Boosting Our Best Shot

Total Page:16

File Type:pdf, Size:1020Kb

Boosting Our Best Shot NEWS FEATURE Boosting Our Best al orr a C rin Ma s by Shot ration Illust Vaccines work by training the immune system to target pathogens, but many types of shots need added substances called adjuvants to elicit a robust response. Despite the power of adjuvants, only one, called alum, is approved in the US. Charlotte Schubert looks at recent discoveries that could translate into a wider range of adjuvants and perhaps help provide future protection against diseases ranging from malaria to H1N1 ‘swine’ flu. © All rights reserved. 2009 Inc. Nature America, Max Theiler never thought it would be easy to particularly good at bumping up the immune FDA is poised to give the green light to such vanquish one of the biggest killers of his time. response. By comparison, most vaccines adjuvanted vaccines, lined up for approval in Yellow fever had already stumped a previous developed today rely on bits of microbes, such Europe, remains unclear (see sidebar). generation of microbe-hunters. And in the as short protein sequences—and they don’t For many years, researchers such as Theiler early 1900s it killed subjects who volunteered work quite so well on their own. To elicit an moved their vaccine candidates forward with for experiments in which they received bites immune response, these vaccines typically little mechanistic understanding of how they from mosquitoes, proving that the insects need a jolt from an adjuvant, a substance worked. That empirical approach is ending, transmit the disease. named from the Latin ‘adjuvans’, which says Bali Pulendran, an immunologist at the Theiler’s work was painstaking. He spent means ‘to help’. But only one adjuvant, based Emory Vaccine Center in Atlanta, and it’s a more than a decade isolating the yellow on aluminum salts, is approved for use in the boon to the development of new adjuvants. fever virus, growing different strains in test US. Dubbed alum, it spikes common vaccines “What we are now seeing in the adjuvant tubes, mouse brains and chicken embryos, such as shots for hepatitis B and tetanus. field is immunology and vaccinology coming and testing various imperfect versions of the New adjuvants, say researchers, have the together,” says Pulendran. Research in his lab, vaccine in animal experiments. Ultimately, potential not only to improve existing vaccines for instance, is finally beginning to unravel his persistence paid off. In 1937, he finally but also to quell diseases that, more than half how the yellow fever vaccine builds such a hit upon a version of the yellow fever virus a century after Theiler conquered yellow fever, marvelous immunological defense without an that did not itself cause disease but could still lack an effective jab. And adjuvants may adjuvant—work that could lead to new ways be injected into people as a vaccine. The help provide protection against the H1N1 to augment other vaccines. Other researchers achievement won Theiler a Nobel Prize, and pandemic ‘swine flu’ virus—as vaccine are applying findings from immunology to the vaccine is still one of the most effective production faces limitations, adjuvants based intelligent design of adjuvants. And just last ones known: one shot will protect against on oil and water emulsions (such as one made December, malaria researchers made a splash yellow fever for more than 30 years. by Novartis dubbed MF59) have the potential with positive results in a trial of the RTS,S Despite his arduous path, Theiler was lucky. to increase vaccine potency and also to stretch vaccine, which contains a carefully chosen His vaccine is based on a live virus—one the supply by reducing dosage. Whether the adjuvant1,2. 984 VOLUME 15 | NUMBER 9 | SEPTEMBER 2009 NATURE MEDICINE NEWS FEATURE Scientists are getting steadily closer to their using a live, attenuated version of HIV might ultimate goal of making adjuvants into ideal generate decent protection, such a live vaccine helpers, intelligently tailored to the specific is unlikely to receive regulatory approval needs of each vaccine. “The dark ages are because of safety concerns. So vaccine coming to the end,” says Pulendran. developers generally err on the side of caution and create vaccines using building blocks such Safety first as lifeless protein fragments from microbes, Despite the excitement about the emerging which are also generally cheaper and easier to science of how adjuvants work, researchers manufacture in a standardized way. developing new vaccines face major regulatory The catch is that most nonliving vaccines hurdles. “The FDA [US Food and Drug are too weak on their own and therefore need Administration] is risk averse—particularly in an adjuvant. The parts of the vaccine based on their response to the safety of vaccines,” says the offending microbe, the antigen, instruct Ripley Ballou, who currently serves as deputy the body to attack the microbe. But it’s the director for vaccines at the Bill and Melinda adjuvant—mixed with antigen, welded to it Gates Foundation and previously researched or positioned together with the antigen in a and the the RTS,S malaria vaccine. tiny, spherical particle—that can amplify the i m m u n e But, paradoxically, it is because of safety immune response and make the vaccine more system may turn concerns that vaccines often require an potent. on the body, fostering adjuvant. For example, although laboratory Herein lies the rub: adjuvants work by autoimmune disease. experiments suggest that a vaccine built boosting the immune system: Boost it too much Regulatory agencies outside the US have approved a handful of vaccines with newer adjuvants, such as a seasonal Illuminating alum flu vaccine in Europe mixed with Novartis’ adjuvant MF59, an emulsion of oil in water. Alum, the world’s most widely used thought to subsequently bump up the MF59 boosts protection against flu in older adjuvant, got its start in the 1920s body’s production of antibodies. people, who have relatively frail immune when vaccinologists found that mixing The new findings from Flavell and systems, although it’s still unclear exactly how it into their preparations gave a boost his colleagues, along with other studies it achieves this. to the diphtheria vaccine. Researchers implicating the inflammasome, potentially The FDA’s view toward new adjuvants will be then proposed that it worked by explain why alum is good at prompting an tested as early as this fall, when initial clinical glomming onto vaccine components, antibody response. A separate study in data on adjuvanted pandemic H1N1 vaccine causing them to be released slowly into 2008 suggested that alum may initiate this becomes available (sidebar). An advisory group the bloodstream. response partly through the induction of for the agency is also scheduled to consider on That theory held for 80 years. It is cellular damage. Cells damaged by alum 9 September whether to recommend approval only now falling by the wayside, as were shown to release uric acid, a known of Cervarix, a cervical cancer vaccine available immunologists get their hands on alum, trigger of the inflammasome (J. Exp. Med. in Europe that is produced by GlaxoSmithKline © All rights reserved. 2009 Inc. Nature America, a term for various immune-activating 4, 869–882; 2008). (GSK). That vaccine contains an adjuvant aluminum salts. But subsequent research has developed by GSK dubbed AS04, containing “Alum has been used in billions of muddied the waters. For instance, other alum plus monophosphoryl lipid A (MPL), doses since 1920,” says Rino Rappuoli, immunologists, such as Philippa Marrack at which stimulates the immune system in a head of research for Novartis Vaccines the University of Colorado Health Sciences distinct way. in Sienna, Italy, “and, up until about Center in Denver, have found evidence that Last year, the FDA put on hold clinical a year ago, we had no clue about the alum works just fine as an adjuvant in the trials of a version of the hepatitis B vaccine mechanism of action.” absence of inflammasome activity (Eur. containing an experimental adjuvant, dubbed A 2008 study by Richard Flavell J. Immunol. 38, 2085–2089, 2008; Nat. CpG oligonucleotides. One subject in a clinical at Yale University in New Haven, Rev. Immunol. 4, 287–293; 2009). trial of the vaccine, developed by Dynavax Connecticut and his colleagues helped “In trying to understand the molecular Technologies Corporation, a biotechnology to crack open alum’s secrets. Their mechanism of adjuvants, we will find a company based in Berkeley, California, research suggests that alum activates lot of redundant mechanisms, so I’m not developed a severe autoimmune disease— a complex of proteins in immune surprised there is a controversy,” says Wegener’s granulomatosis, in which blood cells dubbed the ‘inflammasome’. Rappuoli. vessels become inflamed. Mice lacking the inflammasome did Marrack and other immunologists are More than 2,500 people have received not respond to alum, although other using standardized reagents to help work Dynavax’s experimental vaccine in clinical adjuvants still worked (Nature 453, out the discrepancies, which may have trials, and the illness may be due to statistical 1122–1126; 2008). arisen because of differences in alum chance. Nonetheless, the FDA is reviewing In response to alum, the formulation and the analysis of the immune the full analysis of the event before deciding inflammasome seems to cleave and response. Ultimately, researchers may be whether trials can proceed. Notably, Dynavax’s activate certain immune-stimulating able to design more effective alum-based vaccine improves on an already available proteins, such as interleukin-1β and adjuvants, she says. vaccine for hepatitis B, setting a high bar for interleukin-18. These proteins are Charlotte Schubert, Washington DC FDA approval. “It enters in the inevitable risk- NATURE MEDICINE VOLUME 15 | NUMBER 9 | SEPTEMBER 2009 985 NEWS FEATURE Their trials also showed that recipients require certain pairs of Toll-like receptors can more only two shots, in contrast with the three for the than double the effect.
Recommended publications
  • SARS-Cov-2 Protein Subunit Vaccination Elicits Potent Neutralizing Antibody Responses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.228486; this version posted July 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SARS-CoV-2 protein subunit vaccination elicits potent neutralizing antibody responses Marco Mandolesi1,*, Daniel J. Sheward1,2,*, , Leo Hanke1, Junjie Ma1, Pradeepa Pushparaj1, Laura Perez Vidakovics1, Changil Kim1, Karin Loré3, Xaquin Castro Dopico1, Jonathan M. Coquet1, Gerald McInerney1, Gunilla B. Karlsson Hedestam1,†, , and Ben Murrell1,†, 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden 2Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa 3Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally †These authors contributed equally The outbreak and spread of SARS-CoV-2 (Severe Acute Res- Results piratory Syndrome coronavirus 2), the cause of coronavirus dis- ease 2019 (COVID-19), is a current global health emergency and To evaluate the use and immunogenicity of recombinant a prophylactic vaccine is needed urgently. The spike glycopro- protein subunit vaccines for SARS-CoV-2 we immunized tein of SARS-CoV-2 mediates entry into host cells, and thus is a C57BL/6J mice (N=24) with either the spike ectodomain or target for neutralizing antibodies and vaccine design. Here we RBD, expressed in 293-F cells. The RBD domain was ex- show that adjuvanted protein immunization with SARS-CoV-2 pressed as an Fc-fusion protein, which was cleaved and the 1 spike trimers, stabilized in prefusion conformation , results in RBD subsequently purified by size-exclusion chromatogra- potent antibody responses in mice and rhesus macaques with phy.
    [Show full text]
  • Lessons Learnt from Influenza A(H1N1) Vaccines Benefit-Risk Monitoring Encepp Plenary Meeting
    Lessons learnt from Influenza A(H1N1) vaccines benefit-risk monitoring ENCePP Plenary meeting Xavier Kurz 8 June 2010 An agency of the European Union ContentsContents 1. Safety database at time of authorisation 2. Mechanisms for vaccine safety surveillance 3. What worked well 4. Areas for improvement of vaccine vigilance system 5. On-going work 2 1. Safety database at time of authorisation Pandemrix • H5N1 vaccine: 6,100 subjects – 300 children 3-9 years, 5,071 adults 18-60 years, 729 elderly >60 years • H1N1 vaccine: 130 adults 18-60 years Focetria • H5N1 vaccine: 1,496 subjects – 145 children 6-35 months, 96 children 3-8 years, 93 children 9-17 years, 989 adults 18-60 years, 173 elderly >60 years • H1N1 vaccine: none Celvapan • H5N1 vaccine: 836 subjects – 556 adults 18-60 years, 280 elderly > 60 years • H1N1 vaccine: none Safety profiles observed with H5N1 vaccines expected to be generally applicable to A/H1N13 vaccines. Limited data in children and pregnant women. European Strategy published on 5 November 2009 http://www.emea.europa.eu/pdfs/human/pandemicinfluenza/european_strategy.pdf or: EMEA website Æ Pandemic influenza website Æ Latest news 4 2. Vaccine safety surveillance Marketing Authorisation Holders • Monthly simplified Periodic Safety Update Reports (s-PSUR) • Summary of important information from spontaneous reports and analysis of safety issues in populations at risk • PASS of 9,000 subjects for each vaccine stratified by age • As soon as vaccination starts • Pregnancy registries • Creation or collaboration with existing
    [Show full text]
  • Cancer Vaccines - Hope Or Hype?
    DrugWatch Cancer vaccines - hope or hype? ➜ Anthony Walker* There have been many false dawns in the field of cancer vaccines, but some of the new products look distinctly promising. sing vaccines that stimulate the hysteria, safety, selectivity and potency not by normal tissues. There are numer- immune system to fight cancer remain the hallmarks of a vaccine, and ous variants: subunit and anti-idiotype Uappeals to many as a natural cancer vaccines promise efficacy with vaccines and immuno-gene therapy to approach that is both safe and effective. limited – or no – side-effects. Serious name but three. Much effort has been And, judging from a recent headline adverse events have been the exception directed toward high-tech solutions in in the UK newspaper The Times in the clinical trials of experimental vac- this area, but it has become apparent – “Vaccine jab could cure lung cancer” – cines conducted to date. At the same that tumours continue to mutate as the there is clear public interest in this area. time, there have been few glimpses of disease progresses, evading the immune Even big pharma is showing signs of real benefit, with numerous false dawns system by downregulating or losing the excitement. At a partnering conference and much disappointment. expression of the target antigen. one of the more traditional majors said But there was an explosion of interest in The third group, multivalent and ultra- cancer vaccines had moved from the ‘no this field after the unravelling of mech- valent vaccines, combine several anti- strategic interest’ category to ‘watchful anisms for triggering cytotoxic T-cell gens in one formulation to overcome waiting’ – an almost seismic shift to (CTL) response about 15 years ago.
    [Show full text]
  • Cancer Vaccines Edge Towards Success
    DrugWatch Cancer vaccines edge towards success ➜ Richard Harrop* and Stuart Naylor* A number of cancer vaccines are now entering the final stage of clinical development. Are vaccines finally on their way to enjoying mainstream success in the oncology arena? ver the past decade, vaccina- cines that have such a safety profile such as renal cancer and melanoma, tion strategies for the treat- may be readily integrated into current yet they offer only modest benefits and O ment of cancer have been standard-of-care regimens, particularly frequently lead to toxic side-effects. investigated with renewed vigour, per- in the first-line setting where combi- In between these two approaches haps catalysed by a greater under- nation strategies prevail over lie cell-based therapies, in which whole standing of tumour immunology and monotherapies. tumour cells or cell extracts are used as the clinical successes achieved with the immunogen. While tumour-specific monoclonal antibody and cytokine- TARGETED VS NON-SPECIFIC immune responses may be induced, based therapies. However, before vac- Cancer immunotherapies can broadly the precise target(s) of the response is cines become fully integrated into the be divided into two categories: not usually known. Furthermore, arsenal of weapons currently used to tumour-specific and highly-targeted immune responses against other com- treat cancer, they must show not only products, for example vaccines or mon tissue antigens may also be efficacy but also safety and limited or antibodies that target a specific induced. Despite the lack of fine no toxicity. Recently, a number of tumour antigen, and therapies which specificity of the immune response cancer vaccines have moved into the modulate the immune system in a induced and the labour involved in the stages of development where clinical non-tumour-specific way.
    [Show full text]
  • How Scientist/Founders Lead Successful Biopharmaceutical
    Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2008 How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies Lynn Johnson Langer Antioch University - PhD Program in Leadership and Change Follow this and additional works at: http://aura.antioch.edu/etds Part of the Business Administration, Management, and Operations Commons, Medicine and Health Sciences Commons, and the Organizational Behavior and Theory Commons Recommended Citation Langer, Lynn Johnson, "How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies" (2008). Dissertations & Theses. 138. http://aura.antioch.edu/etds/138 This Dissertation is brought to you for free and open access by the Student & Alumni Scholarship, including Dissertations & Theses at AURA - Antioch University Repository and Archive. It has been accepted for inclusion in Dissertations & Theses by an authorized administrator of AURA - Antioch University Repository and Archive. For more information, please contact [email protected], [email protected]. HOW SCIENTIST/FOUNDERS LEAD SUCCESSFUL BIOPHARMACEUTICAL ORGANIZATIONS: A STUDY OF THREE COMPANIES Lynn Johnson Langer A DISSERTATION Submitted to the Ph.D. in Leadership & Change Program of Antioch University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May, 2008 This is to certify that the dissertation entitled: HOW SCIENTIST/FOUNDERS
    [Show full text]
  • 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.14.21257248; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant-Produced Virus-Like Particle 2 Vaccine for Covid-19 in Healthy Adults Aged 18-64 and Older Adults Aged 65 and Older 3 Authors: Philipe Gobeil1, Stéphane Pillet1, Annie Séguin1, Iohann Boulay1, Asif Mahmood1, 4 Donald C Vinh 2, Nathalie Charland1, Philippe Boutet3, François Roman3, Robbert Van Der 5 Most4, Maria de los Angeles Ceregido Perez3, Brian J Ward1,2†, Nathalie Landry1† 6 Affiliations: 1 Medicago Inc., 1020 route de l’Église office 600, Québec, QC, Canada, G1V 7 3V9; 2 Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, 8 QC H4A 3J1; 3 GlaxoSmithKline Biologicals SA (Vaccines), Avenue Fleming 20, 1300 Wavre, 9 Belgium; 4 GlaxoSmithKline Biologicals SA (Vaccines), rue de l’Institut 89, 1330 Rixensart, 10 Belgium; † These individuals are equally credited as senior authors. 11 * Corresponding author: Nathalie Landry, 1020 Route de l’Église, Bureau 600, Québec, Qc, 12 Canada, G1V 3V9; Tel. 418 658 9393; Fax. 418 658 6699; [email protected] 13 Abstract 14 The rapid spread of SARS-CoV-2 globally continues to impact humanity on a global scale with 15 rising morbidity and mortality. Despite the development of multiple effective vaccines, new 16 vaccines continue to be required to supply ongoing demand.
    [Show full text]
  • Multivalue Ethical Framework for Fair Global Allocation of a COVID-19
    Clinical ethics Multivalue ethical framework for fair global J Med Ethics: first published as 10.1136/medethics-2020-106516 on 12 June 2020. Downloaded from allocation of a COVID-19 vaccine Yangzi Liu ,1 Sanjana Salwi,1 Brian Drolet2 1School of Medicine, Vanderbilt ABSTRact by a global scarcity of vaccines, increasing vaccine University, Nashville, Tennessee, The urgent drive for vaccine development in the midst price and worsening inequity and disparity. There- USA 2 fore, it is unlikely that donations from high- income Center for Biomedical Ethics of the current COVID-19 pandemic has prompted public and Society, Vanderbilt and private organisations to invest heavily in research countries or through organisations like GAVI will University Medical Center, and development of a COVID-19 vaccine. Organisations ensure fair distribution of a pandemic vaccine Nashville, Tennessee, USA globally have affirmed the commitment of fair global without a solid ethical framework for allocation. access, but the means by which a successful vaccine This piece analyses four allocation paradigms and Correspondence to can be mass produced and equitably distributed synthesises their ethical considerations to develop a Ms Yangzi Liu, Vanderbilt model to fit the COVID-19 pandemic. University School of Medicine, remains notably unanswered. Barriers for low- income Nashville, TN 37232, USA; countries include the inability to afford vaccines as well yangzi. liu@ vanderbilt. edu as inadequate resources to vaccinate, barriers that are Principle 1: Ability to develop or to purchase exacerbated during a pandemic. Fair distribution of Vaccine distribution is currently determined by two Received 27 May 2020 a pandemic vaccine is unlikely without a solid ethical Accepted 4 June 2020 primary considerations: (1) ability to develop and framework for allocation.
    [Show full text]
  • Speaker Bios 2Nd FDA/PQRI Conference on Advancing Product Quality
    Speaker Bios 2nd FDA/PQRI Conference on Advancing Product Quality Professor Bertil Abrahamsson, Ph.D. Dr. Abrahamsson has a broad experience of industrial drug development from more than 25 years of work with Astra and AstraZeneca. During this period he has had various line and project management positions. Presently he is a Senior Principal Scientist with emphasis on biopharmaceutics., In this role he is leading biopharmaceutics research and product development support on a global basis. In addition, as one of the most senior scientists in AZ Pharmaceutical Development he is also a member of the local as well as the extended global leadership teams. Dr. Abrahamsson is an internationally recognised scientist and he has published more than 80 papers in the area of oral biopharmaceutics and drug delivery. He is presently an adjunct Professor in Biopharmaceutics at Uppsala University. He initiated and is currently leading a major european private public partnership project in oral biopharmaceutics area ( http://www.orbitoproject.eu). Ilgaz Akseli, Ph.D., MBA Dr. Akseli is a Senior Associate Director in the Pharmaceutical Development department in Boehringer-Ingelheim Pharmaceuticals, Ridgefield, CT. He is the head of the Formulation Material Profiling and Computational Modeling Labs. Two labs are in the global level and his team is guiding and supporting the formulation and process development for drug candidates in assigned therapeutic areas. Dr. Akseli earned his BSc degree in Mechanical Engineering with a focus on Design of Powder Compaction. He has two MSc degrees; one is in Materials Science and Engineering from University College London with a focus on Metal Powder Compaction and the other degree is in Business Management from London School of Economics with a focus on Lean Six Sigma implementations in the Pharmaceutical Industry.
    [Show full text]
  • Better Pandemic Influenza Preparedness Through
    Review Better Pandemic Influenza Preparedness through Adjuvant Technology Transfer: Challenges and Lessons Learned Céline H. Lemoine 1,2,*, Reviany V. Nidom 3, Roland Ventura 2, Setyarina Indrasari 3, Irine Normalina 3, Kuncoro Puguh Santoso 3,4, Francis Derouet 5, Christophe Barnier-Quer 6,7, Gerrit Borchard 1 , Nicolas Collin 2 and Chairul A. Nidom 3,4 1 Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland; [email protected] 2 Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland; [email protected] (R.V.); [email protected] (N.C.) 3 Professor Nidom Foundation, Surabaya 60298, Indonesia; reviany@pnfinstitute.org (R.V.N.); setyarina_ire@pnfinstitute.org (S.I.); irine_normalina@pnfinstitute.org (I.N.); kuncoropuguhsantoso@pnfinstitute.org (K.P.S.); [email protected] (C.A.N.) 4 Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia 5 Centre Laboratoire d’Epalinges (CLE), University of Lausanne, Ch. des Boveresses 155, 1011 Epalinges, Switzerland; [email protected] 6 Vaccine Formulation Laboratory, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; [email protected] 7 GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK * Correspondence: [email protected] Citation: Lemoine, C.H.; Nidom, R.V.; Ventura, R.; Indrasari, S.; Abstract: Adequate global vaccine coverage during an influenza pandemic is essential to mitigate Normalina, I.; Santoso, K.P.; Derouet, morbidity, mortality, and economic impact. Vaccine development and production needs to be F.; Barnier-Quer, C.; Borchard, G.; sufficient to meet a vast global demand, requiring international cooperation and local vaccine Collin, N.; et al.
    [Show full text]
  • Possible Options for Using a Who H5n1 Vaccine Stockpile
    Meeting summary TECHNICAL CONSIDERATIONS ON HUMAN H5N1 INFLUENZA VACCINES: POSSIBLE OPTIONS FOR USING A WHO H5N1 VACCINE STOCKPILE During 1-3 October 2007, WHO held a consultation in Geneva to review available data on the safety and immunogenicity of H5N1 vaccines, and possible options for the use of H5N1 vaccines as well as a WHO stockpile of such vaccine. Invited participants included researchers, representatives from WHO Influenza Collaborating Centres, selected countries, SAGE, and industry. Observers were allowed. Several presentations were provided including a summary of the results of a recent consultation on H5N1 vaccines held by the European Centre for Disease Prevention and Control (ECDC).1 1. Characteristics of currently-available human H5N1 influenza vaccines Safety: Based on currently available data from animal and limited human clinical trials, there is no evidence so far of any identifiable major safety concern related to H5N1 vaccines, although additional local reactions with some adjuvanted vaccines have been noted. Additional controlled trials with long-term follow up, especially in children, are needed. If a live attenuated vaccine based on the H5N1 virus is used in a non-pandemic period, there is a risk the vaccine virus could reassort with a circulating seasonal human influenza virus an create a hybrid virus, but this risk was considered small. If any type of H5N1 vaccine is used extensively, additional adverse safety signals can be anticipated. Part of the preparations for widespread use should include ongoing monitoring to ensure that adverse events are identified and appropriate responses are taken. Immunogenicity: Currently there are no standard criteria to assess the immunogenicity of human H5N1 vaccines.
    [Show full text]
  • DNA-Launched RNA Replicon Vaccines Induce Potent Anti-SARS-Cov-2
    www.nature.com/scientificreports OPEN DNA‑launched RNA replicon vaccines induce potent anti‑SARS‑CoV‑2 immune responses in mice Inga Szurgot*, Leo Hanke, Daniel J. Sheward, Laura Perez Vidakovics, Ben Murrell, Gerald M. McInerney & Peter Liljeström The outbreak of the SARS‑CoV‑2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID‑19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus‑ based DNA‑launched self‑replicating (DREP) vaccine candidates encoding either SARS‑CoV‑2 spike glycoprotein (DREP‑S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP‑Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodifed spike turned out to be more potent vaccine candidate, eliciting high titers of SARS‑CoV‑2 specifc IgG antibodies that were able to efciently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efciently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS‑ CoV‑2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS‑CoV‑2. Te severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of COVID- 19 in late 20191,2. Te disease pathology ranges from asymptomatic infection to severe acute respiratory distress and death3,4.
    [Show full text]
  • Options for the Use of Human H5N1 Influenza Vaccines and the WHO H5N1 Vaccine Stockpile
    Options for the use of human H5N1 influenza vaccines and the WHO H5N1 vaccine stockpile THIRD DRAFT – 02/11/07 WHO SCIENTIFIC CONSULTATION: TECHNICAL CONSIDERATIONS FOR DEVELOPING OPTIONS FOR USE OF HUMAN H5N1 INFLUENZA VACCINES AND A WHO H5N1 VACCINE STOCKPILE GENEVA, 01-03 OCTOBER 2007 GENEVA, 2007 CONTENTS Executive summary ................................................................................................... 3 1. Characteristics of human H5N1 influenza vaccines 1.1: Safety......................................................................................................................... 8 1.2: Immunogenicity....................................................................................................... 10 1.3: Cross-reactivity........................................................................................................ 12 1.4: Degree and duration of protection ........................................................................... 13 1.5: Conclusions and priority areas ................................................................................ 14 2. Options for using human H5N1 influenza vaccines................................ 16 2.1: To protect people at high risk of contracting zoonotic avian H5N1 influenza........ 17 2.2: To “prime” selected groups or whole populations in anticipation of a possible H5N1 influenza pandemic ....................................................................................... 18 2.3: To immunize selected groups or whole populations in anticipation of
    [Show full text]