Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography Bibliography Books Binney, James, and Michael Merrifield. Galactic Astronomy . Princeton University Press, Princeton, NJ (1998). Burnham, Robert. Burnham’s Celestial Handbook . Dover Publications, Inc., Mineola, NY (1978). Howk Christopher J. “Extraplanar Dust in Spiral Galaxies: Observations and Implications” from Toward a New Millennium in Galaxy Morphology . Springer, NY (2000). Hynes, Steven J. Planetary Nebula. Willmann-Bell, Inc., Richmond, Virginia (1991). Kepple, G .R., and G. W. Sanner. The Night Sky Observer’s Guide . Willman-Bell, Inc., Richmond, Virginia (2000). Malin, David. Ancient Light: A Portrait of the Universe . Phaedon Press, London (2009). Smith, Michael David. The Origin of Stars. Imperial College Press/World Scientific Publishing Company, Singapore, London and Hackensack NJ (2004). Watson, Fred. Stargazer −The Life and Times of the Telescope . Allen & Unwin, NSW, Australia (2004). Articles and Research Papers Aller, Lawrence H.; Hyung, Siek, “Planetary Nebulae: Their Evolution and Role in the Universe,” IAU Symposium , Volume 209. Astronomical Society of the Pacific, San Francisco, CA (2003). Anon. “Galaxy Clusters and Large-Scale Structure” Cambridge Cosmology University of Cambridge, UK (2007). http://www.damtp.cam.ac.uk’research/gr/public/gal_Iss.html. Anon. “The evolution of stars between 50 and 100 times the mass of the Sun” (web site page). Royal Greenwich Observatory/National Maritime Museum, Greenwich, UK (2011). Athanassoula, E., “The existence and shapes of dust lanes in galactic bars,” Monthly Notices, Vol. 259, #2. Royal Astronomical Society, London, UK (1992). A. Cooke, Dark Nebulae, Dark Lanes, and Dust Belts, 237 Patrick Moore’s Practical Astronomy Series, DOI 10.1007/978-1-4614-1186-4, © Springer Science+Business Media, LLC 2012 238 Bibliography Baldwin, Emily. “Old globular clusters surprisingly young” Astronomy Now Tonbridge, UK (2008). Balick, Bruce. “Planetary nebulae and the future of the Solar System,” University of Washington, Seattle, WA (undated). http://www.astro.washington.edu/users/balick/WFPC2. Barnard, E. E. “On the dark markings of the sky, with a catalogue of 182 such objects,” The Astrophysical Journal. American Astronomical Society, Washington, D. C. (1919). Barnard, E. E. “Dark Nebulae: a Classic of Science; on the dark markings of the sky,” Science News Letter, The Astrophysical Journal , Vol. 23, #617. Society for Science & the Public, Washington, D. C. (1933). Bartel, N.; B. Sorathia; M. F. Bietenholz; C. L. Carilli, C. L. and P. Diamond, P. “The nuclear jet and counterjet region of the radio galaxy Cygnus A,” Proceedings of the National Academy of Sciences of the United States of America. Washington, V (2005). Burrows, David N.; Garmire, Gordon P.; Mori, Koji; Nousek, John A.; Sangwook Park, “Supernova Remnants,” Penn State University, Dept. of Astronomy & Astrophysics (2004). http://www.2.astro.psu.edu/xray/snr/snr.html. Capuzzo-Dolcetta, R.; P. Di Matteo; A. Lepinette; P. Miocchi, and M. Montuori. “Tidal tails around globular clusters. Are they a good tracer of cluster orbits?” The Astrophysical Journal . American Astronomical Society, Washington, D. C. (2007). Dalcanton, Julianne J. Peter Yoachim, and Rebecca A. Bernstein, “The Formation of Dust Lanes: Implications for Galaxy Evolution,” The Astrophysical Journal, Volume 608, Issue 1. American Astronomical Society, Washington, D. C. ( 2004). Dooling, David. “When stars go hyper” (1998). http://science.msfc.nasa.gov/newhome/headlines/ ast21oct98_1.htm. Dutra, C. M., and E. Bica. “A catalogue of dust clouds in the Galaxy,” Astronomy and Astrophysics, Main Journal 383/631. Paris, France (2002). Dutra, C. M., and E. Bica. “Foreground and background dust in star cluster directions” Astronomy and Astrophysics . Paris, France (2000). Elmegreen, Bruce, and Yuri Efremov. “The Formation of Star Clusters” American Scientist , Vol. 86, #3. American Scientist Classics, Research Triangle Park, NC (1998). Franks, W. S. “Visual observations of dark nebulae,” Monthly Notices, Vol. 90. Royal Astronomical Society, London, UK (1930). Frommert, Hartmut, and Christine Kronberg. “Globular Star Clusters” (website article). Students for the Exploration and Development of Space (SEDS) (2011). < http://www.seds.org/messier/ glob.html>. Frommert, Hartmut, and Christine Kronberg. “Planetary Nebulae” Students for the Exploration and Development of Space (SEDS) (2011). <http://spider.seds.org/spider/ScholarX/pn.html>. Han, C., and B. S. Ryden. “A comparison of the intrinsic shapes of globular clusters in four dif- ferent galaxies,” The Astrophysical Journal, Part 1 Vol. 433, #1. American Astronomical Society, Washington, D. C. (1994). Hinshaw, Gary. “The Life and Death of Stars, ”NASA WMAP (2008). http://map.gsfc.nasa.gov/. Keel, Bill. “Galaxies and the Universe: Dust in Galaxies,” University of Alabama Dept. of Physics & Astronomy, Tuscaloosa, Alabama (2006). http://www.astr.ua.edu/keel/galaxies/ classify.html. Kiragaand, M. B., and K. Z. Stanek. “The Color-Magnitude Diagram in Baade’s Window Revisited,” The Astrophysical Journal, 485:611–617. American Astronomical Society, Washington, D. C. (1997). Kravtsov, V.V. “Globular clusters and spheroidal galaxies of the outer galactic halo: on the putative scenario of their formation,” Astronomical & Astrophysical Transactions , Vol. 20, Issue 1. Taylor and Francis, London, UK (2001). Plotner, Tammy, “The Cosmic Cocoon – IC5146” (website: Fraser Cain) Universe Today (2008). http://universetoday.com/15412/the-cosmic-cocoon-ic-5146-by-tom-v-davis/. Richmond, Michael, “Late stages of evolution for low-mass stars” (Lecture Webpage of the author) Rochester Institute of Technology, Rochester, NY (undated). http://spiff.rit.edu/ classes/phys230/lectures/ism_dust/ism_dust.html. Bibliography 239 Ricker III, Harry H. “Report on the Discovery of Interstellar Dust Filaments,” (unpublished research article) Submitted to Sky & Telescope but rejected. (1979). <www.wbabin.net/sci- ence/ricker43.pdf>. Sawyer Hogg-Priestly, Helen, Eric J. Chaisson and John Donald Fernie. “Globular Clusters,” Britannica Online Encyclopedia (undated). http://www.britannica.com.EBchecked/ topic/563485/star-cluster/52777/Globular-clusters. Searle, L. and R. Zinn. “Compositions of halo clusters and the formation of the galactic halo,” The Astrophysical Journal 225. American Astronomical Society, Washington, D. C. (1978). Shapley, Harlow.”Globular Clusters and the Structure of the Galactic System,” Astronomical Society of the Pacific 30, #173. San Francisco, CA (1918). Smith, Gene. “The Interstellar Medium,” University of California, San Diego, CA (1999). http:// casswww.ucsd.edu/archive/public/tutorial/ISM.html. Volk, Kevin, “Possible precession motion in the Bipolar Proto-Planetary Nebula,” The Astrophysical Journal, Vol. 670. Issue. American Astronomical Society, Washington, D. C. (2007). Woodward, P. R. “Theoretical models of star formation,” Annual Review of Astronomy and Astrophysics . Annual Reviews, Inc., Palo Alto, CA (1978). Additional Website Resources International Supernovae Network. The network endeavors to help contacts and share information among supernovae enthusiasts both amateurs and astronomers worldwide. www.supernovae. net/isn.htm. List of supernovae pages on the web: A comprehensive, categorized list of supernovae and super- novae remnant web pages and resources. rsd-www.nrl.navy.mil/7212/montes/sne.html. Index B D Baade’s window , 9, 148 Dark energy , 23, 235 Barnard, E.E. , 29 Dark lanes , 107, 116, 139, 141 Barnard’s dark nebulae , 24, 47–48 Dark matter , 3, 4, 23, 61, 113, 114, 235 Barnard’s loop , 46, 81 Dark nebulae , 45, 56, 65 Barnard’s nebula (NGC 7662) , 48, 116, De Mairan’s Nebula (M43) , 81, 84–85 216, 217 Diffuse nebula , 6, 7, 17, 24, 40, 75–106 Barred galaxy , 9, 181, 192 Dumbbell Nebula (M27) , 26, 27, Barred spiral , 154–156, 166, 180, 181, 207, 229 191, 195 Dust , 8, 9, 48 Big bang , 1, 2, 6, 14, 19, 233, 234 Dust belts , 7, 8, 24, 27, 40, 45, 46, 50, Bipolar planetary nebula , 209, 211, 217–221 57, 59, 153–202 Black eye galaxy (M64) , 163, 176–180 Dwarf star , 17, 18, 20, 53, 205, 206, 213 Bok globules , 21, 43, 54, 55, 69 Brown dwarf , 22, 51, 53, 216, 219 E Eagle nebula , 77, 88–90, 92, 103 C Edge-on galaxy , 166, 172, 199 Canis Major Dwarf Galaxy , 135 EGG , 51, 88, 91 CCD Einstein , 9 imaging , 25 Elliptical galaxy , 114, 156–158, 184 video camera , 38–39, 42, 43, 57, 122, 123, Eskimo nebula , 211, 212, 224 159, 165, 169, 183, 212 European Southern Observatory (ESO) , Centaurus A , 157–159, 200 157, 175, 176, 183, 184 Chandrasekhar limit , 19, 207 Christmas tree cluster (NGC 2264) , 54, 100 Cosmic microwave background , 49, 234 F Crab nebula (M1) , 18, 26, 79, 92–94, 223 Filters , 32, 36–37, 41, 50, 66, 74, 80–82, 91, Creation of elements , 14, 15, 18, 19, 206 99, 105, 121–123, 165, 211, 219 Cygnus rift , 57–58 Fish mouth , 82, 84, 85 241 242 Index G Leviathan of Parsonstown , 11, 117 Galactic core , 4, 8, 9, 15, 51, 58, 60, 87, 112, Life cycles of stars , 15 113, 116, 163, 167, 180 Little dumbbell nebula (M27) , Galactic halo , 15, 23, 40, 48, 165, 174, 180, 217–222 186, 201 Galaxies , 1, 23, 45, 108, 153–202, 207, 234 Globular cluster , 5, 9, 12, 15, 25, 28, 29, 39, M 67–69, 97, 107–117, 120, 121, Main sequence , 16, 51, 206 123–132, 134–141, 148, 157 Markham, H. C. , 118, 119 Gravitational lensing , 3, 9, 23 Martian polar caps , 24 Great cluster in Hercules (M13) , 118 Messier (M) 2 , 137–139 Great galaxy in Andromeda (M31) , 109 Messier (M) 4 , 130–132 Great nebula in Orion , 27, 54, 77, 81, 83, 98 Messier (M) 10 , 139–140 Great rift , 8, 57–61 Messier (M) 15 , 132–134 Messier (M) 22 , 127–130 Messier (M) 52 , 124–125 H Messier (M) 64 , 176–180 Helium ash , 17, 204 Messier (M) 77 , 185–188 Herschel, W. , 10, 11, 137, 166, 203 Messier (M) 79 , 135–136 Hoag’s object , 171, 172 Messier (M) 82 , 26, 40, 154, 157 Hogg, H.S. , 120, 121 Messier (M) 87 , 111, 164 Hooker telescope , 12 Milankovitch theory , 55 Horse and rider , 61, 68–70 Milky way , 4–9, 13, 15, 20, 23–25, 29, 39, Horsehead nebula (B33) , 45, 46, 66, 81, 88, 99 45–48, 50, 53–57, 59–61, 64, 68, 87, Hourglass nebula (MyCn18) , 209, 210, 219 108, 109, 111, 113–116, 122, 130, Hoyle, F.
Recommended publications
  • Planetary Nebula
    How Far Away Is It – Planetary Nebula Planetary Nebula {Abstract – In this segment of our “How far away is it” video book, we cover Planetary Nebula. We begin by introducing astrophotography and how it adds to what we can see through a telescope with our eyes. We use NGC 2818 to illustrate how this works. This continues into the modern use of Charge-Coupled Devices and how they work. We use the planetary nebula MyCn18 to illustrate the use of color filters to identify elements in the nebula. We then show a clip illustrating the end-of-life explosion that creates objects like the Helix Planetary Nebula (NGC 7293), and show how it would fill the space between our Sun and our nearest star, Proxima Centauri. Then, we use the Cat’s Eye Nebula (NGC 6543) to illustrate expansion parallax. As a fundamental component for calculating expansion parallax, we also illustrate the Doppler Effect and how we measure it via spectral line red and blue shifts. We continue with a tour of the most beautiful planetary nebula photographed by Hubble. These include: the Dumbbell Nebula, NGC 5189, Ring Nebula, Retina Nebula, Red Rectangle, Ant Nebula, Butterfly Nebula, , Kohoutek 4- 55, Eskimo Nebula, NGC 6751, SuWt 2, Starfish, NGC 5315, NGC 5307, Little Ghost Nebula, NGC 2440, IC 4593, Red Spider, Boomerang, Twin Jet, Calabash, Gomez’s Hamburger and others culminating with a dive into the Necklace Nebula. We conclude by noting that this will be the most likely end for our Sun, but not for billions of years to come, and we update the Cosmic Distance Ladder with the new ‘Expansion Parallax’ rung developed in this segment.} Introduction [Music @00:00 Bizet, Georges: Entracte to Act III from “Carman”; Orchestre National de France / Seiji Ozawa, 1984; from the album “The most relaxing classical album in the world…ever!”] Planetary Nebulae represent some of the most beautiful objects in the Milky Way.
    [Show full text]
  • Eclipse Newsletter
    ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 2 NUMBER 1 JANUARY – FEBRUARY 2018 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. The general public and MCAO members are invited to visit the Observatory on select Monday evenings at 8PM for Public Night programs. These programs include discussions and illustrated talks on astronomy, planetarium programs and offer the opportunity to view the planets, moon and other objects through the telescope, weather permitting. Due to limited parking and seating at the observatory, admission is by reservation only. Public Night attendance is limited to adults and students 5th grade and above. If you are interested in making reservations for a public night, you can contact us by calling 302-654- 6407 between the hours of 9 am and 1 pm Monday through Friday. Or you can email us any time at [email protected] or [email protected]. The public nights will be presented even if the weather does not permit observation through the telescope. The admission fees are $3 for adults and $2 for children. There is no admission cost for MCAO members, but reservations are still required. If you are interested in becoming a MCAO member, please see the link for membership. We also offer family memberships. Family Nights are scheduled from late spring to early fall on Friday nights at 8:30PM. These programs are opportunities for families with younger children to see and learn about astronomy by looking at and enjoying the sky and its wonders.
    [Show full text]
  • A Survey of HC3N in Extragalactic Sources Is HC3N a Tracer of Activity in Ulirgs? Lindberg, J
    University of Groningen A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Lindberg, J. E.; Aalto, S.; Costagliola, F.; Perez Beaupuits, Juan; Monje, R.; Muller, S. Published in: Astronomy & astrophysics DOI: 10.1051/0004-6361/201015565 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lindberg, J. E., Aalto, S., Costagliola, F., Perez Beaupuits, J., Monje, R., & Muller, S. (2011). A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? Astronomy & astrophysics, 527, [A150]. https://doi.org/10.1051/0004-6361/201015565 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 A&A 527, A150 (2011) Astronomy DOI: 10.1051/0004-6361/201015565 & c ESO 2011 Astrophysics AsurveyofHC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs? J.
    [Show full text]
  • MESSIER 13 RA(2000) : 16H 41M 42S DEC(2000): +36° 27'
    MESSIER 13 RA(2000) : 16h 41m 42s DEC(2000): +36° 27’ 41” BASIC INFORMATION OBJECT TYPE: Globular Cluster CONSTELLATION: Hercules BEST VIEW: Late July DISCOVERY: Edmond Halley, 1714 DISTANCE: 25,100 ly DIAMETER: 145 ly APPARENT MAGNITUDE: +5.8 APPARENT DIMENSIONS: 20’ Starry Night FOV: 1.00 Lyra FOV: 60.00 Libra MESSIER 6 (Butterfly Cluster) RA(2000) : 17Ophiuchus h 40m 20s DEC(2000): -32° 15’ 12” M6 Sagitta Serpens Cauda Vulpecula Scutum Scorpius Aquila M6 FOV: 5.00 Telrad Delphinus Norma Sagittarius Corona Australis Ara Equuleus M6 Triangulum Australe BASIC INFORMATION OBJECT TYPE: Open Cluster Telescopium CONSTELLATION: Scorpius Capricornus BEST VIEW: August DISCOVERY: Giovanni Batista Hodierna, c. 1654 DISTANCE: 1600 ly MicroscopiumDIAMETER: 12 – 25 ly Pavo APPARENT MAGNITUDE: +4.2 APPARENT DIMENSIONS: 25’ – 54’ AGE: 50 – 100 million years Telrad Indus MESSIER 7 (Ptolemy’s Cluster) RA(2000) : 17h 53m 51s DEC(2000): -34° 47’ 36” BASIC INFORMATION OBJECT TYPE: Open Cluster CONSTELLATION: Scorpius BEST VIEW: August DISCOVERY: Claudius Ptolemy, 130 A.D. DISTANCE: 900 – 1000 ly DIAMETER: 20 – 25 ly APPARENT MAGNITUDE: +3.3 APPARENT DIMENSIONS: 80’ AGE: ~220 million years FOV:Starry 1.00Night FOV: 60.00 Hercules Libra MESSIER 8 (THE LAGOON NEBULA) RA(2000) : 18h 03m 37s DEC(2000): -24° 23’ 12” Lyra M8 Ophiuchus Serpens Cauda Cygnus Scorpius Sagitta M8 FOV: 5.00 Scutum Telrad Vulpecula Aquila Ara Corona Australis Sagittarius Delphinus M8 BASIC INFORMATION Telescopium OBJECT TYPE: Star Forming Region CONSTELLATION: Sagittarius Equuleus BEST
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • JRASC-2007-04-Hr.Pdf
    Publications and Products of April / avril 2007 Volume/volume 101 Number/numéro 2 [723] The Royal Astronomical Society of Canada Observer’s Calendar — 2007 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and U.S. holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective.
    [Show full text]
  • Nature, 451, 802, 2008
    Vol 451 | 14 February 2008 | doi:10.1038/nature06602 LETTERS Discovery of the progenitor of the type Ia supernova 2007on Rasmus Voss1,2 & Gijs Nelemans3 Type Ia supernovae are exploding stars that are used to measure On 2007 November 5, supernova SN2007on was found in the the accelerated expansion of the Universe1,2 and are responsible for outskirts of the elliptical galaxy NGC 140419. Optical spectra of the most of the iron ever produced3. Although there is general agree- supernova20 showed that the supernova was of type Ia. The position ment that the exploding star is a white dwarf in a binary system, of the supernova, at RA 5 03 h 38 m 50.9 s, dec. 5235u 349 300 the exact configuration and trigger of the explosion is unclear4, (J2000), is about 700 from the core of the host, corresponding to which could hamper their use for precision cosmology. Two fam- 8 kpc for a distance of 20 Mpc to NGC 140421. Observations by the ilies of progenitor models have been proposed. In the first, a white SWIFT mission on November 11 detected the supernova in the dwarf accretes material from a companion until it exceeds the optical/ultraviolet monitor but not in the X-ray telescope22. We ana- Chandrasekhar mass, collapses and explodes5,6. Alternatively, lysed the SWIFT data and determined the position of the supernova two white dwarfs merge, again causing catastrophic collapse and as RA 5 03 h 38 m 50.98 s, dec. 5235u 349 31.00 (J2000), with uncer- an explosion7,8. It has hitherto been impossible to determine if tainty of 10 (Fig.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]