filipa Calisto, Paulo J. Castro, Afonso M. Duarte, Filipa V. Sena, Andreia F. Silva, Filipe M. Sousa, Miguel Teixeira, Patrícia N. Refojo, Manuela M. Pereira ⁎ Instituto de Tecnologia Química e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal article info abstract Article history: Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the estab- Received 15 January 2016 lishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and Received in revised form 16 March 2016 export metabolites or to their motility. The membrane potential is established by a variety of membrane Accepted 18 March 2016 bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the Available online xxxx presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective Keywords: Taxonomic profile coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron Ion transport carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses Respiration enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase Quinone and we also investigated the electron carriers that perform functional connection between the membrane com- Oxygen plexes, quinones or soluble proteins.
    [Show full text]
  • The Role of Mitochondrial Alternative Oxidase in Plant- Pathogen Interactions
    The Role of Mitochondrial Alternative Oxidase in Plant- Pathogen Interactions by Marina Cvetkovska A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell & Systems Biology University of Toronto © Copyright by Marina Cvetkovska 2012 1 The Role of Mitochondrial Alternative Oxidase in Plant-Pathogen Interactions Marina Cvetkovska Doctor of Philosophy Department of Cell & Systems Biology University of Toronto 2012 Abstract Alternative oxidase (AOX) is a non-energy conserving branch of the mitochondrial electron transport chain (ETC) which has been hypothesized to modulate the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plant mitochondria. The aim of the research presented herein is to provide direct evidence in support of this hypothesis and to explore the implications of this during plant-pathogen interactions in Nicotiana tabacum . We observed leaf levels of ROS and RNS in wild-type (Wt) tobacco and transgenic tobacco with altered AOX levels and we found that plants lacking AOX have increased levels of both NO and - mitochondrial O 2 compared Wt plants. Based on the results we suggest that AOX respiration acts to reduce the generation of ROS and RNS in plant mitochondria by dampening the leak of electrons from the ETC to O 2 or nitrite. We characterized multiple responses of tobacco to different pathovars of the bacterial pathogen Pseudomonas syringae . These included a compatible response associated with necrosis (pv tabaci ), an incompatible response that included the hypersensitive response (HR) (pv maculicola ) and an incompatible response that induced defenses (pv phaseolicola ). We show that - the HR is accompanied by an early mitochondrial O 2 burst prior to cell death.
    [Show full text]
  • The Two Roles of Complex III in Plants
    INSIGHT ENZYMES The two roles of complex III in plants Atomic structures of mitochondrial enzyme complexes in plants are shedding light on their multiple functions. HANS-PETER BRAUN involved. The structure and function of the com- Related research article Maldonado M, plexes I to IV have been extensively investigated Guo F, Letts JA. 2021. Atomic structures of in animals and fungi, but less so in plants. Now, respiratory complex III2, complex IV and in eLife, Maria Maldonado, Fei Guo and James supercomplex III2-IV from vascular plants. Letts from the University of California Davis pres- eLife 10:e62047. doi: 10.7554/eLife.62047 ent the first atomic models of the complexes III and IV from plants, giving astonishing insights into how the mitochondrial electron transport chain works in these organisms (Maldonado et al., 2021). very year land plants assimilate about For their investigation, Maldonado et al. iso- 120 billion tons of carbon from the atmo- lated mitochondria from etiolated mung bean E sphere through photosynthesis seedlings; the protein complexes of the electron (Jung et al., 2011). However, plants also rely on transport chain were then purified, and their respiration to produce energy, and this puts structure was analyzed using a new experimental about half the amount of carbon back into the strategy based on single-particle cryo-electron atmosphere (Gonzalez-Meler et al., 2004). microscopy combined with computer-based Mitochondria have a central role in cellular respi- image processing (Kuhlbrandt, 2014). The team ration in plants and other eukaryotes, harboring used pictures of 190,000 complex I particles, the enzymes involved in the citric acid cycle and 48,000 complex III2 particles (III2 is the dimer the respiratory electron transport chain.
    [Show full text]
  • Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions
    fpls-11-00566 May 14, 2020 Time: 20:6 # 1 ORIGINAL RESEARCH published: 15 May 2020 doi: 10.3389/fpls.2020.00566 Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions Jayamini Jayawardhane1, Devin W. Cochrane1, Poorva Vyas1, Natalia V. Bykova2, Greg C. Vanlerberghe3,4 and Abir U. Igamberdiev1* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada, 2 Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada, 3 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada, 4 Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain (ETC) that has a lower affinity for oxygen than does cytochrome (cyt) oxidase. To investigate the role(s) of AOX under different oxygen conditions, wild-type (WT) Nicotiana tabacum plants were compared with AOX knockdown and overexpression plants under normoxia, hypoxia (near-anoxia), and during a reoxygenation period following hypoxia. Paradoxically, under all the conditions Edited by: tested, the AOX amount across plant lines correlated positively with leaf energy status Christian Lindermayr, (ATP/ADP ratio). Under normoxia, AOX was important to maintain respiratory carbon Helmholtz Zentrum München, Germany flow, to prevent the mitochondrial generation of superoxide and nitric oxide (NO), to Reviewed by: control lipid peroxidation and protein S-nitrosylation, and possibly to reduce the inhibition David M. Rhoads, of cyt oxidase by NO. Under hypoxia, AOX was again important in preventing superoxide California State University, San Bernardino, United States generation and lipid peroxidation, but now contributed positively to NO amount.
    [Show full text]
  • Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize
    International Journal of Molecular Sciences Article Effect of Salt Stress on the Expression and Promoter Methylation of the Genes Encoding the Mitochondrial and Cytosolic Forms of Aconitase and Fumarase in Maize Alexander T. Eprintsev 1, Dmitry N. Fedorin 1, Mikhail V. Cherkasskikh 1 and Abir U. Igamberdiev 2,* 1 Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; [email protected] (A.T.E.); [email protected] (D.N.F.); [email protected] (M.V.C.) 2 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada * Correspondence: [email protected] Abstract: The influence of salt stress on gene expression, promoter methylation, and enzymatic activity of the mitochondrial and cytosolic forms of aconitase and fumarase has been investigated in maize (Zea mays L.) seedlings. The incubation of maize seedlings in 150-mM NaCl solution resulted in a several-fold increase of the mitochondrial activities of aconitase and fumarase that peaked at 6 h of NaCl treatment, while the cytosolic activity of aconitase and fumarase decreased. This corresponded to the decrease in promoter methylation of the genes Aco1 and Fum1 encoding the mitochondrial forms of these enzymes and the increase in promoter methylation of the genes Aco2 and Fum2 encoding the cytosolic forms. The pattern of expression of the genes encoding the mitochondrial forms of aconitase and fumarase corresponded to the profile of the increase of the stress marker gene Citation: Eprintsev, A.T.; Fedorin, ZmCOI6.1. It is concluded that the mitochondrial and cytosolic forms of aconitase and fumarase are D.N.; Cherkasskikh, M.V.; regulated via the epigenetic mechanism of promoter methylation of their genes in the opposite ways Igamberdiev, A.U.
    [Show full text]
  • Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology
    life Review Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology Salvatore Nesci 1,* , Fabiana Trombetti 1, Alessandra Pagliarani 1,*, Vittoria Ventrella 1, Cristina Algieri 1 , Gaia Tioli 2 and Giorgio Lenaz 2,* 1 Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; [email protected] (F.T.); [email protected] (V.V.); [email protected] (C.A.) 2 Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected] (S.N.); [email protected] (A.P.); [email protected] (G.L.) Abstract: Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmo- tive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. How- ever, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Citation: Nesci, S.; Trombetti, F.; Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial Pagliarani, A.; Ventrella, V.; Algieri, permeability transition pore in the mtIM, which, most likely with the F F -ATP synthase contribu- C.; Tioli, G.; Lenaz, G.
    [Show full text]
  • BIOCHI-D-13-00330R1 Title
    Elsevier Editorial System(tm) for Biochimie Manuscript Draft Manuscript Number: BIOCHI-D-13-00330R1 Title: Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review Article Type: Review Article Section/Category: Special issue Keywords: Chlamydomonas; mitochondria; respiratory chain; respiratory-deficient mutants Corresponding Author: Prof. Claire Remacle, Corresponding Author's Institution: University of Liege First Author: Thalia Salinas Order of Authors: Thalia Salinas; Veronique Larosa; Pierre Cardol; Laurence Marechal-Drouard; Claire Remacle Manuscript Region of Origin: BELGIUM Abstract: Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory- deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Opposed Reviewers: Cover Letter October 7th 2013 Dr Buckingham Editor of Biochimie Ms. Ref. No.: BIOCHI-D-13-00330 Title: Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.
    [Show full text]
  • The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8271–8276, July 1999 Plant Biology The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells DENIS P. MAXWELL*, YONG WANG*, AND LEE MCINTOSH*†‡ *Department of Energy Plant Research Laboratory, and †Department of Biochemistry, Michigan State University, East Lansing, MI 48824 Communicated by Hans J. Kende, Michigan State University, East Lansing, MI, May 17, 1999 (received for review February 12, 1999) ABSTRACT Besides the cytochrome c pathway, plant Unlike animal mitochondria, those of plants possess a mitochondria have an alternative respiratory pathway that is bifurcated electron-transport chain. In addition to the cyto- comprised of a single homodimeric protein, alternative oxi- chrome respiratory pathway found in all eukaryotes, plants dase (AOX). Transgenic cultured tobacco cells with altered have a second, alternative pathway that diverges from the main levels of AOX were used to test the hypothesis that the respiratory chain at ubiquinone (4). Electron flow through the alternative pathway in plant mitochondria functions as a alternative pathway bypasses two of the three sites along the mechanism to decrease the formation of reactive oxygen cytochrome chain where electron transport is coupled to ATP species (ROS) produced during respiratory electron trans- synthesis. The alternative pathway is comprised of a single port. Using the ROS-sensitive probe 2؅,7؅-dichlorofluorescein protein, alternative oxidase (AOX; ref. 5), which is thought to diacetate, we found that antisense suppression of AOX re- exist in the inner mitochondrial membrane as a homodimer sulted in cells with a significantly higher level of ROS com- (6). In all species examined, AOX is encoded by a small family pared with wild-type cells, whereas the overexpression of AOX of nuclear genes whose members are differentially regulated in resulted in cells with lower ROS abundance.
    [Show full text]
  • Molecular Characterization and Gene Expression Modulation Of
    www.nature.com/scientificreports OPEN Molecular characterization and gene expression modulation of the alternative oxidase in a scuticociliate parasite by hypoxia and mitochondrial respiration inhibitors Iría Folgueira1, Jesús Lamas2,3, Rosa Ana Sueiro1 & José Manuel Leiro1,3* Philasterides dicentrarchi is a marine benthic microaerophilic scuticociliate and an opportunistic endoparasite that can infect and cause high mortalities in cultured turbot (Scophthalmus maximus). In addition to a cytochrome pathway (CP), the ciliate can use a cyanide-insensitive respiratory pathway, which indicates the existence of an alternative oxidase (AOX) in the mitochondrion. Although AOX activity has been described in P. dicentrarchi, based on functional assay results, genetic evidence of the presence of AOX in the ciliate has not previously been reported. In this study, we conducted genomic and transcriptomic analysis of the ciliate and identifed the AOX gene and its corresponding mRNA. The AOX gene (size 1,106 bp) contains four exons and three introns that generate an open reading frame of 915 bp and a protein with a predicted molecular weight of 35.6 kDa. The amino acid (aa) sequence of the AOX includes an import signal peptide targeting the mitochondria and the protein is associated with the inner membrane of the mitochondria. Bioinformatic analysis predicted that the peptide is a homodimeric glycoprotein, although monomeric forms may also appear under native conditions, with EXXH motifs associated with the diiron active centers. The aa sequences of the AOX of diferent P. dicentrarchi isolates are highly conserved and phylogenetically closely related to AOXs of other ciliate species, especially scuticociliates. AOX expression increased signifcantly during infection in the host and after the addition of CP inhibitors.
    [Show full text]