How Scientist/Founders Lead Successful
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department. -
Boston University Journal of Science & Technology
4 B.U. J. SCI. & TECH. L. 1 January 23, 1997 Boston University Journal of Science & Technology Law Symposium Financing the Biotech Industry: Can the Risks Be Reduced? Ronald Cass, Joshua Lerner, Farah H. Champsi, Stanley C. Erck, Jonathan R. Beckwith, Leslie E. Davis, Henri A. Termeer Table of Contents Speeches..........................................................................................................................[1] Dean Ronald Cass.............................................................................................[1] Joshua Lerner....................................................................................................[2] Farah Champsi..................................................................................................[8] Stanley Erck.....................................................................................................[18] Jonathan Beckwith.........................................................................................[24] Leslie Davis......................................................................................................[37] Henri Termeer.................................................................................................[47] Question and Answer Session..................................................................................[60] Financing the Biotech Industry: Can the Risks Be Reduced?† Jonathan R. Beckwith, Farah H. Champsi, Leslie E. Davis,* Stanley C. Erck, Joshua Lerner, Henri A. Termeer Dean Ronald Cass: 1. The biotechnology -
A Short History of DNA Technology 1865 - Gregor Mendel the Father of Genetics
A Short History of DNA Technology 1865 - Gregor Mendel The Father of Genetics The Augustinian monastery in old Brno, Moravia 1865 - Gregor Mendel • Law of Segregation • Law of Independent Assortment • Law of Dominance 1865 1915 - T.H. Morgan Genetics of Drosophila • Short generation time • Easy to maintain • Only 4 pairs of chromosomes 1865 1915 - T.H. Morgan •Genes located on chromosomes •Sex-linked inheritance wild type mutant •Gene linkage 0 •Recombination long aristae short aristae •Genetic mapping gray black body 48.5 body (cross-over maps) 57.5 red eyes cinnabar eyes 67.0 normal wings vestigial wings 104.5 red eyes brown eyes 1865 1928 - Frederick Griffith “Rough” colonies “Smooth” colonies Transformation of Streptococcus pneumoniae Living Living Heat killed Heat killed S cells mixed S cells R cells S cells with living R cells capsule Living S cells in blood Bacterial sample from dead mouse Strain Injection Results 1865 Beadle & Tatum - 1941 One Gene - One Enzyme Hypothesis Neurospora crassa Ascus Ascospores placed X-rays Fruiting on complete body medium All grow Minimal + amino acids No growth Minimal Minimal + vitamins in mutants Fragments placed on minimal medium Minimal plus: Mutant deficient in enzyme that synthesizes arginine Cys Glu Arg Lys His 1865 Beadle & Tatum - 1941 Gene A Gene B Gene C Minimal Medium + Citruline + Arginine + Ornithine Wild type PrecursorEnz A OrnithineEnz B CitrulineEnz C Arginine Metabolic block Class I Precursor OrnithineEnz B CitrulineEnz C Arginine Mutants Class II Mutants PrecursorEnz A Ornithine -
Fibrolase: Trials and Tribulations
Toxins 2010, 2, 793-808; doi:10.3390/toxins2040793 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Fibrolase: Trials and Tribulations Francis S. Markland 1,2,* and Steve Swenson 1,2 1 Department of Biochemistry and Molecular Biology, Cancer Research Laboratory, Keck School of Medicine, University of Southern California, 1303 N. Mission Rd., Los Angeles, CA 90033, USA 2 USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-(323) 224-7981; Fax: +1-(323) 224-7679. Received: 11 March 2010; in revised form: 31 March 2010 / Accepted: 19 April 2010 / Published: 20 April 2010 Abstract: Fibrolase is the fibrinolytic enzyme isolated from Agkistrodon contortrix contortrix (southern copperhead snake) venom. The enzyme was purified by a three-step HPLC procedure and was shown to be homogeneous by standard criteria including reverse phase HPLC, molecular sieve chromatography and SDS-PAGE. The purified enzyme is a zinc metalloproteinase containing one mole of zinc. It is composed of 203 amino acids with a blocked amino-terminus due to cyclization of the terminal Gln residue. Fibrolase shares a significant degree of homology with enzymes of the reprolysin sub-family of metalloproteinases including an active site homology of close to 100%; it is rapidly inhibited by chelating agents such as EDTA, and by alpha2-macroglobulin (). The enzyme is a direct-acting thrombolytic agent and does not rely on plasminogen for clot dissolution. Fibrolase rapidly cleaves the A()-chain of fibrinogen and the B()-chain at a slower rate; it has no activity on the -chain. -
Guidelines on CVD During Pregnancy (TF17) - Task Force Members and Additional Contributors
Guidelines on CVD during Pregnancy (TF17) - Task Force Members and Additional Contributors Expert Relationship Type of relationship with industry Financial declaration with Industry Blomstrom-Lundqvist Yes A - Direct Personal payment: Speaker fees, Honoraria, Consultancy, Advisory Board fees, Investigator, Committee Member, etc. Carina - Medtronic : Pacemaker B - Payment to your Institution: Speaker fees, Honoraria, Consultancy, Advisory Board fees, Investigator, Committee Member, etc. - Atricure : AF ablation Borghi Claudio Yes A - Direct Personal payment: Speaker fees, Honoraria, Consultancy, Advisory Board fees, Investigator, Committee Member, etc. - Menarini International : ACE-inhibitors - Boheringer Ingelheim : Antihypertensive drugs - Recordati International : Antihypertensive drugs - Novartis : Antihypertensive, Heart Failure D - Research funding (departmental or institutional). - Barilla Food Company : Lactotripeptides Cifkova Renata Yes A - Direct Personal payment: Speaker fees, Honoraria, Consultancy, Advisory Board fees, Investigator, Committee Member, etc. - Boehringer-Ingelheim : cardiovascular - Daiichi Sankyo : cardiovascular - MSD-SP, Boehringer Ingelheim, Bayer : cardiovascular B - Payment to your Institution: Speaker fees, Honoraria, Consultancy, Advisory Board fees, Investigator, Committee Member, etc. - Daiichi Sankyo : cardiovascular - Novartis : cardiovascular D - Research funding (departmental or institutional). - Krka Czech Republic : cardiovascular - Servier Czech Republic : cardiovascular Ferreira J Rafael No -
Boosting Our Best Shot
NEWS FEATURE Boosting Our Best al orr a C rin Ma s by Shot ration Illust Vaccines work by training the immune system to target pathogens, but many types of shots need added substances called adjuvants to elicit a robust response. Despite the power of adjuvants, only one, called alum, is approved in the US. Charlotte Schubert looks at recent discoveries that could translate into a wider range of adjuvants and perhaps help provide future protection against diseases ranging from malaria to H1N1 ‘swine’ flu. © All rights reserved. 2009 Inc. Nature America, Max Theiler never thought it would be easy to particularly good at bumping up the immune FDA is poised to give the green light to such vanquish one of the biggest killers of his time. response. By comparison, most vaccines adjuvanted vaccines, lined up for approval in Yellow fever had already stumped a previous developed today rely on bits of microbes, such Europe, remains unclear (see sidebar). generation of microbe-hunters. And in the as short protein sequences—and they don’t For many years, researchers such as Theiler early 1900s it killed subjects who volunteered work quite so well on their own. To elicit an moved their vaccine candidates forward with for experiments in which they received bites immune response, these vaccines typically little mechanistic understanding of how they from mosquitoes, proving that the insects need a jolt from an adjuvant, a substance worked. That empirical approach is ending, transmit the disease. named from the Latin ‘adjuvans’, which says Bali Pulendran, an immunologist at the Theiler’s work was painstaking. -
Cancer Vaccines - Hope Or Hype?
DrugWatch Cancer vaccines - hope or hype? ➜ Anthony Walker* There have been many false dawns in the field of cancer vaccines, but some of the new products look distinctly promising. sing vaccines that stimulate the hysteria, safety, selectivity and potency not by normal tissues. There are numer- immune system to fight cancer remain the hallmarks of a vaccine, and ous variants: subunit and anti-idiotype Uappeals to many as a natural cancer vaccines promise efficacy with vaccines and immuno-gene therapy to approach that is both safe and effective. limited – or no – side-effects. Serious name but three. Much effort has been And, judging from a recent headline adverse events have been the exception directed toward high-tech solutions in in the UK newspaper The Times in the clinical trials of experimental vac- this area, but it has become apparent – “Vaccine jab could cure lung cancer” – cines conducted to date. At the same that tumours continue to mutate as the there is clear public interest in this area. time, there have been few glimpses of disease progresses, evading the immune Even big pharma is showing signs of real benefit, with numerous false dawns system by downregulating or losing the excitement. At a partnering conference and much disappointment. expression of the target antigen. one of the more traditional majors said But there was an explosion of interest in The third group, multivalent and ultra- cancer vaccines had moved from the ‘no this field after the unravelling of mech- valent vaccines, combine several anti- strategic interest’ category to ‘watchful anisms for triggering cytotoxic T-cell gens in one formulation to overcome waiting’ – an almost seismic shift to (CTL) response about 15 years ago. -
Cancer Vaccines Edge Towards Success
DrugWatch Cancer vaccines edge towards success ➜ Richard Harrop* and Stuart Naylor* A number of cancer vaccines are now entering the final stage of clinical development. Are vaccines finally on their way to enjoying mainstream success in the oncology arena? ver the past decade, vaccina- cines that have such a safety profile such as renal cancer and melanoma, tion strategies for the treat- may be readily integrated into current yet they offer only modest benefits and O ment of cancer have been standard-of-care regimens, particularly frequently lead to toxic side-effects. investigated with renewed vigour, per- in the first-line setting where combi- In between these two approaches haps catalysed by a greater under- nation strategies prevail over lie cell-based therapies, in which whole standing of tumour immunology and monotherapies. tumour cells or cell extracts are used as the clinical successes achieved with the immunogen. While tumour-specific monoclonal antibody and cytokine- TARGETED VS NON-SPECIFIC immune responses may be induced, based therapies. However, before vac- Cancer immunotherapies can broadly the precise target(s) of the response is cines become fully integrated into the be divided into two categories: not usually known. Furthermore, arsenal of weapons currently used to tumour-specific and highly-targeted immune responses against other com- treat cancer, they must show not only products, for example vaccines or mon tissue antigens may also be efficacy but also safety and limited or antibodies that target a specific induced. Despite the lack of fine no toxicity. Recently, a number of tumour antigen, and therapies which specificity of the immune response cancer vaccines have moved into the modulate the immune system in a induced and the labour involved in the stages of development where clinical non-tumour-specific way. -
Schedule 14A
QuickLinks -- Click here to rapidly navigate through this document UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 (Amendment No. ) Filed by the Registrant ý Filed by a Party other than the Registrant o Check the appropriate box: o Preliminary Proxy Statement o Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) ý Definitive Proxy Statement o Definitive Additional Materials o Soliciting Material under §240.14a-12 Verastem, Inc. (Name of Registrant as Specified In Its Charter) (Name of Person(s) Filing Proxy Statement, if other than the Registrant) Payment of Filing Fee (Check the appropriate box): ý No fee required. o Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: o Fee paid previously with preliminary materials. o Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. -
How Scientist/Founders Lead Successful Biopharmaceutical
Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2008 How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies Lynn Johnson Langer Antioch University - PhD Program in Leadership and Change Follow this and additional works at: http://aura.antioch.edu/etds Part of the Business Administration, Management, and Operations Commons, Medicine and Health Sciences Commons, and the Organizational Behavior and Theory Commons Recommended Citation Langer, Lynn Johnson, "How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies" (2008). Dissertations & Theses. 138. http://aura.antioch.edu/etds/138 This Dissertation is brought to you for free and open access by the Student & Alumni Scholarship, including Dissertations & Theses at AURA - Antioch University Repository and Archive. It has been accepted for inclusion in Dissertations & Theses by an authorized administrator of AURA - Antioch University Repository and Archive. For more information, please contact [email protected], [email protected]. HOW SCIENTIST/FOUNDERS LEAD SUCCESSFUL BIOPHARMACEUTICAL ORGANIZATIONS: A STUDY OF THREE COMPANIES Lynn Johnson Langer A DISSERTATION Submitted to the Ph.D. in Leadership & Change Program of Antioch University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May, 2008 This is to certify that the dissertation entitled: HOW SCIENTIST/FOUNDERS -
AVEO PHARMACEUTICALS, INC. (Name of Registrant As Specified in Its Charter)
Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A (Rule 14a-101) INFORMATION REQUIRED IN PROXY STATEMENT SCHEDULE 14A INFORMATION Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 Filed by the Registrant x Filed by a party other than the Registrant ¨ Check the appropriate box: ¨ Preliminary Proxy Statement ¨ Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) x Definitive Proxy Statement ¨ Definitive Additional Materials ¨ Soliciting Material Pursuant to §240.14a-12 AVEO PHARMACEUTICALS, INC. (Name of Registrant as Specified In Its Charter) (Name of Person(s) Filing Proxy Statement, if Other Than The Registrant) Payment of Filing Fee (Check the appropriate box): x No fee required. ¨ Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: ¨ Fee paid previously with preliminary materials: ¨ Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. -
Speaker Bios 2Nd FDA/PQRI Conference on Advancing Product Quality
Speaker Bios 2nd FDA/PQRI Conference on Advancing Product Quality Professor Bertil Abrahamsson, Ph.D. Dr. Abrahamsson has a broad experience of industrial drug development from more than 25 years of work with Astra and AstraZeneca. During this period he has had various line and project management positions. Presently he is a Senior Principal Scientist with emphasis on biopharmaceutics., In this role he is leading biopharmaceutics research and product development support on a global basis. In addition, as one of the most senior scientists in AZ Pharmaceutical Development he is also a member of the local as well as the extended global leadership teams. Dr. Abrahamsson is an internationally recognised scientist and he has published more than 80 papers in the area of oral biopharmaceutics and drug delivery. He is presently an adjunct Professor in Biopharmaceutics at Uppsala University. He initiated and is currently leading a major european private public partnership project in oral biopharmaceutics area ( http://www.orbitoproject.eu). Ilgaz Akseli, Ph.D., MBA Dr. Akseli is a Senior Associate Director in the Pharmaceutical Development department in Boehringer-Ingelheim Pharmaceuticals, Ridgefield, CT. He is the head of the Formulation Material Profiling and Computational Modeling Labs. Two labs are in the global level and his team is guiding and supporting the formulation and process development for drug candidates in assigned therapeutic areas. Dr. Akseli earned his BSc degree in Mechanical Engineering with a focus on Design of Powder Compaction. He has two MSc degrees; one is in Materials Science and Engineering from University College London with a focus on Metal Powder Compaction and the other degree is in Business Management from London School of Economics with a focus on Lean Six Sigma implementations in the Pharmaceutical Industry.