T-DM1): Mechanism of Action of Its Cytotoxic Component Retained with Improved Tolerability

Total Page:16

File Type:pdf, Size:1020Kb

T-DM1): Mechanism of Action of Its Cytotoxic Component Retained with Improved Tolerability View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Toxicology and Applied Pharmacology 273 (2013) 298–313 Contents lists available at ScienceDirect Toxicology and Applied Pharmacology journal homepage: www.elsevier.com/locate/ytaap Preclinical safety profile of trastuzumab emtansine (T-DM1): Mechanism of action of its cytotoxic component retained with improved tolerability Kirsten Achilles Poon a,⁎, Kelly Flagella a,JosephBeyera, Jay Tibbitts b, Surinder Kaur a,OlaSaada,Joo-HeeYia, Sandhya Girish a,NoelDybdala,1, Theresa Reynolds a,1 a Genentech, Inc., South San Francisco, CA, USA b UCB, Brussels, Belgium article info abstract Article history: Trastuzumab emtansine (T-DM1) is the first antibody-drug conjugate (ADC) approved for patients with human Received 13 June 2013 epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. The therapeutic premise of ADCs is Revised 30 August 2013 based on the hypothesis that targeted delivery of potent cytotoxic drugs to tumors will provide better tolerability Accepted 3 September 2013 and efficacy compared with non-targeted delivery, where poor tolerability can limit efficacious doses. Here, we Available online 12 September 2013 present results from preclinical studies characterizing the toxicity profile of T-DM1, including limited assessment of unconjugated DM1. T-DM1 binds primate ErbB2 and human HER2 but not the rodent homolog c-neu. There- Keywords: Breast cancer fore, antigen-dependent and non-antigen-dependent toxicity was evaluated in monkeys and rats, respectively, in HER2 both single- and repeat-dose studies; toxicity of DM1 was assessed in rats only. T-DM1 was well tolerated at Ado-trastuzumab emtansine doses up to 40 mg/kg (~4400 μgDM1/m2) and 30 mg/kg (~6000 μgDM1/m2) in rats and monkeys, respective- T-DM1 ly. In contrast, DM1 was only tolerated up to 0.2 mg/kg (1600 μgDM1/m2). This suggests that at least two-fold Toxicology higher doses of the cytotoxic agent are tolerated in T-DM1, supporting the premise of ADCs to improve the ther- Antibody-drug conjugates apeutic index. In addition, T-DM1 and DM1 safety profiles were similar and consistent with the mechanism of action of DM1 (i.e., microtubule disruption). Findings included hepatic, bone marrow/hematologic (primarily platelet), lymphoid organ, and neuronal toxicities, and increased numbers of cells of epithelial and phagocytic or- igin in metaphase arrest. These adverse effects did not worsen with chronic dosing in monkeys and are consistent with those reported in T-DM1-treated patients to date. © 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license. Introduction domain of the receptor, has made HER2 a suitable target for antibody therapy. The human epidermal growth factor receptor 2 (HER2, also known Trastuzumab (Herceptin®, Genentech, Inc., South San Francisco, CA) as ErbB2) is a transmembrane receptor tyrosine kinase that is part of a is a humanized monoclonal antibody directed against subdomain IV of complex signal transduction network involved in cell differentiation, the extracellular region of HER2 and is indicated for the treatment of proliferation, and survival (Yarden and Sliwkowski, 2001). HER2 is HER2-overexpressing breast cancer and HER2-overexpressing meta- expressed in normal epithelial tissues at relatively low levels in healthy static gastric or gastroesophageal junction adenocarcinoma (Herceptin adults (Press et al., 1990), but it is overexpressed in approximately 20% package insert, 2010; Herceptin Summary of Product Characteristics, of tumors from patients with breast cancer (Dawood et al., 2010; Ross 2010). The mechanisms of action are thought to include one or more et al., 2009). HER2-positive breast tumors are associated with aggres- of the following: interference with signal transduction pathways, sive growth and poor clinical outcomes (Slamon et al., 1987, 1989). impairment of extracellular domain (ECD) cleavage, inhibition of DNA The association between HER2 overexpression and tumor pathogenesis repair, decreased angiogenesis, induction of cell cycle arrest, and in breast cancer, together with the accessibility of the extracellular activation of antibody-dependent cellular cytotoxicity (Hudis, 2007; Sliwkowski et al., 1999; Spector and Blackwell, 2009). Although trastuzumab provides substantial benefits for many patients with HER2-positive breast cancer, a proportion have tumors that either do not respond to trastuzumab or relapse following initial response to treatment (Nahta et al., 2006; Slamon et al., 2001). Following relapse, HER2 overexpression is still present (Spector et al., 2005), suggesting ⁎ Corresponding author at: Development Sciences, 1 DNA Way, South San Francisco, CA that these tumors could still be responsive to treatment with HER2- 94080, USA. Fax: +1 650 225 2797. E-mail address: [email protected] (K.A. Poon). targeted agents. Indeed, two phase III clinical trials have shown in pa- 1 These authors contributed equally to this work. tients with tumors that progressed on trastuzumab-containing therapy 0041-008X © 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.taap.2013.09.003 K.A. Poon et al. / Toxicology and Applied Pharmacology 273 (2013) 298–313 299 that the addition of trastuzumab to subsequent therapy resulted in that resulted in equivalent DM1 doses based on body surface area significantly improved clinical outcomes (Blackwell et al., 2010; von (μg DM1/m2). Minckwitz et al., 2009, 2011). An alternative to targeted antibody therapy and/or systemic chemo- Methods therapy is the use of antibody-drug conjugates (ADCs). ADCs are created by chemically linking a cytotoxic agent to a monoclonal antibody that General animal information. All procedures in animals described targets a tumor-enriched or tumor-specific protein. Tumor-specific below were performed in compliance with the Animal Welfare Act, delivery of potent cytotoxic agents has the potential to ameliorate the the Guide for the Care and Use of Laboratory Animals, and the Office systemic toxicity associated with many chemotherapies (Alley et al., of Laboratory Animal Welfare. Protocols were reviewed by the Institu- 2010; Lambert, 2005; Wu and Senter, 2005). tional Animal Care and Use Committees of the relevant facility; either Trastuzumab emtansine (T-DM1, Kadcyla™, Genentech, Inc., South Genentech, Inc. (South San Francisco, CA), or Covance, Inc. (Madison, San Francisco, CA) is an ADC composed of trastuzumab, a nonreducible WI). Sprague–Dawley rats were obtained from Charles River Laborato- thioether linker (4-[N-maleimidomethyl]-cyclohexane-1-carbonyl ries (Portage, MI, or Hollister, CA). Cynomolgus monkeys (Macaca [MCC]) (Lewis Phillips et al., 2008), and the cytotoxic agent DM1 fascicularis) were obtained from Three Springs Scientific, Inc. (Perkasie, (N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl) maytansine) (Blättler PA), or Covance Research Products, Inc. (Alice, TX). All animals were and Chari, 2001; Cassady et al., 2004; Goldmacher et al., 2002) individually housed in stainless-steel cages and were provided with (Fig. 1). DM1 is derived from the highly potent antitumor agent food supplements (that did not require analysis) and various cage- maytansine and inhibits microtubule polymerization (Cabanillas enrichment devices. Monkeys were commingled to provide psycholog- et al., 1978; Chabner et al., 1978; Eagan et al., 1978; Issell and ical enrichment. Animals were assigned to dose groups using a stratified Crooke, 1978; Remillard et al., 1975). T-DM1 comprises trastuzumab randomization scheme based on individual body weight. For scheduled with zero to eight DM1 molecules linked via MCC, primarily to lysine or unscheduled necropsies, rats were euthanized with isoflurane residues, and has an average drug-to-antibody ratio (DAR) of ap- followed by an overdose of a ketamine/xylazine cocktail or sodium proximately 3.5 (Krop et al., 2010). After T-DM1 binds to HER2 on pentobarbital; monkeys were terminally sedated with sodium pento- the cell surface, the T-DM1/HER2 complex is internalized via endo- barbital and euthanized by exsanguination. cytosis and degraded in lysosomes, ultimately leading to the intra- cellular release of lysine-MCC-DM1 (lys-MCC-DM1) (Chari, 2008; Intravenous dose formulations. T-DM1 was formulated in a vehicle Erickson et al., 2006, 2010). In the phase III EMILIA study, patients composed of 10 mM succinate, 100 mg/mL trehalose, and 0.1% polysor- with HER2-positive, metastatic breast cancer previously treated with bate 20, pH 5.0. DM1 was formulated in the T-DM1 vehicle plus 0.5% trastuzumab and a taxane received treatment with either T-DM1 or dimethyl adipimidate and 1 mM ethylenediaminetetraacetic acid. The lapatinib plus capecitabine. Patients who received T-DM1 had significant- average DAR was 3.4 for all studies, with the exception of the repeat- ly improved clinical outcomes compared with patients treated with dose (every 3 weeks [q3w] × eight doses) monkey study where the lapatinib plus capecitabine (Verma et al., 2012). Median progression- DAR was 3.8. free survival was 9.6 months versus 6.4 months in the T-DM1 and con- trol arms, respectively (hazard ratio = 0.65; 95% confidence interval Parameters for the evaluation of toxicity. Toxicity indices consisted of [CI]: 0.55 − 0.77; p b 0.001). Median overall survival also improved daily clinical observations, body weight, food consumption, clinical and was 30.9 months
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Advances and Limitations of Antibody Drug Conjugates for Cancer
    biomedicines Review Advances and Limitations of Antibody Drug Conjugates for Cancer Candice Maria Mckertish and Veysel Kayser * Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-9351-3391 Abstract: The popularity of antibody drug conjugates (ADCs) has increased in recent years, mainly due to their unrivalled efficacy and specificity over chemotherapy agents. The success of the ADC is partly based on the stability and successful cleavage of selective linkers for the delivery of the payload. The current research focuses on overcoming intrinsic shortcomings that impact the successful devel- opment of ADCs. This review summarizes marketed and recently approved ADCs, compares the features of various linker designs and payloads commonly used for ADC conjugation, and outlines cancer specific ADCs that are currently in late-stage clinical trials for the treatment of cancer. In addition, it addresses the issues surrounding drug resistance and strategies to overcome resistance, the impact of a narrow therapeutic index on treatment outcomes, the impact of drug–antibody ratio (DAR) and hydrophobicity on ADC clearance and protein aggregation. Keywords: antibody drug conjugates; drug resistance; linkers; payloads; therapeutic index; target specific; ADC clearance; protein aggregation Citation: Mckertish, C.M.; Kayser, V. Advances and Limitations of Antibody Drug Conjugates for 1. Introduction Cancer. Biomedicines 2021, 9, 872. Conventional cancer therapy often entails a low therapeutic window and non-specificity https://doi.org/10.3390/ of chemotherapeutic agents that consequently affects normal cells with high mitotic rates biomedicines9080872 and provokes an array of adverse effects, and in some cases leads to drug resistance [1].
    [Show full text]
  • Pharmacokinetics and Biodistribution of the Anti-Tumor Immunoconjugate, Cantuzumab Mertansine (Huc242-DM1), and Its Two Components in Mice
    JPET Fast Forward. Published on November 21, 2003 as DOI: 10.1124/jpet.103.060533 JPET FastThis Forward. article has not Published been copyedited on andNovember formatted. The 21, final 2003 version as mayDOI:10.1124/jpet.103.060533 differ from this version. JPET #60533 Pharmacokinetics and biodistribution of the anti-tumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice Hongsheng Xie, Charlene Audette, Mary Hoffee, John M. Lambert, and Walter A. Blättler ImmunoGen, Inc, 128 Sidney Street, Cambridge, MA 02139 Downloaded from jpet.aspetjournals.org at ASPET Journals on October 2, 2021 1 Copyright 2003 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on November 21, 2003 as DOI: 10.1124/jpet.103.060533 This article has not been copyedited and formatted. The final version may differ from this version. JPET #60533 Pharmacokinetics of cantuzumab mertansine in mice Hongsheng Xie ImmunoGen, Inc. 128 Sidney Street Downloaded from Cambridge, MA 02139 Tel.: (617) 995-2500 jpet.aspetjournals.org Fax: (617) 995-2510 e-mail: [email protected] at ASPET Journals on October 2, 2021 Number of text pages: 33 Number of tables: 2 Number of figures: 6 Number of references: 20 Number of words in the abstract: 219 Number of words in the introduction: 587 Number of words in the discussion: 1538 2 JPET Fast Forward. Published on November 21, 2003 as DOI: 10.1124/jpet.103.060533 This article has not been copyedited and formatted. The final version may differ from this version. JPET #60533 Abstract The humanized monoclonal antibody-maytansinoid conjugate, cantuzumab mertansine (huC242-DM1) that contains on average three to four linked drug molecules per antibody molecule was evaluated in CD-1 mice for its pharmacokinetic behavior and tissue distribution and the results were compared with those of the free antibody, huC242.
    [Show full text]
  • Maytenus Ovatus (Schweinf.) an African Medicinal Plant Yielding Potential Anti-Cancer Drugs
    Volume 1- Issue 7 : 2017 DOI: 10.26717/BJSTR.2017.01.000571 S Sumesh Kumar. Biomed J Sci & Tech Res ISSN: 2574-1241 Review Article Open Access Maytenus ovatus (schweinf.) An African Medicinal Plant Yielding Potential Anti-cancer Drugs Vasanthakumar K1, Sumesh Kumar S*2 and Tsegay Shimelis3 1Professor of the Horticulture Program, Haramaya University, Ethiopia 2Asst Professor in Psychiatric Nursing, Haramaya University, Ethiopia 3Graduate Assistant of the Horticulture Program, Haramaya University, Ethiopia Received: December 01, 2017; Published: December 06, 2017 *Corresponding author: S Sumesh Kumar, Asst Professor in Psychiatric Nursing , School Of Nursing and Midwifery, Haramaya University, Ethiopia, Tel : ; Email: Introduction There can be many years between promising laboratory work Maytenus ovatus (Schweinf.) of the family Celastraceous is a and the availability of an effective anti-cancer drug. In the 1950’s scientists began systematically examining natural organisms as a and is widespread in the savannah regions of tropical Africa [1]. shrub usually spiny with whitish flowers bearing reddish fruits source of useful anti-cancer substances [6]. It has recently been Mountains and sub-mountainous regions of African countries, argued that “the use of natural products has been the single most viz., Ethiopia, Kenya, Tanzania, Uganda, Mozambique and others successful strategy in the discovery of novel anti-cancer medicines”. are wild habitats for the species, Maytenus ovatus, M. serratus, M. These phyto-chemicals that is selectively more toxic to cancer cells heterophylla and M. senegalensis [2]. Maytansine, a benzo-ansa- than normal cells have been used in screening programs and are macrolide (ansamycin antibiotic) is a highly potent microtubule- developed as potential chemotherapy drugs.
    [Show full text]
  • WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/028850 Al 5 March 2015 (05.03.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 519/00 (2006.01) A61P 39/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 487/04 (2006.01) A61P 35/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/5517 (2006.01) A61P 37/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, A61K 47/48 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/IB2013/058229 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 2 September 2013 (02.09.2013) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: HANGZHOU DAC BIOTECH CO., LTD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/CN]; Room B2001-B2019, Building 2, No 452 Sixth TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Street, Hangzhou Economy Development Area, Hangzhou EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, City, Zhejiang 310018 (CN).
    [Show full text]
  • WO 2013/152252 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/152252 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: STEIN, David, M.; 1 Bioscience Park Drive, Farmingdale, Λ 61Κ 38/00 (2006.01) A61K 31/517 (2006.01) NY 11735 (US). MIGLARESE, Mark, R.; 1 Bioscience A61K 39/00 (2006.01) A61K 31/713 (2006.01) Park Drive, Farmingdale, NY 11735 (US). A61K 45/06 (2006.01) A61P 35/00 (2006.01) (74) Agents: STEWART, Alexander, A. et al; 1 Bioscience A61K 31/404 (2006 ) A61P 35/04 (2006.01) Park Drive, Farmingdale, NY 11735 (US). A61K 31/4985 (2006.01) A61K 31/53 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: available): AE, AG, AL, AM, PCT/US2013/035358 kind of national protection AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 5 April 2013 (05.04.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, English (25) Filing Language: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (30) Priority Data: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/621,054 6 April 2012 (06.04.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicant: OSI PHARMACEUTICALS, LLC [US/US]; ZM, ZW.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances" WHO/EMP/RHT/TSN/2013.1
    INN Working Document 18.435 31/05/2018 Addendum1 to "The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances" WHO/EMP/RHT/TSN/2013.1 Programme on International Nonproprietary Names (INN) Technologies Standards and Norms (TSN) Regulation of Medicines and other health technologies (RHT) World Health Organization, Geneva © World Health Organization 2018 - All rights reserved. The contents of this document may not be reviewed, abstracted, quoted, referenced, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means, without explicit prior authorization of the WHO INN Programme. This document contains the collective views of the INN Expert Group and does not necessarily represent the decisions or the stated policy of the World Health Organization. Addendum1 to "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" - WHO/EMP/RHT/TSN/2013.1 1 This addendum is a cumulative list of all new stems selected by the INN Expert Group since the publication of "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" 2013. ------------------------------------------------------------------------------------------------------------ -apt- aptamers, classical and mirror ones (a) avacincaptad pegol (113), egaptivon pegol (111), emapticap pegol (108), lexaptepid pegol (108), olaptesed pegol (109), pegaptanib (88) (b) -vaptan stem: balovaptan (116), conivaptan
    [Show full text]
  • Antibody–Drug Conjugates for Cancer Therapy
    molecules Review Antibody–Drug Conjugates for Cancer Therapy Umbreen Hafeez 1,2,3, Sagun Parakh 1,2,3 , Hui K. Gan 1,2,3,4 and Andrew M. Scott 1,3,4,5,* 1 Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia; [email protected] (U.H.); [email protected] (S.P.); [email protected] (H.K.G.) 2 Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia 3 School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia 4 Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia 5 Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia * Correspondence: [email protected]; Tel.: +61-39496-5000 Academic Editor: João Paulo C. Tomé Received: 14 August 2020; Accepted: 13 October 2020; Published: 16 October 2020 Abstract: Antibody–drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance.
    [Show full text]
  • IMSN Letter on Antibody-Drug Conjugates 2015 03 23
    March 23, 2015 Dr Raffaella G. Balocco Mattavelli Manager of the International Nonproprietary Name (INN) Programme Quality Assurance and Safety: Medicines Department of Essential Medicines and Health Products (EMP) World Health Organization CH 1211 GENEVA 27 - SWITZERLAND Dear Dr Mattavelli: This letter is in regards to nomenclature of antibody-drug conjugates • As you are aware, during the clinical trials of trastuzumab emtansine, deaths resulting from confusion with trastuzumab drew attention to the risks associated with International nonproprietary names (INNs) of such cytotoxic substances with a common part. • The International Medication Safety Network (IMSN) was quickly alerted to these risks, and proposed that a new substitute INN should be examined by the WHO INN Programme, the only international body in charge eventually changing an INN. A proposal for substitution of trastuzumab emtansine is expected to be submitted by Canadian Healthcare authorities according to the international procedure. • By studying the possibilities of preventing this type of error, the IMSN found that these risks of confusion apply to all antibody-drug conjugates. The IMSN is therefore calling on the WHO INN Programme to identify nomenclature that will reduce their potentially fatal similarities and define clear rules to help recognize products that include different substances, in order to make them safer. If necessary, the IMSN is ready to contribute to the assessment of this risk reduction and prevention strategy, essential but belonging to the sole authority of the WHO INN Programme. The trastuzumab emtansine case. In 2013 the confusion between trastuzumab and trastuzumab emtansine drew attention to the risks associated with the INNs of cytotoxic compounds with a common part.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,579,365 B2 Klink Et Al
    USOO9579365B2 (12) United States Patent (10) Patent No.: US 9,579,365 B2 Klink et al. (45) Date of Patent: *Feb. 28, 2017 (54) THERAPEUTIC RIBONUCLEASES 5,053,489 A 10, 1991 Kufe 5,096,815 A 3, 1992 Ladner et al. 5,110,911 A 5/1992 Samuel (71) Applicant: Quintessence Biosciences, Inc., 5, 198,346 A 3, 1993 Ladner et al. Madison, WI (US) 5,200, 182 A 4/1993 Kiczka 5,223,409 A 6/1993 Ladner et al. (72) Inventors: Tony Klink, Madison, WI (US); John 5,270,163 A 12, 1993 Gold Kink, Madison, WI (US); Laura 5,270,204 A 12/1993 Vallee et al. Strong, Stoughton, WI (US) 5,286,487 A 2f1994 Vallee et al. 5,286,637 A 2f1994 Veronese et al. 5,359,030 A 10, 1994 Ekwuribe (73) Assignee: Quintessence Biosciences, Inc., 5,389,537 A 2f1995 Raines et al. Madison, WI (US) 5,446,090 A 8, 1995 Harris 5,475,096 A 12, 1995 Gold (*) Notice: Subject to any disclaimer, the term of this 5,512,443 A 4/1996 Schlom 5,545,530 A 8, 1996 Satomura patent is extended or adjusted under 35 5,559,212 A 9, 1996 Ardelt U.S.C. 154(b) by 0 days. 5,562.907 A 10, 1996 Arnon 5,660,827 A 8/1997 Thorpe et al. This patent is Subject to a terminal dis 5,672,662 A 9, 1997 Harris claimer. 5,693,763. A 12/1997 Codington 5,733,731 A 3, 1998 Schatz et al.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]