Genetic Control of Leucoanthocyanidin Formation in Maize1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q. -
Adaptive Radiations: from Field to Genomic Studies
Adaptive radiations: From field to genomic studies Scott A. Hodges and Nathan J. Derieg1 Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 Adaptive radiations were central to Darwin’s formation of his phenotype–environment correlation, (iii) trait utility, and (iv) theory of natural selection, and today they are still the centerpiece rapid speciation. Monophyly and rapid speciation for many of for many studies of adaptation and speciation. Here, we review the the classic examples of adaptive radiation have been established advantages of adaptive radiations, especially recent ones, for by using molecular techniques [e.g., cichlids (4), Galapagos detecting evolutionary trends and the genetic dissection of adap- finches (5, 6), and Hawaiian silverswords (7)]. Ecological and tive traits. We focus on Aquilegia as a primary example of these manipulative experiments are used to identify and test pheno- advantages and highlight progress in understanding the genetic type–environmental correlations and trait utility. Ultimately, basis of flower color. Phylogenetic analysis of Aquilegia indicates such studies have pointed to the link between divergent natural that flower color transitions proceed by changes in the types of selection and reproductive isolation and, thus, speciation (3). anthocyanin pigments produced or their complete loss. Biochem- Studies of adaptive radiations have exploded during the last 20 ical, crossing, and gene expression studies have provided a wealth years. In a search of the ISI Web of Science with ‘‘adaptive of information about the genetic basis of these transitions in radiation’’ (limited to the subject area of evolutionary biology) Aquilegia. To obtain both enzymatic and regulatory candidate we found 80 articles published in 2008 compared with only 1 in genes for the entire flavonoid pathway, which produces antho- 1990. -
Specialty Sorghums for Gluten Free Foods
SPECIALTY SORGHUMS FOR HEALTHY FOODS Dr. LLOYD W. ROONEY, Professor and Faculty Fellow Dr. JOSEPH M. AWIKA, Research Associate Cereal Quality Lab, Soil & Crop Sciences Dept. Texas A&M University 2474 TAMUS College Station, Texas 77843-2474 1 I. INTRODUCTION Sorghum is a major crop used for food, feed and industrial purposes worldwide. In the Western Hemisphere it is mainly used as a livestock feed and has not been considered a significant ingredient in foods. With over 40,000 accessions in the world collection, tremendous diversity exists in sorghum in both composition and processing properties. The kernel varies in size, shape, color, density, hardness, composition, processing properties, taste and texture and nutritional value. This chapter reviews information on new food sorghums and other special sorghums with unique properties that could be used in producing a wide variety of food products for specialty markets and health foods. The paper will emphasize white food sorghum hybrids and special tannin and black sorghums with high levels of phytochemicals. These special sorghum varieties are an excellent source of nutraceuticals that can compete effectively with fruits and vegetable sources. In addition, we will indicate other opportunities for producing healthy foods from sorghum. A. Sorghum production Sorghum is the fifth most important cereal crop grown in the world. It is a major food grain in Africa and parts of India and China. In 2003, 42.1 million hectares of sorghum were harvested worldwide, with a total production of 54.7 million metric tons. United States, India, and Nigeria are the largest producers of sorghum representing approximately 19.2%, 14.5%, and 14.5% of the total world production, respectively, in 2003. -
BIOSYNTHESIS of PROANTHOCYANIDINS in BARLEY: GENETIC CONTROL of the CONVERSION of DIHYDROQUERCETIN to CATECHIN and PROCYANIDINS by KLAUS NYEGAARD KRISTIANSEN
Carlsberg Res. Commun. Vol. 49, p. 503-524, 1984 BIOSYNTHESIS OF PROANTHOCYANIDINS IN BARLEY: GENETIC CONTROL OF THE CONVERSION OF DIHYDROQUERCETIN TO CATECHIN AND PROCYANIDINS by KLAUS NYEGAARD KRISTIANSEN Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby and Institute of Genetics, University of Copenhagen Oster Farimagsgade 2A, DK-1353 Copenhagen K Keywords: Flavonoid biosynthesis, leucocyanidin isomers, ant mutants, genetic control, high pressure liquid chromatography, 'H NMR, mass spectroscopy The conversion of dihydroquercetin to catechin and procyanidin was studied in maturing wild type barley (Hordeum vulgare L., cv. Nordal) seeds and proanthocyanidin free mutants blocked in four different genes, ant 13, ant 17. ant 18 and ant 19. In the wild type barley grown under controlled conditions, maximal rate of synthesis of catechin, procyanidin B3 and procyanidin C2 occurred 8-16 days after flowering. Dihydroquercetin was radioactively labelled by feeding ( 1-'4C)-acetate and (2-'4C)-acetate to flowerbuds of a petunia mutant accumulating this flavonoid. When fed to pericarp-testa tissue of wild type barley labelled catechin, procyanidin B3 and procyanidin C2 were synthesized establishing dihydroquercetin as a precursor of these compounds. In addition labelled 2,3-trans-3,4-cis-leucocyanidin was synthesized indicating that this compound is an intermediate. The leucocyanidin was identified by co-chromatography with an authentic standard prepared chemically by reduction ofdihydroquercetin with NaBH,. The major product of this reduction, however, was the 2,3-trans-3,4-trans-leuco- cyanidin. Only mutant ant 18-102 accumulated dihydroquercetin in the seeds. Feeding ('4C)-dihydroquercetin to pericarp-testa tissue from the mutants revealed that ant 17-139 was capable of synthesizing significant amounts of labelled catechin and procyanidin, whereas ant 13-101, ant 13-152, ant 18-102 and ant 19-109 synthesized none or only very small amounts of these compounds. -
Functional Analysis of Ghchs, Ghanr And
Gao et al. BMC Plant Biology (2019) 19:455 https://doi.org/10.1186/s12870-019-2065-7 RESEARCH ARTICLE Open Access Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L Jianfang Gao1†, Li Shen1†, Jingli Yuan1, Hongli Zheng1, Quansheng Su1, Weiguang Yang1, Liqing Zhang1, Vitalis Ekene Nnaemeka1, Jie Sun2, Liping Ke1* and Yuqiang Sun1* Abstract Background: The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. Results: The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. Conclusion: The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. -
Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention
biomedicines Review Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention 1,2, , 2,3, 4,5 3 Zorit, a Diaconeasa * y , Ioana S, tirbu y, Jianbo Xiao , Nicolae Leopold , Zayde Ayvaz 6 , Corina Danciu 7, Huseyin Ayvaz 8 , Andreea Stanilˇ aˇ 1,2,Madˇ alinaˇ Nistor 1,2 and Carmen Socaciu 1,2 1 Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; [email protected] (A.S.); [email protected] (M.N.); [email protected] (C.S.) 2 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 3 Faculty of Physics, Babes, -Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; [email protected] 4 Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China; [email protected] 5 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 6 Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey; [email protected] 7 Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; [email protected] 8 Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +40-751-033-871 These authors contributed equally to this work. y Received: 31 July 2020; Accepted: 25 August 2020; Published: 9 September 2020 Abstract: Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins’ preventative and inhibitory effects, underlying molecular mechanisms, and such. -
Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts – Review and New Aspects M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JKI Open Journal Systems (Julius Kühn-Institut) Journal of Applied Botany and Food Quality 86, 154 - 166 (2013), DOI:10.5073/JABFQ.2013.086.021 1University of Kiel, Institute of Crop Science and Plant Breeding – Grass and Forage Science / Organic Agriculture, Kiel, Germany 2Institute of Ecological Chemistry, Plant Analysis and Stored Product Protection; Julius Kühn-Institute, Quedlinburg, Germany Different approaches to evaluate tannin content and structure of selected plant extracts – review and new aspects M. Kardel1*, F. Taube1, H. Schulz2, W. Schütze2, M. Gierus1 (Received July 2, 2013) Summary extracts, tannins, salts and derivates was imported to the EU in the year 2011, mainly from Argentina, with a trade value of nearly Tannins occur in many field herbs and legumes, providing an im- 63.5 mio. US Dollar (UN-COMTRADE, 2013). These extracts are pro- mense variability in structure and molecular weight. This leads to duced industrially on a large scale. They could therefore maintain complications when measuring tannin content; comparability of a relatively constant quality and thus provide an advantage in rumi- different methods is problematic. The present investigations aimed at nant feeding. characterizing four different tannin extracts: quebracho (Schinopsis Tannins from different sources can react very diverse regarding lorentzii), mimosa (Acacia mearnsii), tara (Caesalpinia spinosa), protein affinity (MCNABB et al., 1998; BUENO et al., 2008). Diffe- and gambier (Uncaria gambir) and impact of storage conditions. rences in tannin structure can occur even between similar plant Using photometrical methods as well as HPLC-ESI-MS, fundamen- species (OSBORNE and MCNEILL, 2001; HATTAS et al., 2011) and a tal differences could be determined. -
Phenolic Compounds in Cereal Grains and Their Health Benefits
and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited. -
Naturally Occurring Anthocyanin, Structure, Functions And
iochemis t B try n & la P P h f y o s l i Journal of o a l n o r g Pervaiz et al., J Plant Biochem Physiol 2017, 5:2 u y o J DOI: 10.4172/2329-9029.1000187 ISSN: 2329-9029 Plant Biochemistry & Physiology Review Article Open Access Naturally Occurring Anthocyanin, Structure, Functions and Biosynthetic Pathway in Fruit Plants Tariq Pervaiz1,2, Jiu Songtao1, Faezeh Faghihi3, Muhammad Salman Haider1 and Jinggui Fang1* 1Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China 2Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan 3Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran *Corresponding author: Jinggui Fang, Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, PR China, E-mail: [email protected] Received Date: April 25, 2017; Accepted Date: April 29, 2017; Published Date: May 06, 2017 Copyright: © 2017 Pervaiz T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Anthocyanins are naturally occurring compounds, member of the flavonoid groups of photochemical, involved in defense against the damaging effects of UV irradiation in plants and protect from many oxidants. The anthocyanins, group of pigments are relatively small and diverse flavonoid family in nature, and responsible for the attractive colors, red and purple to blue in many plants. Presence of pigments in flowers and fruits seems to provide attraction for pollination and aiding seed distribution, it also provides antiviral and antimicrobial activities, however their occurrence in the vacuoles remains ambiguous. -
Plant Secondary Metabolites: an Opportunity for Circular Economy
molecules Review Plant Secondary Metabolites: An Opportunity for Circular Economy Ilaria Chiocchio , Manuela Mandrone * , Paola Tomasi, Lorenzo Marincich and Ferruccio Poli Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; [email protected] (I.C.); [email protected] (P.T.); [email protected] (L.M.); [email protected] (F.P.) * Correspondence: [email protected]; Tel.: +39-0512091294 Abstract: Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by- products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on Citation: Chiocchio, I.; Mandrone, neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, M.; Tomasi, P.; Marincich, L.; Poli, F. -
The Effect of Light Intensity on the Expression of Leucoanthocyanidin
G C A T T A C G G C A T genes Article The Effect of Light Intensity on the Expression of Leucoanthocyanidin Reductase in Grapevine Calluses and Analysis of Its Promoter Activity Jing Cheng 1,2, Keji Yu 1,2,3, Mingyue Zhang 4, Ying Shi 1,2 , Changqing Duan 1,2 and Jun Wang 1,2,* 1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] (J.C.); [email protected] (K.Y.); [email protected] (Y.S.); [email protected] (C.D.) 2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China 3 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China 4 China Meat Research Center, Beijing Academy of Food Sciences, Beijing 100068, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-62738537 Received: 21 August 2020; Accepted: 29 September 2020; Published: 30 September 2020 Abstract: To investigate the effect of light intensity on flavonoid biosynthesis, grapevine calluses 2 1 2 1 were subjected to high light (HL, 250 µmol m− s− ) and dark (0 µmol m− s− ) in comparison 2 1 to 125 µmol m− s− under controlled conditions (NL). The alteration of flavonoid profiles was determined and was integrated with RNA sequencing (RNA-seq)-based transcriptional changes of the flavonoid pathway genes. Results revealed that dark conditions inhibited flavonoid biosynthesis. Increasing light intensity affected flavonoids differently—the concentrations of flavonols and anthocyanins as well as the expressions of corresponding genes were less affected, whereas flavan-3-ol concentrations were predominantly increased, which caused enhanced trans-flavan-3-ol concentrations. -
Molecular Progress in Research on Fruit Astringency
Molecules 2015, 20, 1434-1451; doi:10.3390/molecules20011434 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Molecular Progress in Research on Fruit Astringency Min He, Henglu Tian, Xiaowen Luo, Xiaohua Qi and Xuehao Chen * School of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China; E-Mails: [email protected] (M.H.); [email protected] (H.T.); [email protected] (X.L.); [email protected] (X.Q.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-514-8797-1894; Fax: +86-514-8734-7537. Academic Editor: Derek J. McPhee Received: 3 November 2014 / Accepted: 8 January 2015 / Published: 15 January 2015 Abstract: Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There is growing interest in the study of fruit astringency because of the healthy properties of astringent substances found in fruit, including antibacterial, antiviral, anti-inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, vasodilating and antithrombotic activities. This review will focus mainly on the relationship between tannin structure and the astringency sensation as well as the biosynthetic pathways of astringent substances in fruit and their regulatory mechanisms. Keywords: fruit astringency; tannin; biosynthesis pathway; regulation 1. Introduction Recently, the quality of fruits and vegetables has become increasingly important in people’s daily lives. Fruit quality can generally be divided into the following three components: the first is commercial quality, which includes the fruit’s outer appearance, fruit length and diameter; the second is fruit structural quality, for example, in terms of flesh thickness and cavity size; and the third is fruit sensory quality.