The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8271–8276, July 1999 Plant Biology The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells DENIS P. MAXWELL*, YONG WANG*, AND LEE MCINTOSH*†‡ *Department of Energy Plant Research Laboratory, and †Department of Biochemistry, Michigan State University, East Lansing, MI 48824 Communicated by Hans J. Kende, Michigan State University, East Lansing, MI, May 17, 1999 (received for review February 12, 1999) ABSTRACT Besides the cytochrome c pathway, plant Unlike animal mitochondria, those of plants possess a mitochondria have an alternative respiratory pathway that is bifurcated electron-transport chain. In addition to the cyto- comprised of a single homodimeric protein, alternative oxi- chrome respiratory pathway found in all eukaryotes, plants dase (AOX). Transgenic cultured tobacco cells with altered have a second, alternative pathway that diverges from the main levels of AOX were used to test the hypothesis that the respiratory chain at ubiquinone (4). Electron flow through the alternative pathway in plant mitochondria functions as a alternative pathway bypasses two of the three sites along the mechanism to decrease the formation of reactive oxygen cytochrome chain where electron transport is coupled to ATP species (ROS) produced during respiratory electron trans- synthesis. The alternative pathway is comprised of a single port. Using the ROS-sensitive probe 2؅,7؅-dichlorofluorescein protein, alternative oxidase (AOX; ref. 5), which is thought to diacetate, we found that antisense suppression of AOX re- exist in the inner mitochondrial membrane as a homodimer sulted in cells with a significantly higher level of ROS com- (6). In all species examined, AOX is encoded by a small family pared with wild-type cells, whereas the overexpression of AOX of nuclear genes whose members are differentially regulated in resulted in cells with lower ROS abundance. Laser-scanning a developmental and tissue-specific manner (see ref. 4 and confocal microscopy showed that the difference in ROS abun- references therein). Disruption of the cytochrome pathway dance among wild-type and AOX transgenic cells was caused leads to induction of AOX in many organisms. For example, by changes in mitochondrial-specific ROS formation. Mito- the addition of antimycin A to cultured tobacco cells resulted chondrial ROS production was exacerbated by the use of in the induction of both AOX mRNA (7) and protein (8). The antimycin A, which inhibited normal cytochrome electron overexpression in tobacco of Aox1, a nuclear gene encoding transport. In addition, cells overexpressing AOX were found AOX, led to a large increase in AOX protein and alternative to have consistently lower expression of genes encoding ROS- pathway capacity, whereas antisense inhibition of Aox1 effec- scavenging enzymes, including the superoxide dismutase tively reduced AOX protein to undetectable levels (9). Further genes SodA and SodB, as well as glutathione peroxidase. Also, work with these transgenic plants showed that changes in the the abundance of mRNAs encoding salicylic acid-binding level of AOX within the mitochondria did not have a signif- catalase and a pathogenesis-related protein were significantly icant effect on growth rate, except in the presence of antimycin higher in cells deficient in AOX. These results are evidence A (10). Under those conditions, cells overexpressing Aox1 grew that AOX plays a role in lowering mitochondrial ROS forma- significantly faster than wild type (WT), whereas cells with tion in plant cells. suppressed levels of AOX died. Although AOX is found in all plants investigated to date, as well as in some fungi and protists, its only confirmed function All organisms produce a range of reactive oxygen species Ϫ occurs in the thermogenic inflorescence of the Araceae (4). (ROS), including superoxide (⅐O ), the hydroxyl radical 2 Recently, however, it has been proposed (11, 12) that AOX (⅐OH), and hydrogen peroxide (H O ), during the course of 2 2 may serve a more general function in all plant species by normal metabolic processes. If not effectively and rapidly limiting mitochondrial ROS formation. An experimental basis removed from cells, ROS can damage a wide range of for this hypothesis is that conditions that induce AOX expres- macromolecules, possibly leading to cell death. Both enzy- sion, including chilling (13), pathogen attack (14), aging (15), matic and nonenzymatic mechanisms have evolved to protect and inhibition of the cytochrome pathway (8), also cause an cells from oxygen toxicity. These include antioxidants such increase in cellular ROS formation (16–18). Because stress- as ascorbate and glutathione, as well as ROS-scavenging induced physical changes in membrane components may lead enzymes such as superoxide dismutase (SOD), catalase, and to a restriction in cytochrome pathway respiration (19) and peroxidase (1). thus increase ROS formation, the presence of a second quinol Mitochondria are a major source of ROS in eukaryotic cells. oxidase may help to prevent overreduction of upstream elec- In humans, aberrant mitochondrial ROS formation has been tron-transport components. In so doing, alternative pathway associated with conditions such as Parkinson’s disease, amyo- respiration would also continue to reduce oxygen to water and trophic lateral sclerosis, and aging (2). Superoxide, which is thus keep the intracellular concentration of this potential toxin rapidly converted to H2O2 through the action of SOD, is low. produced during respiration primarily by the autooxidation of This study sought to test the hypothesis that AOX may serve reduced mitochondrial electron-transport components (3). to keep mitochondrial ROS formation low. Our goal was to One of these components, a major site of superoxide produc- measure ROS formation in intact cells rather than isolated tion along the respiratory chain, is the ubiquinone pool (3). The formation of superoxide is exacerbated by compounds, Ј Ј such as antimycin A, that block electron transport downstream Abbreviations: DCF, dichlorofluorescein; H2DCF, 2 ,7 -DCF; H2DCF-DA, 2Ј,7Јdichlorofluorescein diacetate; ROS, reactive oxygen of the ubiquinone pool (3). species; SOD, superoxide dismutase; WT, wild type; GPX, glutathione peroxidase; SA-Cat, salicylic acid-binding catalase; RT-PCR, reverse The publication costs of this article were defrayed in part by page charge transcription–PCR; BHA, butylated hydroxyanisole; S11, containing Aox1 in sense orientation; AS8, containing Aox1 in antisense orien- payment. This article must therefore be hereby marked ‘‘advertisement’’ in tation. accordance with 18 U.S.C. §1734 solely to indicate this fact. ‡To whom reprint requests should be addressed. e-mail: mcintos1@ PNAS is available online at www.pnas.org. pilot.msu.edu. 8271 Downloaded by guest on September 29, 2021 8272 Plant Biology: Maxwell et al. Proc. Natl. Acad. Sci. USA 96 (1999) mitochondria to gain a more biologically accurate assessment elF4A (27) was used to confirm the equal loading of RNA. of mitochondrial ROS formation as it occurs in vivo. To meet Blots were quantified by densitometry. our goals, we used heterotrophically grown tobacco cells that Total Protein Determination. Total cellular protein was overexpress or underexpress Aox1. Although these cells lack isolated as described (28), and protein concentrations were developed chloroplasts, which themselves represent a major determined by using a BCA protein assay kit (Pierce). source of ROS within plants, our system has the experimental Chemicals. Antimycin A, butylated hydroxyanisole (BHA), advantage of enabling one to estimate mitochondrial ROS flavone, and menadione were obtained from Sigma. Each was formation more easily and arguably more accurately within dissolved in an appropriate solvent at a concentration 1,000- plant cells through the use of fluorescent probes and confocal fold greater than the final concentration. Mitotracker Red and microscopy. H2DCF-DA were obtained from Molecular Probes. MATERIALS AND METHODS RESULTS Plant Material and Growth Conditions. Cultured tobacco Detection of Intracellular ROS in Intact Tobacco Cells. The cells (Nicotiana tabacum cv. Petit Havana SR1) containing chemical probe H2DCF-DA has been used extensively as a Aox1 in either sense (S11) or antisense (AS8) orientation have noninvasive, in vivo measure of intracellular ROS (20). been characterized (9, 10). All experiments were conducted H2DCF-DA was used here to determine whether changes in with exponentially growing cells 3–4 days after subculture. the intracellular level of ROS correlated with the abundance Detection of Reactive Oxygen Species. Spectrofluorometry. of AOX in mitochondria. As shown in Fig. 1, the level of DCF Intracellular production of ROS was measured by using 2Ј,7Ј- fluorescence was approximately five times greater in cells with dichlorofluorescein diacetate (H2DCF-DA; Molecular suppressed AOX levels (AS8) compared with WT cells, Probes). This nonpolar compound is converted to the mem- whereas the level of DCF fluorescence in cells overexpressing brane-impermeant polar derivative H2DCF by esterases when AOX (S11) was 57% lower than that of WT cells. it is taken up by the cell. H2DCF is nonfluorescent but is Inhibition of Mitochondrial Electron Transport Increases rapidly oxidized to the highly fluorescent DCF by intracellular ROS Production in Vivo. It has been shown in isolated animal H2O2 and other peroxides (20). Stocks of H2DCF-DA (5 mM) mitochondria that chemical
Recommended publications
  • Alternative Oxidase: a Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants
    Int. J. Mol. Sci. 2013, 14, 6805-6847; doi:10.3390/ijms14046805 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada; E-Mail: [email protected]; Tel.: +1-416-208-2742; Fax: +1-416-287-7676 Received: 16 February 2013; in revised form: 8 March 2013 / Accepted: 12 March 2013 / Published: 26 March 2013 Abstract: Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis.
    [Show full text]
  • Identification of Alternative Mitochondrial Electron Transport
    International Journal of Molecular Sciences Article Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars Crystal Sweetman * , Troy K. Miller, Nicholas J. Booth, Yuri Shavrukov , Colin L.D. Jenkins, Kathleen L. Soole and David A. Day College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide SA 5001, Australia; troy.miller@flinders.edu.au (T.K.M.); nick.booth@flinders.edu.au (N.J.B.); yuri.shavrukov@flinders.edu.au (Y.S.); colin.jenkins@flinders.edu.au (C.L.D.J.); kathleen.soole@flinders.edu.au (K.L.S.); david.day@flinders.edu.au (D.A.D.) * Correspondence: crystal.sweetman@flinders.edu.au; Tel.: +61-8-82012790 Received: 25 April 2020; Accepted: 27 May 2020; Published: 28 May 2020 Abstract: All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea.
    [Show full text]
  • Coupling of Energy to Active Transport of Amino Acids in Escherichia Coli (Mutants/Membrane Vesicles/Ca,Mg-Atpase/Electron Transport/D-Lactate Dehydrogenase) ROBERT D
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 9, pp. 2663-2667, September 1972 Coupling of Energy to Active Transport of Amino Acids in Escherichia coli (mutants/membrane vesicles/Ca,Mg-ATPase/electron transport/D-lactate dehydrogenase) ROBERT D. SIMONI AND MARY K. SHALLENBERGER Department of Biological Sciences, Stanford University, Stanford, California 94305 Communicated by Charles Yanofsky, July 6, 1972 ABSTRACT Active transport of amino acids in isolated *to the lack of oxygen (3). Streptococcus faecalis, an anaerobe membrane vesicles of E. coli ML 308-225 is stimulated by that contains no electron-transport system, can carry out oxidation of D-lactate, and this stimulation is dependent the on electron transport [Kaback, H. R. & Milner, L. S. active membrane transport, presumably using energy- (1970) Proc. Nat. Acad. Sci. USA 66, 1008]. In attempting to yielding reactions of glycolysis (7). It has become essential to relate these results to amino-acid transport in intact relate the observations obtained with isolated vesicles to cells, we isolated mutants of E. coli ML 308-225 that physiological realities of intact cells. We have isolated cells contain defects in D-lactate dehydrogenase (EC 1.1.2.4) in various components involved in and electron transport. Intact cells of these mutants are that contain mutations normal for transport of proline and alanine. We also aerobic metabolism and have tested the effects of these muta- isolated mutants defective in Ca,Mg-stimulated ATPase tions on the ability to perform active transport of amino acids. (EC 3.6.1.3), which is responsible for coupling electron transport to the synthesis of ATP.
    [Show full text]
  • Mitochondrial ROS Production Correlates With, but Does Not Directly Regulate Lifespan in Drosophila
    www.impactaging.com AGING, April 2010, Vol. 2. No 4 Research Paper Mitochondrial ROS production correlates with, but does not directly regulate lifespan in drosophila 1 1,2 1 1 Alberto Sanz , Daniel J.M. Fernández‐Ayala , Rhoda KA Stefanatos , and Howard T. Jacobs 1 Institute of Medical Technology and Tampere University Hospital, FI‐33014 University of Tampere, Finland 2 Present address: Centro Andaluz de Biología del Desarrollo (CABD‐CSIC/UPO), Universidad Pablo Olavide, 41013 Seville, Spain Running title: Mitocondrial ROS production and aging in Drosophila Key words: mtROS, aging, Drosophila, mitochondria, longevity, antioxidants, maximum life span A bbreviations: 8‐oxo‐7, 8‐dihydro‐2'‐deoxyguanosine = 8‐oxodG; Alternative Oxidase = AOX; Canton S = CS; Dahomey = DAH; Dietary Restriction = DR; daughterless‐GAL4 = da‐GAL4; Electron Transport Chain = ETC ; Mitochondrial Free Radical Theory of A ging = MFRTA; Maximum Lifespan = MLS; Mitochondrial Reactive Oxygen Species = mtROS; Oregon R = OR; sn‐glycerol‐3‐ p hosphate = S3PG. Corresponden ce: Alberto Sanz, PhD, Institute of Medical Technology, FI‐33014 University of Tampere, Finland Received: 02/18/10; accepted: 04/12/10; published on line: 04/15/10 E ‐mail: [email protected] Copyright: © Sanz et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long‐lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short ‐lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan.
    [Show full text]
  • Disease Models & Mechanisms • DMM • Advance Article
    DMM Advance Online Articles. Posted 14 December 2016 as doi: 10.1242/dmm.027839 Access the most recent version at http://dmm.biologists.org/lookup/doi/10.1242/dmm.027839 Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology Marten Szibora,b,c,*, Praveen K. Dhandapania,b,*, Eric Dufourb, Kira M. Holmströma,b, Yuan Zhuanga, Isabelle Salwigc, Ilka Wittigd,e, Juliana Heidlerd, Zemfira Gizatullinaf, Timur Gainutdinovf, German Mouse Clinic Consortium§, Helmut Fuchsg, Valérie Gailus-Durnerg, Martin Hrabě de Angelisg,h,i, Jatin Nandaniaj, Vidya Velagapudij, Astrid Wietelmannc, Pierre Rustink, Frank N. Gellerichf,l, Howard T. Jacobsa,b, #, Thomas Braunc,# aInstitute of Biotechnology, FI-00014 University of Helsinki, Finland bBioMediTech and Tampere University Hospital, FI-33014 University of Tampere, Finland cMax Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany dFunctional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, D-60590 Frankfurt am Main, Germany eGerman Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany and Cluster of Excellence “Macromolecular Complexes”, Goethe-University, D-60590 Frankfurt am Main, Germany fLeibniz Institute for Neurobiology, D-39118 Magdeburg, Germany gGerman Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany hChair of Experimental Genetics, Center of Life and
    [Show full text]
  • Exploring Membrane Respiratory Chains☆
    BBABIO-47644; No. of pages: 29; 4C: 6, 8, 16, 19 Biochimica et Biophysica Acta xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Exploring membrane respiratory chains☆ Bruno C. Marreiros, Filipa Calisto, Paulo J. Castro, Afonso M. Duarte, Filipa V. Sena, Andreia F. Silva, Filipe M. Sousa, Miguel Teixeira, Patrícia N. Refojo, Manuela M. Pereira ⁎ Instituto de Tecnologia Química e Biológica—António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal article info abstract Article history: Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the estab- Received 15 January 2016 lishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and Received in revised form 16 March 2016 export metabolites or to their motility. The membrane potential is established by a variety of membrane Accepted 18 March 2016 bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the Available online xxxx presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective Keywords: Taxonomic profile coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron Ion transport carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses Respiration enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase Quinone and we also investigated the electron carriers that perform functional connection between the membrane com- Oxygen plexes, quinones or soluble proteins.
    [Show full text]
  • Glycolysis Citric Acid Cycle Oxidative Phosphorylation Calvin Cycle Light
    Stage 3: RuBP regeneration Glycolysis Ribulose 5- Light-Dependent Reaction (Cytosol) phosphate 3 ATP + C6H12O6 + 2 NAD + 2 ADP + 2 Pi 3 ADP + 3 Pi + + 1 GA3P 6 NADP + H Pi NADPH + ADP + Pi ATP 2 C3H4O3 + 2 NADH + 2 H + 2 ATP + 2 H2O 3 CO2 Stage 1: ATP investment ½ glucose + + Glucose 2 H2O 4H + O2 2H Ferredoxin ATP Glyceraldehyde 3- Ribulose 1,5- Light Light Fx iron-sulfur Sakai-Kawada, F Hexokinase phosphate bisphosphate - 4e + center 2016 ADP Calvin Cycle 2H Stroma Mn-Ca cluster + 6 NADP + Light-Independent Reaction Phylloquinone Glucose 6-phosphate + 6 H + 6 Pi Thylakoid Tyr (Stroma) z Fe-S Cyt f Stage 1: carbon membrane Phosphoglucose 6 NADPH P680 P680* PQH fixation 2 Plastocyanin P700 P700* D-(+)-Glucose isomerase Cyt b6 1,3- Pheophytin PQA PQB Fructose 6-phosphate Bisphosphoglycerate ATP Lumen Phosphofructokinase-1 3-Phosphoglycerate ADP Photosystem II P680 2H+ Photosystem I P700 Stage 2: 3-PGA Photosynthesis Fructose 1,6-bisphosphate reduction 2H+ 6 ADP 6 ATP 6 CO2 + 6 H2O C6H12O6 + 6 O2 H+ + 6 Pi Cytochrome b6f Aldolase Plastoquinol-plastocyanin ATP synthase NADH reductase Triose phosphate + + + CO2 + H NAD + CoA-SH isomerase α-Ketoglutarate + Stage 2: 6-carbonTwo 3- NAD+ NADH + H + CO2 Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate carbons Isocitrate α-Ketoglutarate dehydogenase dehydrogenase Glyceraldehyde + Pi + NAD Isocitrate complex 3-phosphate Succinyl CoA Oxidative Phosphorylation dehydrogenase NADH + H+ Electron Transport Chain GDP + Pi 1,3-Bisphosphoglycerate H+ Succinyl CoA GTP + CoA-SH Aconitase synthetase
    [Show full text]
  • Cellular Respiration Liberation of Energy by Oxidation of Food
    Cellular Respiration Liberation of Energy by Oxidation of Food Respiration and Photosynthesis: Photosynthesis uses CO2 and H2O molecules to form C6H12O6 (glucose) and O2. Respiration is just the opposite of photosynthesis; it uses O2 to breakdown glucose into CO2 and H2O. It results in chemical cycling in biosphere. Respiration and Breathing: Respiration takes place in cells and needs O2 to breakdown food and releases the waste matter CO2. Breathing exchanges these gases between lungs and air. Overall equation for cellular respiration is: C6H1206 + O2 6CO2 + 6 H2O + ATP Glucose Oxygen Carbon Dioxide Water Energy Redox reactions: reduction-oxidation reactions. The gain of electrons during a chemical reaction is called Reduction. The loss of electrons during a chemical reaction is called Oxidation. Glucose is oxidized to 6CO2 and O2 is reduced to 6H2O during cellular respiration. During cellular respiration, glucose loses electrons and H, and O2 gains them. Energy and Food All living things need energy. Some living things can make their food from CO2 and H2O – Producers (plants, algae) Animals feeding on plants – herbivores (chipmunk) Animals feeding on animals – Carnivores (lion) Producers change solar energy to chemical energy of organic molecules – glucose, amino acids Animals and also plants break chemical bonds of sugar molecules and make ATP. Use ATP for all cellular functions 4 Main Step of Cellular Respiration Glycolysis: Glucose + 2NAD + 2ADP 2 Pyruvate + 2NADH + 2 ATP Preparatory Step: Pyruvate + NAD Acetyl-CoA + CO2 + NADH Krebs Cycle: Acetyl-CoA + NAD + FAD + ADP CO2 + NADH + FADH + ATP Electron Transport Chain: electrons of NADH + O2 ATP + H2O Cellular Respiration Aerobic Harvest of energy: is the main source of energy for most organisms.
    [Show full text]
  • THE FUNCTIONAL SIGNIFICANCE of MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in Partial Fulfillment
    THE FUNCTIONAL SIGNIFICANCE OF MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Drs. Margaret M. Sedensky & Philip G. Morgan Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to my family, my teachers and all of my beloved ones for their love and support ii ACKNOWLEDGEMENTS My advanced academic journey began 5 years ago on the opposite side of the world. I traveled to the United States from Thailand in search of a better understanding of science so that one day I can return to my homeland and apply the knowledge and experience I have gained to improve the lives of those affected by sickness and disease yet unanswered by science. Ultimately, I hoped to make the academic transition into the scholarly community by proving myself through scientific research and understanding so that I can make a meaningful contribution to both the scientific and medical communities. The following dissertation would not have been possible without the help, support, and guidance of a lot of people both near and far. I wish to thank all who have aided me in one way or another on this long yet rewarding journey. My sincerest thanks and appreciation goes to my advisors Philip Morgan and Margaret Sedensky.
    [Show full text]
  • The Role of Mitochondrial Alternative Oxidase in Plant- Pathogen Interactions
    The Role of Mitochondrial Alternative Oxidase in Plant- Pathogen Interactions by Marina Cvetkovska A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell & Systems Biology University of Toronto © Copyright by Marina Cvetkovska 2012 1 The Role of Mitochondrial Alternative Oxidase in Plant-Pathogen Interactions Marina Cvetkovska Doctor of Philosophy Department of Cell & Systems Biology University of Toronto 2012 Abstract Alternative oxidase (AOX) is a non-energy conserving branch of the mitochondrial electron transport chain (ETC) which has been hypothesized to modulate the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plant mitochondria. The aim of the research presented herein is to provide direct evidence in support of this hypothesis and to explore the implications of this during plant-pathogen interactions in Nicotiana tabacum . We observed leaf levels of ROS and RNS in wild-type (Wt) tobacco and transgenic tobacco with altered AOX levels and we found that plants lacking AOX have increased levels of both NO and - mitochondrial O 2 compared Wt plants. Based on the results we suggest that AOX respiration acts to reduce the generation of ROS and RNS in plant mitochondria by dampening the leak of electrons from the ETC to O 2 or nitrite. We characterized multiple responses of tobacco to different pathovars of the bacterial pathogen Pseudomonas syringae . These included a compatible response associated with necrosis (pv tabaci ), an incompatible response that included the hypersensitive response (HR) (pv maculicola ) and an incompatible response that induced defenses (pv phaseolicola ). We show that - the HR is accompanied by an early mitochondrial O 2 burst prior to cell death.
    [Show full text]
  • The Two Roles of Complex III in Plants
    INSIGHT ENZYMES The two roles of complex III in plants Atomic structures of mitochondrial enzyme complexes in plants are shedding light on their multiple functions. HANS-PETER BRAUN involved. The structure and function of the com- Related research article Maldonado M, plexes I to IV have been extensively investigated Guo F, Letts JA. 2021. Atomic structures of in animals and fungi, but less so in plants. Now, respiratory complex III2, complex IV and in eLife, Maria Maldonado, Fei Guo and James supercomplex III2-IV from vascular plants. Letts from the University of California Davis pres- eLife 10:e62047. doi: 10.7554/eLife.62047 ent the first atomic models of the complexes III and IV from plants, giving astonishing insights into how the mitochondrial electron transport chain works in these organisms (Maldonado et al., 2021). very year land plants assimilate about For their investigation, Maldonado et al. iso- 120 billion tons of carbon from the atmo- lated mitochondria from etiolated mung bean E sphere through photosynthesis seedlings; the protein complexes of the electron (Jung et al., 2011). However, plants also rely on transport chain were then purified, and their respiration to produce energy, and this puts structure was analyzed using a new experimental about half the amount of carbon back into the strategy based on single-particle cryo-electron atmosphere (Gonzalez-Meler et al., 2004). microscopy combined with computer-based Mitochondria have a central role in cellular respi- image processing (Kuhlbrandt, 2014). The team ration in plants and other eukaryotes, harboring used pictures of 190,000 complex I particles, the enzymes involved in the citric acid cycle and 48,000 complex III2 particles (III2 is the dimer the respiratory electron transport chain.
    [Show full text]
  • Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions
    fpls-11-00566 May 14, 2020 Time: 20:6 # 1 ORIGINAL RESEARCH published: 15 May 2020 doi: 10.3389/fpls.2020.00566 Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions Jayamini Jayawardhane1, Devin W. Cochrane1, Poorva Vyas1, Natalia V. Bykova2, Greg C. Vanlerberghe3,4 and Abir U. Igamberdiev1* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada, 2 Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada, 3 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada, 4 Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain (ETC) that has a lower affinity for oxygen than does cytochrome (cyt) oxidase. To investigate the role(s) of AOX under different oxygen conditions, wild-type (WT) Nicotiana tabacum plants were compared with AOX knockdown and overexpression plants under normoxia, hypoxia (near-anoxia), and during a reoxygenation period following hypoxia. Paradoxically, under all the conditions Edited by: tested, the AOX amount across plant lines correlated positively with leaf energy status Christian Lindermayr, (ATP/ADP ratio). Under normoxia, AOX was important to maintain respiratory carbon Helmholtz Zentrum München, Germany flow, to prevent the mitochondrial generation of superoxide and nitric oxide (NO), to Reviewed by: control lipid peroxidation and protein S-nitrosylation, and possibly to reduce the inhibition David M. Rhoads, of cyt oxidase by NO. Under hypoxia, AOX was again important in preventing superoxide California State University, San Bernardino, United States generation and lipid peroxidation, but now contributed positively to NO amount.
    [Show full text]