Poster Presentation Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Poster Presentation Abstracts 2020 VIRTUAL ANNUAL CONFERENCE ON VACCINOLOGY RESEARCH: POSTER PRESENTATION ABSTRACTS BEHAVIORAL SCIENCE AND VACCINE HESITANCY Development and Evaluation of an Educational Human Papillomavirus (HPV) Vaccine Comic Book for College Students in Northeast Ohio: An Application of the Integrative Behavior Model O. Aguolu1, L. Phillips2, T. Smith2, V. Cheruvu2 1Yale University, New Haven, CT; 2Kent State University, Kent, OH Learning Objective Develop an educational HPV vaccine comic book for target populations with average to low coverage rates to improve knowledge and beliefs regarding intention to complete HPV vaccination and reduce the rates of HPV‐associated diseases and cancer Abstract Human papillomaviruses (HPV) cause several types of cancers and genital warts in both males and females. In the US, young adults, especially college students, are mostly affected. Scientific evidence shows that HPV vaccine is safe and effective; however, its coverage remains lower than other vaccines for young adults. This implies missed vaccination opportunities. There is a need to improve HPV vaccination promotion strategies in this population. Comic books are potentially effective for health education of diverse groups, because they are easily accessible, low‐cost, engaging and unobtrusive. They may help to improve knowledge and beliefs regarding HPV vaccination, increase its acceptance and uptake, as well as decrease HPV‐related diseases. This is a mixed methods study. In 2017, we recruited a diverse population of 18 to 26‐year‐old male and female students from a college in northeast Ohio. Using qualitative methods, we identified the salient beliefs regarding HPV vaccination completion within one year. We conducted multiple linear regression analysis and Pearson’s correlation to examine predictors of intention to complete HPV vaccination within one year among unvaccinated participants using constructs form the Integrated Behavior Model (IBM). We developed an educational HPV/HPV vaccine comic book informed by evidence from target population‐based studies on HPV vaccination, reputable health literacy tools, pilot testing, and the IBM. We hypothesized that this intervention would improve college students’ HPV vaccine knowledge, beliefs, attitude, perceived norm, personal agency, and intention to complete HPV vaccination within 1 year. Using a quasi‐experimental pre‐posttest survey design, we evaluated the effect of the intervention on the participants' HPV vaccine knowledge, beliefs, attitude, perceived norm, personal agency, and intention to complete HPV vaccination within 1 year. Most of the participants [n=304, males (28%), females (72%)] who completed the pre‐posttest surveys reported that the comic book is acceptable, easy to read, understandable, relevant, and has high quality information and graphics. Only 29% reported they completed the recommended three doses of HPV vaccine. Multiple linear regression analysis (n=157) showed age (b=‐0.11*); race (b=0.81*); instrumental attitudes (b=0.43*); injunctive norms (b=0.20*); and descriptive norms (b=0.55**) were significant predictors of intention to complete HPV vaccination within 12 months [R2=0.47, F(8)=16.12, p<0.0001] among unvaccinated study participants. Overall, the intervention proved to be effective in creating positive changes. Mean HPV/HPV vaccine knowledge score increased from 50%–90%, McNemar’s test showed statistically significant higher levels of understanding in all the knowledge questions. Paired t‐test analyses showed increases in mean score for HPV knowledge: 7.15**, CI=6.60‐7.69; dimensions of Attitudes (instrumental: 0.81**, SD=1.13; experiential: 0.57**, SD=1.21); Perceived norms (injunctive: 0.48**, SD=1.00; descriptive: 0.12*, SD=0.66); and Personal agency (autonomy: 0.48**, SD=1.26; capacity: 0.60**, SD=1.42) as well as Intention to complete HPV vaccination within 12 months: 1.51, CI=1.28‐1.72 among unvaccinated participants. Significant positive changes were also noted in targeted beliefs [*=p<0.05, ** =p<0.0001]. www.nfid.org/acvr 2020 VIRTUAL ANNUAL CONFERENCE ON VACCINOLOGY RESEARCH: POSTER PRESENTATION ABSTRACTS Findings will aid researchers to develop effective interventions for increasing HPV vaccine coverage. Further research will explore use of comic books to increase vaccine uptake for populations of various ages in primary and secondary schools as well as in clinics. References 1. Centers for Disease Control and Prevention. Human papillomavirus (HPV) statistics. www.cdc.gov/std/hpv/stats.htm. Assessed December 1, 2017. Updated 2017. 2. Dunne EF, Markowitz LE, Saraiya M, et al. CDC grand rounds: Reducing the burden of HPV‐associated cancer and disease. MMWR Morb Mortal Wkly Rep. 2014;63(4):69‐72. doi: mm6304a1 [pii]. 3. National Institutes of Deafness and Other Communication Disorders. Recurrent respiratory papillomatosis or laryngeal papillomatosis. www.nidcd.nih.gov/health/recurrent‐respiratory‐papillomatosis. Assessed December 1, 2017. Updated 2017. 4. Centers for Disease Control and Prevention. Genital HPV infection ‐ fact sheet. www.cdc.gov/std/hpv/stdfact‐ hpv.htm. Assessed December 1, 2017. Updated 2017. Centers for Disease Control and Prevention. HPV‐ associated cancer statistics. www.cdc.gov/cancer/hpv/statistics/index.htm. Assessed December 1, 2017. Updated 2017. 5. Lee SM, Park JS, Norwitz ER, et al. Risk of vertical transmission of human papillomavirus throughout pregnancy: A prospective study. PloS One. 2013;8(6):e66368. doi: 10.1371/journal.pone.0066368. 6. Centers for Disease Control and Prevention. Human papillomavirus. In: Hamborsky J, Kroger A, Wolfe S, eds. Epidemiology and Prevention of Vaccine‐Preventable Diseases. 13th ed. Washington, D.C.: Public Health Foundation; 2016:175‐186. www.cdc.gov/vaccines/pubs/pinkbook/downloads/hpv.pdf. 7. Ohio Department of Health. Cancers associated with human papillomavirus in Ohio. odh.ohio.gov/wps/wcm/connect/gov/144d0ea7‐69db‐49e9‐ac15‐ f94a6fc2efd8/HPVProfile0812_Oct2015.pdf?MOD=AJPERES&CONVERT_TO=url&CACHEID=ROOTWORKSPACE.Z1 8_M1HGGIK0N0JO00QO9DDDDM3000‐144d0ea7‐69db‐49e9‐ac15‐f94a6fc2efd8‐mqxDo5S. Assessed December 1, 2017. Updated 2017. 8. Chesson HW, Blandford JM, Gift TL, Tao G, Irwin KL. The estimated direct medical cost of sexually transmitted diseases among American youth. Perspect Sex Reprod Health. 2004;36(1):11‐19. 9. Meites E, Kempe A, Markowitz LE. Use of a 2‐dose schedule for human papillomavirus vaccination ‐ updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2016;65(49):1405‐1408. doi: 10.15585/mmwr.mm6549a5 [doi]. www.nfid.org/acvr 2020 VIRTUAL ANNUAL CONFERENCE ON VACCINOLOGY RESEARCH: POSTER PRESENTATION ABSTRACTS Increasing Vaccine Compliance Among College Freshmen K. Stevenson, R. Beckstrand, L. Eden, K. Luthy, J. Macintosh, G. Ray Brigham Young University, Provo, UT Learning Objectives . Identify vaccine knowledge deficits among incoming college freshmen and increase awareness of vaccine‐ preventable diseases on college campuses . Determine the influence of an educational module on the perceptions and behaviors of incoming freshman regarding vaccinations Abstract College students living in close quarters have a heightened risk for contracting meningococcal meningitis and other communicable diseases such as influenza and pertussis. [1 ] Currently, Brigham Young University (BYU), a private university in Utah, does not have vaccine requirements for students. [2] In July 2018, the State Board of Regents (SBOR) in Utah updated a policy regarding vaccine education of college age students. [3] In this revised policy, the SBOR clarifies that all students living on campus should receive education about vaccines. Colleges and universities across Utah are now in need of effective strategies to comply with this new policy. To implement this policy, the BYU research team aims to determine current vaccine perceptions and behaviors among BYU freshmen, educate incoming freshmen on preventing communicable diseases, and measure the effectiveness of module. It is hypothesized that this educational intervention will decrease campus vaccine hesitancy. An online educational module on vaccinations and disease prevention on college campuses was created in collaboration with public health experts, including the Utah County Immunization Coalition (UCIC), the Utah Scientific Advisory Committee (USAC), and the Greater Salt Lake Immunization Coalition (GSLIC). This interprofessional collaboration is vital for successful implementation of community health improvement projects. An email was sent to all incoming BYU freshman notifying them of the opportunity to participate in the study. Participants completed a demographic survey and pre‐questionnaire prior to completing the vaccine education module. Upon completion of the module, participants completed a post‐module questionnaire in order to evaluate any change in opinions regarding immunizations. They were also asked to list new information learned during the module and any vaccine or communicable disease‐related questions. Data was entered into SPSS and reviewed by two researchers for accuracy. The data was then analyzed using a dependent t test. The percentage of students (N=177) who selected a 10 out of 10 likelihood to be up to date on their own vaccinations increased by 9.6% (p<.0001) after the educational module. There was also a 14.7% (p<.0001) increase in participants expecting other BYU students to be up to date on immunizations. Additionally the survey measured the students’ likelihood to
Recommended publications
  • SARS-Cov-2 Protein Subunit Vaccination Elicits Potent Neutralizing Antibody Responses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.228486; this version posted July 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SARS-CoV-2 protein subunit vaccination elicits potent neutralizing antibody responses Marco Mandolesi1,*, Daniel J. Sheward1,2,*, , Leo Hanke1, Junjie Ma1, Pradeepa Pushparaj1, Laura Perez Vidakovics1, Changil Kim1, Karin Loré3, Xaquin Castro Dopico1, Jonathan M. Coquet1, Gerald McInerney1, Gunilla B. Karlsson Hedestam1,†, , and Ben Murrell1,†, 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden 2Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa 3Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally †These authors contributed equally The outbreak and spread of SARS-CoV-2 (Severe Acute Res- Results piratory Syndrome coronavirus 2), the cause of coronavirus dis- ease 2019 (COVID-19), is a current global health emergency and To evaluate the use and immunogenicity of recombinant a prophylactic vaccine is needed urgently. The spike glycopro- protein subunit vaccines for SARS-CoV-2 we immunized tein of SARS-CoV-2 mediates entry into host cells, and thus is a C57BL/6J mice (N=24) with either the spike ectodomain or target for neutralizing antibodies and vaccine design. Here we RBD, expressed in 293-F cells. The RBD domain was ex- show that adjuvanted protein immunization with SARS-CoV-2 pressed as an Fc-fusion protein, which was cleaved and the 1 spike trimers, stabilized in prefusion conformation , results in RBD subsequently purified by size-exclusion chromatogra- potent antibody responses in mice and rhesus macaques with phy.
    [Show full text]
  • Study Protocol
    Protocol Number: VXA-G11-201.1 ________________________________________________________________________________ Clinical Study Protocol Protocol Title: Evaluation of Infectivity and Illness of Norwalk GI.1 Virus Lot 001-09NV in the Human Challenge Model Protocol Number: VXA-G11-201.1 IND Sponsor: WCCT Global 3545 Howard Way, Costa Mesa, CA 92626 Maria Apkarian Vice President, Early Clinical Development Email: [email protected] Phone: 714-252-0700; ext: 1019 Funding Sponsor: Vaxart, Inc. Funding Sponsor POC: David N. Taylor, MD Chief Medical Officer Vaxart, Inc. 400 Oyster Point Blvd., Suite 222 South San Francisco, CA 94080 Email: [email protected] Mobile phone: 919-349-6109 Protocol Version Number: 1.1 Amendment 1 Date: 21 September 2018 Confidentiality Statement This document is confidential and is to be distributed for review only to investigators, potential investigators, consultants, study staff, and applicable independent ethics committees or institutional review boards. The contents of this document shall not be disclosed to others without written authorization from Vaxart (or others, as applicable), unless it is necessary to obtain informed consent from potential study subjects. SIGNATURE PAGE/STATEMENT OF COMPLIANCE Version 1.1 Confidential Page 1 of 50 Date: 21Sept 2018 Protocol Number: VXA-G11-201.1 ________________________________________________________________________________ Protocol Title: Evaluation of Infectivity and Illness of Norwalk GI.1 Virus Lot 001-09NV in the Human Challenge Model Protocol Number: VXA-G11-201.1 Vaxart, Inc. ______________________________ ________________ David Taylor Date Chief Medical Officer The trial will be conducted in accordance with the International Conference on Harmonisation (ICH) E6 and the Code of Federal Regulations on the Protection of Human Subjects (45 CFR Part 46).
    [Show full text]
  • Placebos, Randomization and Financial Incentives
    1 Placebos, randomization, and financial incentives – oh my! Balancing ethical considerations in clinical research Stephanie Kraft, JD and Kathryn Porter, JD, MPH ITHS Bioethics Core Treuman Katz Center for Pediatric Bioethics Seattle Children’s Research Institute Learning Objectives 1• Describe eight benchmarks for ethical clinical research 2 Discuss how empirical data illustrates limitations of ethics regulations of randomization 3 Identify elements of a proposed research study that warrant ethical deliberation Outline 1 Introduction to a framework for ethical clinical research 2 Case studies: what to do when benchmarks conflict 3 Group discussion and practice applying the framework Why research ethics? Please vote: Do you consider yourself an ethically responsible researcher? Why research ethics? “Isn’t ethics for people who have bad motivations?” • Not just about preventing egregious violations - no such thing as the “ethics police” • Also offers guidance, identifies potential challenges Why research ethics? Please vote: Have you ever faced an ethical challenge in your research that was outside the scope of the IRB? Why research ethics? “Aren’t there regulations for that?” • Research ethics analysis helps flesh out responsibilities above the regulatory floor Why research ethics? Please vote: Have you ever raised an ethics issue to a colleague or PI? Why research ethics? “Is it really my job to worry about ethics?” • Yes! • Ethics analysis is important for all research team members • Framework can empower researchers to identify and
    [Show full text]
  • Boosting Our Best Shot
    NEWS FEATURE Boosting Our Best al orr a C rin Ma s by Shot ration Illust Vaccines work by training the immune system to target pathogens, but many types of shots need added substances called adjuvants to elicit a robust response. Despite the power of adjuvants, only one, called alum, is approved in the US. Charlotte Schubert looks at recent discoveries that could translate into a wider range of adjuvants and perhaps help provide future protection against diseases ranging from malaria to H1N1 ‘swine’ flu. © All rights reserved. 2009 Inc. Nature America, Max Theiler never thought it would be easy to particularly good at bumping up the immune FDA is poised to give the green light to such vanquish one of the biggest killers of his time. response. By comparison, most vaccines adjuvanted vaccines, lined up for approval in Yellow fever had already stumped a previous developed today rely on bits of microbes, such Europe, remains unclear (see sidebar). generation of microbe-hunters. And in the as short protein sequences—and they don’t For many years, researchers such as Theiler early 1900s it killed subjects who volunteered work quite so well on their own. To elicit an moved their vaccine candidates forward with for experiments in which they received bites immune response, these vaccines typically little mechanistic understanding of how they from mosquitoes, proving that the insects need a jolt from an adjuvant, a substance worked. That empirical approach is ending, transmit the disease. named from the Latin ‘adjuvans’, which says Bali Pulendran, an immunologist at the Theiler’s work was painstaking.
    [Show full text]
  • Human Challenge Trials for Vaccine Development: Regulatory Considerations
    POST ECBS Version ENGLISH ONLY EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva, 17 to 21 October 2016 Human Challenge Trials for Vaccine Development: regulatory considerations © World Health Organization 2016 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader.
    [Show full text]
  • Lessons Learnt from Influenza A(H1N1) Vaccines Benefit-Risk Monitoring Encepp Plenary Meeting
    Lessons learnt from Influenza A(H1N1) vaccines benefit-risk monitoring ENCePP Plenary meeting Xavier Kurz 8 June 2010 An agency of the European Union ContentsContents 1. Safety database at time of authorisation 2. Mechanisms for vaccine safety surveillance 3. What worked well 4. Areas for improvement of vaccine vigilance system 5. On-going work 2 1. Safety database at time of authorisation Pandemrix • H5N1 vaccine: 6,100 subjects – 300 children 3-9 years, 5,071 adults 18-60 years, 729 elderly >60 years • H1N1 vaccine: 130 adults 18-60 years Focetria • H5N1 vaccine: 1,496 subjects – 145 children 6-35 months, 96 children 3-8 years, 93 children 9-17 years, 989 adults 18-60 years, 173 elderly >60 years • H1N1 vaccine: none Celvapan • H5N1 vaccine: 836 subjects – 556 adults 18-60 years, 280 elderly > 60 years • H1N1 vaccine: none Safety profiles observed with H5N1 vaccines expected to be generally applicable to A/H1N13 vaccines. Limited data in children and pregnant women. European Strategy published on 5 November 2009 http://www.emea.europa.eu/pdfs/human/pandemicinfluenza/european_strategy.pdf or: EMEA website Æ Pandemic influenza website Æ Latest news 4 2. Vaccine safety surveillance Marketing Authorisation Holders • Monthly simplified Periodic Safety Update Reports (s-PSUR) • Summary of important information from spontaneous reports and analysis of safety issues in populations at risk • PASS of 9,000 subjects for each vaccine stratified by age • As soon as vaccination starts • Pregnancy registries • Creation or collaboration with existing
    [Show full text]
  • A Toddler PCV Booster Dose Following 3 Infancy Priming Doses Increases
    Vaccine 36 (2018) 2774–2782 Contents lists available at ScienceDirect Vaccine journal homepage: www.elsevier.com/locate/vaccine A toddler PCV booster dose following 3 infancy priming doses increases circulating serotype-specific IGG levels but does not increase protection against carriage ⇑ Ron Dagan a, , Shalom Ben-Shimol a,b, Birgit Simell c, David Greenberg a,b, Nurith Porat a,b, Helena Käyhty d, Noga Givon-Lavi a,b a The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel b The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel c Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland d Department of Vaccination and Immune Protection, National Institute for Health and Welfare (THL), Helsinki, Finland article info abstract Article history: Background: We compared PCV7 serological response and protection against carriage in infants receiving Received 7 January 2018 3 doses (2, 4, 6 months; 3+0 schedule) to those receiving a booster (12 months; 3+1). Received in revised form 30 March 2018 Methods: A prospective, randomized controlled study, conducted between 2005 and 2008, before PCVs Accepted 3 April 2018 were implemented in Israel. Healthy infants were randomized 1:1:1 to receive 3+1, 3+0 and 0+2 (control Available online 11 April 2018 group; 12, 18 months doses). Nasopharyngeal/oropharyngeal swabs were obtained at all visits. Serum serotype-specific IgG concentrations and opsonic activities (OPA) were measured at 2, 7, 13 and 19 Keywords: months. This study was registered with Current Controlled Trials, Ltd. ISRCTN28445844. Pneumococcal conjugate vaccines Results: Overall, 544 infants were enrolled: 3+1 (n = 178), 3+0 (n = 178) and 0+2 (n = 188).
    [Show full text]
  • 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.14.21257248; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant-Produced Virus-Like Particle 2 Vaccine for Covid-19 in Healthy Adults Aged 18-64 and Older Adults Aged 65 and Older 3 Authors: Philipe Gobeil1, Stéphane Pillet1, Annie Séguin1, Iohann Boulay1, Asif Mahmood1, 4 Donald C Vinh 2, Nathalie Charland1, Philippe Boutet3, François Roman3, Robbert Van Der 5 Most4, Maria de los Angeles Ceregido Perez3, Brian J Ward1,2†, Nathalie Landry1† 6 Affiliations: 1 Medicago Inc., 1020 route de l’Église office 600, Québec, QC, Canada, G1V 7 3V9; 2 Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, 8 QC H4A 3J1; 3 GlaxoSmithKline Biologicals SA (Vaccines), Avenue Fleming 20, 1300 Wavre, 9 Belgium; 4 GlaxoSmithKline Biologicals SA (Vaccines), rue de l’Institut 89, 1330 Rixensart, 10 Belgium; † These individuals are equally credited as senior authors. 11 * Corresponding author: Nathalie Landry, 1020 Route de l’Église, Bureau 600, Québec, Qc, 12 Canada, G1V 3V9; Tel. 418 658 9393; Fax. 418 658 6699; [email protected] 13 Abstract 14 The rapid spread of SARS-CoV-2 globally continues to impact humanity on a global scale with 15 rising morbidity and mortality. Despite the development of multiple effective vaccines, new 16 vaccines continue to be required to supply ongoing demand.
    [Show full text]
  • Multivalue Ethical Framework for Fair Global Allocation of a COVID-19
    Clinical ethics Multivalue ethical framework for fair global J Med Ethics: first published as 10.1136/medethics-2020-106516 on 12 June 2020. Downloaded from allocation of a COVID-19 vaccine Yangzi Liu ,1 Sanjana Salwi,1 Brian Drolet2 1School of Medicine, Vanderbilt ABSTRact by a global scarcity of vaccines, increasing vaccine University, Nashville, Tennessee, The urgent drive for vaccine development in the midst price and worsening inequity and disparity. There- USA 2 fore, it is unlikely that donations from high- income Center for Biomedical Ethics of the current COVID-19 pandemic has prompted public and Society, Vanderbilt and private organisations to invest heavily in research countries or through organisations like GAVI will University Medical Center, and development of a COVID-19 vaccine. Organisations ensure fair distribution of a pandemic vaccine Nashville, Tennessee, USA globally have affirmed the commitment of fair global without a solid ethical framework for allocation. access, but the means by which a successful vaccine This piece analyses four allocation paradigms and Correspondence to can be mass produced and equitably distributed synthesises their ethical considerations to develop a Ms Yangzi Liu, Vanderbilt model to fit the COVID-19 pandemic. University School of Medicine, remains notably unanswered. Barriers for low- income Nashville, TN 37232, USA; countries include the inability to afford vaccines as well yangzi. liu@ vanderbilt. edu as inadequate resources to vaccinate, barriers that are Principle 1: Ability to develop or to purchase exacerbated during a pandemic. Fair distribution of Vaccine distribution is currently determined by two Received 27 May 2020 a pandemic vaccine is unlikely without a solid ethical Accepted 4 June 2020 primary considerations: (1) ability to develop and framework for allocation.
    [Show full text]
  • Better Pandemic Influenza Preparedness Through
    Review Better Pandemic Influenza Preparedness through Adjuvant Technology Transfer: Challenges and Lessons Learned Céline H. Lemoine 1,2,*, Reviany V. Nidom 3, Roland Ventura 2, Setyarina Indrasari 3, Irine Normalina 3, Kuncoro Puguh Santoso 3,4, Francis Derouet 5, Christophe Barnier-Quer 6,7, Gerrit Borchard 1 , Nicolas Collin 2 and Chairul A. Nidom 3,4 1 Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland; [email protected] 2 Vaccine Formulation Institute, Chemin des Aulx 14, 1228 Plan-les-Ouates, Switzerland; [email protected] (R.V.); [email protected] (N.C.) 3 Professor Nidom Foundation, Surabaya 60298, Indonesia; reviany@pnfinstitute.org (R.V.N.); setyarina_ire@pnfinstitute.org (S.I.); irine_normalina@pnfinstitute.org (I.N.); kuncoropuguhsantoso@pnfinstitute.org (K.P.S.); [email protected] (C.A.N.) 4 Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia 5 Centre Laboratoire d’Epalinges (CLE), University of Lausanne, Ch. des Boveresses 155, 1011 Epalinges, Switzerland; [email protected] 6 Vaccine Formulation Laboratory, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; [email protected] 7 GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK * Correspondence: [email protected] Citation: Lemoine, C.H.; Nidom, R.V.; Ventura, R.; Indrasari, S.; Abstract: Adequate global vaccine coverage during an influenza pandemic is essential to mitigate Normalina, I.; Santoso, K.P.; Derouet, morbidity, mortality, and economic impact. Vaccine development and production needs to be F.; Barnier-Quer, C.; Borchard, G.; sufficient to meet a vast global demand, requiring international cooperation and local vaccine Collin, N.; et al.
    [Show full text]
  • Possible Options for Using a Who H5n1 Vaccine Stockpile
    Meeting summary TECHNICAL CONSIDERATIONS ON HUMAN H5N1 INFLUENZA VACCINES: POSSIBLE OPTIONS FOR USING A WHO H5N1 VACCINE STOCKPILE During 1-3 October 2007, WHO held a consultation in Geneva to review available data on the safety and immunogenicity of H5N1 vaccines, and possible options for the use of H5N1 vaccines as well as a WHO stockpile of such vaccine. Invited participants included researchers, representatives from WHO Influenza Collaborating Centres, selected countries, SAGE, and industry. Observers were allowed. Several presentations were provided including a summary of the results of a recent consultation on H5N1 vaccines held by the European Centre for Disease Prevention and Control (ECDC).1 1. Characteristics of currently-available human H5N1 influenza vaccines Safety: Based on currently available data from animal and limited human clinical trials, there is no evidence so far of any identifiable major safety concern related to H5N1 vaccines, although additional local reactions with some adjuvanted vaccines have been noted. Additional controlled trials with long-term follow up, especially in children, are needed. If a live attenuated vaccine based on the H5N1 virus is used in a non-pandemic period, there is a risk the vaccine virus could reassort with a circulating seasonal human influenza virus an create a hybrid virus, but this risk was considered small. If any type of H5N1 vaccine is used extensively, additional adverse safety signals can be anticipated. Part of the preparations for widespread use should include ongoing monitoring to ensure that adverse events are identified and appropriate responses are taken. Immunogenicity: Currently there are no standard criteria to assess the immunogenicity of human H5N1 vaccines.
    [Show full text]
  • DNA-Launched RNA Replicon Vaccines Induce Potent Anti-SARS-Cov-2
    www.nature.com/scientificreports OPEN DNA‑launched RNA replicon vaccines induce potent anti‑SARS‑CoV‑2 immune responses in mice Inga Szurgot*, Leo Hanke, Daniel J. Sheward, Laura Perez Vidakovics, Ben Murrell, Gerald M. McInerney & Peter Liljeström The outbreak of the SARS‑CoV‑2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID‑19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus‑ based DNA‑launched self‑replicating (DREP) vaccine candidates encoding either SARS‑CoV‑2 spike glycoprotein (DREP‑S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP‑Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodifed spike turned out to be more potent vaccine candidate, eliciting high titers of SARS‑CoV‑2 specifc IgG antibodies that were able to efciently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efciently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS‑ CoV‑2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS‑CoV‑2. Te severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of COVID- 19 in late 20191,2. Te disease pathology ranges from asymptomatic infection to severe acute respiratory distress and death3,4.
    [Show full text]