PICO 155P Precision Saw
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Check Points for Measuring Instruments
Catalog No. E12024 Check Points for Measuring Instruments Introduction Measurement… the word can mean many things. In the case of length measurement there are many kinds of measuring instrument and corresponding measuring methods. For efficient and accurate measurement, the proper usage of measuring tools and instruments is vital. Additionally, to ensure the long working life of those instruments, care in use and regular maintenance is important. We have put together this booklet to help anyone get the best use from a Mitutoyo measuring instrument for many years, and sincerely hope it will help you. CONVENTIONS USED IN THIS BOOKLET The following symbols are used in this booklet to help the user obtain reliable measurement data through correct instrument operation. correct incorrect CONTENTS Products Used for Maintenance of Measuring Instruments 1 Micrometers Digimatic Outside Micrometers (Coolant Proof Micrometers) 2 Outside Micrometers 3 Holtest Digimatic Holtest (Three-point Bore Micrometers) 4 Holtest (Two-point/Three-point Bore Micrometers) 5 Bore Gages Bore Gages 6 Bore Gages (Small Holes) 7 Calipers ABSOLUTE Coolant Proof Calipers 8 ABSOLUTE Digimatic Calipers 9 Dial Calipers 10 Vernier Calipers 11 ABSOLUTE Inside Calipers 12 Offset Centerline Calipers 13 Height Gages Digimatic Height Gages 14 ABSOLUTE Digimatic Height Gages 15 Vernier Height Gages 16 Dial Height Gages 17 Indicators Digimatic Indicators 18 Dial Indicators 19 Dial Test Indicators (Lever-operated Dial Indicators) 20 Thickness Gages 21 Gauge Blocks Rectangular Gauge Blocks 22 Products Used for Maintenance of Measuring Instruments Mitutoyo products Micrometer oil Maintenance kit for gauge blocks Lubrication and rust-prevention oil Maintenance kit for gauge Order No.207000 blocks includes all the necessary maintenance tools for removing burrs and contamination, and for applying anti-corrosion treatment after use, etc. -
Micro-Ruler MR-1 a NPL (NIST Counterpart in the U.K.)Traceable Certified Reference Material
Micro-Ruler MR-1 A NPL (NIST counterpart in the U.K.)Traceable Certified Reference Material . ATraceable “Micro-Ruler”. Markings are all on one side. Mirror image markings are provided so right reading numbers are always seen. The minimum increment is 0.01mm. The circles (diameter) and square boxes (side length) are 0.02, 0.05, 0.10, 0.50, 1.00, 2.00 and 5.00mm. 150mm OVERALL LENGTH 150mm uncertainty: ±0.0025mm, 0-10mm: ±0.0005mm) 0.01mm INCREMENTS, SQUARES & CIRCLES UP TO 5mm TED PELLA, INC. Microscopy Products for Science and Industry P. O. Box 492477 Redding, CA 96049-2477 Phone: 530-243-2200 or 800-237-3526 (USA) • FAX: 530-243-3761 [email protected] www.tedpella.com DOES THE WORLD NEED A TRACEABLE RULER? The MR-1 is labeled in mm. Its overall scale extends According to ISO, traceable measurements shall be over 150mm with 0.01mm increments. The ruler is designed to be viewed from either side as the markings made when products require the dimensions to be are both right reading and mirror images. This allows known to a specified uncertainty. These measurements the ruler marking to be placed in direct contact with the shall be made with a traceable ruler or micrometer. For sample, avoiding parallax errors. Independent of the magnification to be traceable the image and object size ruler orientation, the scale can be read correctly. There is must be measured with calibration standards that have a common scale with the finest (0.01mm) markings to traceable dimensions. read. We measure and certify pitch (the distance between repeating parallel lines using center-to-center or edge-to- edge spacing. -
Verification Regulation of Steel Ruler
ITTC – Recommended 7.6-02-04 Procedures and guidelines Page 1 of 15 Effective Date Revision Calibration of Micrometers 2002 00 ITTC Quality System Manual Sample Work Instructions Work Instructions Calibration of Micrometers 7.6 Control of Inspection, Measuring and Test Equipment 7.6-02 Sample Work Instructions 7.6-02-04 Calibration of Micrometers Updated / Edited by Approved Quality Systems Group of the 28th ITTC 23rd ITTC 2002 Date: 07/2017 Date: 09/2002 ITTC – Recommended 7.6-02-04 Procedures and guidelines Page 2 of 15 Effective Date Revision Calibration of Micrometers 2002 00 Table of Contents 1. PURPOSE .............................................. 4 4.6 MEASURING FORCE ......................... 9 4.6.1 Requirements: ............................... 9 2. INTRODUCTION ................................. 4 4.6.2 Calibration Method: ..................... 9 3. SUBJECT AND CONDITION OF 4.7 WIDTH AND WIDTH DIFFERENCE CALIBRATION .................................... 4 OF LINES .............................................. 9 3.1 SUBJECT AND MAIN TOOLS OF 4.7.1 Requirements ................................ 9 CALIBRATION .................................... 4 4.7.2 Calibration Method ...................... 9 3.2 CALIBRATION CONDITIONS .......... 5 4.8 RELATIVE POSITION OF INDICATOR NEEDLE AND DIAL.. 10 4. TECHNICAL REQUIREMENTS AND CALIBRATION METHOD ................. 7 4.8.1 Requirements .............................. 10 4.8.2 Calibration Method: ................... 10 4.1 EXTERIOR ............................................ 7 4.9 DISTANCE -
Vernier Caliper and Micrometer Computer Models Using Easy Java Simulation and Its Pedagogical Design Features—Ideas for Augmenting Learning with Real Instruments
Wee, Loo Kang, & Ning, Hwee Tiang. (2014). Vernier caliper and micrometer computer models using Easy Java Simulation and its pedagogical design features—ideas for augmenting learning with real instruments. Physics Education, 49(5), 493. Vernier caliper and micrometer computer models using Easy Java Simulation and its pedagogical design feature-ideas to augment learning with real instruments Loo Kang WEE1, Hwee Tiang NING2 1Ministry of Education, Educational Technology Division, Singapore 2 Ministry of Education, National Junior College, Singapore [email protected], [email protected] Abstract: This article presents the customization of EJS models, used together with actual laboratory instruments, to create an active experiential learning of measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed in this article. They are 1) the simple view and associated learning to pen and paper question and the real world, 2) hints, answers, different options of scales and inclusion of zero error and 3) assessment for learning feedback. The initial positive feedback from Singaporean students and educators points to the possibility of these tools being successfully shared and implemented in learning communities, and validated. Educators are encouraged to change the source codes of these computer models to suit their own purposes, licensed creative commons attribution for the benefit of all humankind. Video abstract: http://youtu.be/jHoA5M-_1R4 2015 Resources: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/01-measurements/5-vernier-caliper http://iwant2study.org/ospsg/index.php/interactive-resources/physics/01-measurements/6-micrometer Keyword: easy java simulation, active learning, education, teacher professional development, e–learning, applet, design, open source physics PACS: 06.30.Gv 06.30.Bp 1.50.H- 01.50.Lc 07.05.Tp I. -
Pipe Cutting Machines
PIPE CUTTING MACHINES YOUR PARTNER IN SUCCESS THROUGH INNOVATION Overview Vernon’s Commitment to Pipe Fabrication Table of Contents Pipe cutting technology has advanced rapidly Investment in design engineering, advanced Performance Engineered Products . .4-5 since the days of hand-held torches and technology, and experienced staff constitute Common Applications . .6-7 wraparound paper templates. A single cutting Vernon’s commitment to the fabrication market. machine can now supply enough pipe to satisfy Alignment of interests and continuous exchange Machine Configuration . .8-9 5 to 10 fit-up and welding stations. of information between Vernon and its Pipe Handling Equipment . .10-11 Knowledgeable business owners recognize that customers have forged relationships that have Turning Roll & Conveyor Assembly . .10 a centralized, efficient cutting operation governs existed for more than forty years. Loyalty and Entrance Conveyor . .11 all downstream operations. Speed, safety, and respect have bred a common goal of improving Discharge Conveyor . .11 quality have become the benchmarks of productivity and fostering innovation. Mechanized Cutting Assemblies . .12-13 profitable pipe fabrication, the same qualities While many of the basic cutting and material that describe Vernon pipe cutting machines. handling concepts are still valid today, Vernon Two-Torch Straight Cut-off Assembly . .12 In 1948, Vernon Tool Company acquired the continues to incorporate the newest technology Mechanical Pantograph Assembly . .13 rights to manufacture the Douglas cutting in its machines. Innovations like machine- Computerized Profiling Assemblies . .13 machine, a simple mechanical pantograph for mounted microprocessors, programmable logic Multi-Axes Controls . .14 burning straight cuts, simple miters and saddles. controls, and network-compatible operating Optional Accessories . -
866-Evo-Tool
® ® 866-EVO-TOOL Evolution Industrial Full Range Catalog DOWNLOAD A FREE QR READER APP & SCAN THE QR CODE! Instantly watch all our HD Videos on your Smart Phone. Make sure the HD setting is turned on. If you don’t have a Smart Phone, you can also watch all the videos online at www.evolutionsteel.com. ® Company Profile Evolution is a leader in the steel and fabrication industry, offering industrial metal cutting products, metal drilling products and related accessories. With a strong focus on customer service and determination to achieve unmatched quality, Evolution offers the highest product value to a rapidly growing and changing market. Evolution's United States headquarters is based out of Davenport, Iowa, allowing centralized distribution for the entire North American customer base. Worldwide locations offer distribution in Europe, CONTENTS Asia, South America, Australia and Africa. “Innovation Defined” is the company motto and Evolution achieves this by continuously improving existing products and adding new Metal Cutting products to effectively complement Evolution’s current portfolio. EVOSAW185 - 7-1/4” Chop Saw ...........4 Quality Assurance & Warranty EVOSAW380 - 14” Chop Saw . .5 EVOSAW180HD - 7-1/4" Circular Saw . 6 All Evolution power tools are put through quality assurance EVOSAW230 - 9” Circular Saw . 7 testing and are guaranteed to be free of defects in workmanship Industrial Saw Blade Range . 8 or materials for three years from the date of purchase. Refer to Evolution's instruction manuals for full details. Industrial Magnetic Drilling All warranty claims must be submitted by the owner/user of the product and can only be evaluated and authorized by Evolution's EVOMAG28 - 1-1/8" x 2" Magnetic Drill . -
Cut-Off Saw Cut-Off (Abrasive) Saw the Rules and Procedures in Force Where People Are at Work 1
0210 Safety Guidance 2 STROKE PETROL v:032017 Redistributed under licence from HAE by Power Tool Rentals Ltd. Licence expires on 30/06/2017 Using the Cut-off Saw Cut-off (Abrasive) Saw The rules and procedures in force where people are at work 1. Wear protective equipment including goggles and dust mask. may require the person responsible for this equipment to 2. Check that the cutting wheel is fitted securely, and that the guard is properly adjusted. carry out a specific risk assessment. 3. Always hold the machine securely with, both hands: left hand on the front handle, right hand on the rear. It is important to read all of this leaflet 4. Be prepared for the reactive force when the wheel contacts the surface to be cut: the BEFORE you use the Cut-off Saw machine will pull away from you, or pull up a vertical surface. 1. Plan your work and think ahead to make sure you will always 5. Use full throttle: make sure the wheel is running at full speed before lowering it carefully be working safely. onto the surface. 2. Petrol mixture is highly flammable. Take care not to cause a fire or explosion. 6. If the machine starts to labour and slow down do not force it so hard. Do not overload the machine. Long shallows cuts keeping the wheel speed up are more effective than 3. This cut-off saw is designed to cut concrete, masonry, asphalt, aggressive pressure. steel, cast iron and similar materials using the appropriate abrasive or diamond wheel. -
Best Practices for Cut-Off Saw Maintenance
Best Practices for Cut-Off Saw Maintenance Fill your saw with fresh, quality fuel with Inspect saw for cracks in the blade little to no ethanol (non-oxygenated guard and belt guard, missing feet, gas/89 octane or higher). This will and working guard stops before improve saw performance and extend running. Inspect saw for loose nuts useful life. and bolts before running. Use of 2 cycle synthetic oil will help Inspect diamond blade for cracks in prolong the life of the saw. Synthetic segments and gullets. Inspect abrasive oils have better purity and stability so blade for fraying or warpage. Inspect they outperform conventional oils. flange for excessive wear, sharp edges You get what you pay for. and missing tabs. Replace both blade and flange if necessary before running. Run your saw out of fuel before storing Do not run wide open throttle for more for the winter. Always use fresh, properly than 10 seconds while not under load. mixed fuel in the spring. Clean saw after every use to avoid build Use saw blade (wheel) with correct arbor up of dust when dry cutting or slurry for safety and best performance. when wet cutting. Replace your air filter only when your Use water when cutting concrete/asphalt saw starts to lose power in the cut. to avoid silica exposure which can cause silicosis, a serious lung disease. Early replacement or blowing out or Call Esch for cutting equipment, diamond cleaning the filter can damage pistons/ and abrasive saw blades, cut-off saw cylinders because of dirt ingestion. parts and service, and expert advice. -
MICHIGAN STATE COLLEGE Paul W
A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING INSTRUMENTS Thai: for III. Dean. of I. S. MICHIGAN STATE COLLEGE Paul W. Hoynigor I948 This]: _ C./ SUPP! '3' Nagy NIH: LJWIHL WA KOF BOOK A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING’INSIRUMENTS A Thesis Submitted to The Faculty of MICHIGAN‘STATE COLLEGE OF AGRICULTURE AND.APPLIED SCIENCE by Paul W. Heyniger Candidate for the Degree of Batchelor of Science June 1948 \. HE-UI: PREFACE This Thesis is submitted to the faculty of Michigan State College as one of the requirements for a B. S. De- gree in Civil Engineering.' At this time,I Iish to express my appreciation to c. M. Cade, Professor of Civil Engineering at Michigan State Collegeafor his assistance throughout the course and to the manufacturers,vhose products are represented, for their help by freely giving of the data used in this paper. In preparing the laterial used in this thesis, it was the authors at: to point out new develop-ants on existing instruments and recent inventions or engineer- ing equipment used principally by the Civil Engineer. 20 6052 TAEEE OF CONTENTS Chapter One Page Introduction B. Drafting Equipment ----------------------- 13 Chapter Two Telescopic Inprovenents A. Glass Reticles .......................... -32 B. Coated Lenses .......................... --J.B Chapter three The Tilting Level- ............................ -33 Chapter rear The First One-Second.Anerican Optical 28 “00d011 ‘6- -------------------------- e- --------- Chapter rive Chapter Six The Latest Type Altineter ----- - ................ 5.5 TABLE OF CONTENTS , Chapter Seven Page The Most Recent Drafting Machine ........... -39.--- Chapter Eight Chapter Nine SmOnnB By Radar ....... - ------------------ In”.-- Chapter Ten Conclusion ------------ - ----- -. -
MODULE 5 – Measuring Tools
INTRODUCTION TO MACHINING 2. MEASURING TOOLS AND PROCESSES: In this chapter we will only look at those instruments which would typically be used during and at the end of a fabrication process. Such instruments would be capable of measuring up to 4 decimal places in the inch system and up to 3 decimal places in the metric system. Higher precision is normally not required in shop settings. The discrimination of a measuring instrument is the number of “segments” to which it divides the basic unit of length it is using for measurement. As a rule of thumb: the discrimination of the instrument should be ~10 times finer than the dimension specified. For example if a dimension of 25.5 [mm] is specified, an instrument that is capable of measuring to 0.01 or 0.02 [mm] should be used; if the specified dimension is 25.50 [mm], then the instrument’s discrimination should be 0.001 or 0.002 [mm]. The tools discussed here can be divided into 2 categories: direct measuring tools and indirect measuring or comparator tools. 50 INTRODUCTION TO MACHINING 2.1 Terminology: Accuracy: can have two meanings: it may describe the conformance of a specific dimension with the intended value (e.g.: an end-mill has a specific diameter stamped on its shank; if that value is confirmed by using the appropriate measuring device, then the end-mill diameter is said to be accurate). Accuracy may also refer to the act of measuring: if the machinist uses a steel rule to verify the diameter of the end-mill, then the act of measuring is not accurate. -
Moore & Wright 2016/17- Complete Catalogue
MW-2016E MW-2016E MOORE & WRIGHT Moore & Wright - Europe and North Africa Moore & Wright - Rest of the World Bowers Group Bowers Eclipse Equipment (Shanghai) Co., Ltd. Unit 3, Albany Court, 8th Building, No. 178 Chengjian Rd Albany Park, Camberley, Minhang District, Shanghai 201108 Surrey GU16 7QR, UK P.R.China Telephone: +44 (0)1276 469 866 Telephone: +86 21 6434 8600 Fax: +44 (0)1276 401 498 Fax: +86 21 6434 6488 Email: [email protected] Email: [email protected] Website: www.moore-and-wright.com Website : www.moore-and-wright.com PRODUCT CATALOGUE 16/17 Partners in Precision PRODUCT CATALOGUE 16/17 INNOVATIVE NEW PRODUCTS IN EVERY SECTION OF THIS ALL-INCLUSIVE, EASY TO USE REFERENCE MWEX2016-17_FC-BC.indd 1 19/11/2015 11:58 MOORE & WRIGHT A Brief History... Founded in 1906 by innovative young engineer, Frank Moore, Moore & Wright has been designing, manufacturing and supplying precision measuring equipment to global industry for over 100 years. With roots fixed firmly in Sheffield, England, the company began by manufacturing a range of calipers, screwdrivers, punches and other engineer’s tools. Following investment from Mrs Wright, a shrewd Sheffield businesswoman, Frank was able to expand the business and further develop his innovative designs. By the mid-nineteen twenties, thanks to the company’s enviable reputation, Moore & Wright was approached by the UK Government to consider manufacturing a range of quality micrometers. It was in this field that Moore & Wright’s status as UK agent for the Swiss Avia range of products and subsequent acquisition of the Avia brand and manufacturing rights, proved invaluable. -
United States Patent (10) Patent N0.: US 6,945,850 B2 Perrey (45) Date of Patent: Sep
US006945850B2 (12) United States Patent (10) Patent N0.: US 6,945,850 B2 Perrey (45) Date of Patent: Sep. 20, 2005 (54) SAW BLADE WITH ABRASIVE SURFACE 3,914,906 A * 10/1975 Barnes ...................... .. 30/514 4,369,685 A * 1/1983 Trigg ...... .. 76/112 Inventor: DavidCL Jefferson AI Perrey, City MO (Us)Brush Creek 4,675,975 A * 6/1987 Kucharczyk. .et . a1.. ........ .. .. 29/566 651’09_8832 ’ 5,018,276 A * 5/1991 Asada ....................... .. 30/347 5,115,796 A 5/1992 Schweickhardt ....... .. 125/13.01 . _ . 5,239,978 A * 8/1993 Plangetis ........ .. 125/16.01 (ak) Nome‘ sublecbto any dlsclalmer: the term Ofthls 5,518,443 A * 5/1996 Fisher ................. .. 125/15 Patent 15 extended or adlusted under 35 5,529,528 A 6/1996 Young 6161. .. 451/28 U-S-C- 154(b) by 181 days~ 5,704,828 A * 1/1998 Young et a1. 451/461 5,868,125 A * 2/1999 Maoujoud .... .. 125/15 (21) Appl, No_; 09/777,333 6,039,641 A * 3/2000 suug ......................... .. 125/22 (22) Filed: Feb 6, 2001 FOREIGN PATENT DOCUMENTS (65) Prior Publication Data GB 2195099 A * 3/1988 ......... .. B24B/21/00 US 2002/0106983 A1 Aug. 8, 2002 * Cited by examiner (51) Int. c1.7 .......................... .. B23F 21/03- B28D 1/02 Primary Ex“mi””—DaVid 13' Thomas (52) US. Cl. ................. .. 451/28- 125/1301- 125/1601- (74) Attorney’ Agent’ 0’ Fi””_Lathr°p 8‘ Gage LC 125/21; 83/835; 451/540 (57) ABSTRACT (58) Fleld 0f 41561é2i’7g6’2g; The present invention relates to a saW blade for cutting and 540 ’541 ’548_’ 125/’12 1’3 01 ’15 i6 01’ ?nishing the surface of a Work piece.