Heterogeneity in Circulating Tumor Cells: the Relevance of the Stem-Cell Subset

Total Page:16

File Type:pdf, Size:1020Kb

Heterogeneity in Circulating Tumor Cells: the Relevance of the Stem-Cell Subset cancers Review Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset Chiara Agnoletto 1 , Fabio Corrà 1, Linda Minotti 1 , Federica Baldassari 1, Francesca Crudele 1 , William Joseph James Cook 2 , Gianpiero Di Leva 2, Adamo Pio d’Adamo 3,4 , Paolo Gasparini 3,4 and Stefano Volinia 1,* 1 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] (C.A.); [email protected] (F.C.); [email protected] (L.M.); [email protected] (F.B.); [email protected] (F.C.) 2 School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK; [email protected] (W.J.J.C.); [email protected] (G.D.L.) 3 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (A.P.d.); [email protected] (P.G.) 4 Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy * Correspondence: [email protected]; Tel.: +39-0532-455714 Received: 1 February 2019; Accepted: 30 March 2019; Published: 5 April 2019 Abstract: The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity. Keywords: CTC; EMT; stemness; CSC 1. Introduction Despite recent medical advances, metastasis, tumor relapse, a lack of effective therapies, and drug resistance remain the major causes of death for tumor patients [1–5]. Research on circulating tumor cells (CTCs), which have been detected in the majority of epithelial cancers [6,7], is a dynamic field of translational and basic research, with more than 270 clinical trials having evaluated CTC enumeration as a biomarker [8]. Further, several studies on CTCs aimed to understand critical pathways that mediate cancer dissemination, and may not be apparent in primary or metastatic tumors. Cancer metastasis occurs when tumor cells dissociate from a primary tumor and migrate to distant organs through the peripheral vasculature [1,9–12]. Cancer cells within the primary tumor lose cell-cell adhesion and acquire features of invasiveness and motility due to epithelial-to-mesenchymal Cancers 2019, 11, 483; doi:10.3390/cancers11040483 www.mdpi.com/journal/cancers Cancers 2019, 11, 483 2 of 36 transition (EMT), leading to their intravasation and survival in blood or lymph vessels, and finally their extravasation at distant sites; here they are subjected to mesenchymal-to-epithelial transition (MET), and proliferate to establish metastatic lesions [12–14]. Whether the release of CTCs into the circulation is a predetermined biological process still remains a debatable matter. Cancer cells can enter circulation long before a tumor is diagnosed; the majority of cells die and only a minor fraction contains viable metastatic precursors that infiltrate organs and survive as disseminated seeds for eventual relapse [1,15]. Therefore, metastatic colonization might be a highly inefficient process, but once it is established, current treatments generally fail to provide persistent responses [12]. Tumors are thought to arise from mutant normal stem cells in their native niches, or from the progeny of cells that retain their tumor-initiating capacity [16,17]. Once at distant sites, these cells survive and proliferate through interactions with specialized niches [18]. Data from a number of studies demonstrate that CTCs with stemness properties exist and represent the most aggressive tumor cells in circulation [19,20]. In this review, we will discuss current concepts and will address questions relative to the heterogeneity of CTCs and the presence of cancer stem cells circulating in the bloodstream (See Table1). 2. Heterogeneity of CTCs CTCs are very rare cancer cells released from a primary tumor. A lot of evidence documents that CTCs represent a heterogeneous pool of tumor cells [8], with highly variable, but generally short, survival times; nevertheless, the pool of these cells in the bloodstream can be continuously replenished by the release of replicating tumor cells in metastatic foci, and thus relates to cancer dormancy [21,22]. To date, relatively little is known regarding the number of CTCs in cancers, their molecular and biological heterogeneity, and their functionalities [9]. Although heterogeneity in CTCs has not yet been fully defined, a fraction of these cells are thought to be viable metastatic precursors capable of initiating a clonal metastatic lesion [9]. A subset of CTCs is represented by inactive non-cycling cells, termed dormant cancer cells [23], which act as latent tumor-initiating seeds and eventually reawaken, and might not respond to chemotherapeutics used in clinics [8,12]. By uncovering phenotypes of CTCs, CTC heterogeneity would be dissected in relation to metastatic competence [19,24]. Recently, clusters of CTCs, consisting of 2–50 cells, have been detected in the vasculature of patients with cancers of different origins, which arise from oligoclonal tumor cell groupings, including breast, prostate, pancreatic, glioblastoma, head and neck cancers [24–33]. Cells within micro-clusters might be protected either from anoikis, associated with the loss of cell-cell adhesion and attachment to the basement membrane, or shear stresses in the circulation [25–27]. Both the structural deformability of aggregated cells and the presence of vascular shunts may allow CTC-clusters to circulate, while inducing a rapid clearance within distal tissues [25]. Although rare, CTC-clusters present a dramatically enhanced metastatic potential, as confirmed in mouse models, and by the adverse prognosis in patients with high numbers of CTC-clusters [12,30,34]. Additionally, neutrophils directly interact with CTCs, defining CTC–neutrophil clusters, and support cell cycle progression in circulation. This interaction in turn leads to more efficient metastasis generation and represents key vulnerabilities of the metastatic process for drug targeting in breast cancer [35]. Mesenchymal transcripts were found to be expressed in tumor cells from CTC-clusters in a human breast tumor, conferring both migratory and stem-like properties [32]. A recent study has suggested that the coexpression of EpCAM, CD44, CD47, and MET in CTCs identifies a subset of cells with increased metastatic capacity [36]. Novel mediators of metastasis have been identified by comparing clusters of tumor cells, captured by using a negCTC-iChip, with single CTCs from breast cancer patients: single cell-resolution RNA sequencing demonstrated the significantly divergent expression of only a few genes, including plakoglobin [25]. Plakoglobin functions as an intercellular tether that confers added metastatic potential to tumor cells in the circulation. Knockdown of plakoglobin inhibits CTC-cluster generation and lung metastases, Cancers 2019, 11, 483 3 of 36 while both abundance of CTC-clusters and high plakoglobin levels denote adverse outcome in breast cancer patients [25], pointing to CTC-clusters as critical mediators of cancer metastasis. 2.1. Partial Mesenchymal Transition in CTCs Recent data support the hypothesis that CTC profile changes occur during tumor cell dissemination, in order to enter into the vasculature, survive in circulation, extravasate, and generate secondary tumors [19,37–39]. Thus, in response to signaling proteins released by stromal cells, tumor cells undergo reversible phenotypic change, described as epithelial-to-mesenchymal transition (EMT) [12,39–43]. EMT is also required in tissue repair; consistently, the metastatic process is at least in part similar to tissue regeneration [14,40,44]. EMT results in a reduced expression of epithelial markers, and an increased plasticity and capacity for migration and invasion, as well as a resistance to anoikis and apoptosis, and senescence, which are hallmarks required for CTC survival and dissemination [14,29]. Studies of the effects of EMT in CTCs have suggested that mesenchymal transformation may facilitate the initial steps of the metastatic cascade, but may reduce their competence to initiate overt metastases [19,45,46]. Disseminated cancer cells may at least partially revert to an epithelial phenotype to promote adhesion and proliferation in distal sites, through mesenchymal–epithelial transition [2,44,47,48]. Cancer-associated EMT
Recommended publications
  • Human N-Cadherin / CD325 / CDH2 Protein (His & Fc Tag)
    Human N-Cadherin / CD325 / CDH2 Protein (His & Fc Tag) Catalog Number: 11039-H03H General Information SDS-PAGE: Gene Name Synonym: CD325; CDHN; CDw325; NCAD Protein Construction: A DNA sequence encoding the human CDH2 (NP_001783.2) (Met 1-Ala 724) was fused with the C-terminal polyhistidine-tagged Fc region of human IgG1 at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 70 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Cadherins are calcium dependent cell adhesion proteins, and they preferentially interact with themselves in a homophilic manner in Stability: connecting cells. Cadherin 2 (CDH2), also known as N-Cadherin (neuronal) (NCAD), is a single-pass tranmembrane protein and a cadherin containing ℃ Samples are stable for up to twelve months from date of receipt at -70 5 cadherin domains. N-Cadherin displays a ubiquitous expression pattern but with different expression levels between endocrine cell types. CDH2 Asp 160 Predicted N terminal: (NCAD) has been shown to play an essential role in normal neuronal Molecular Mass: development, which is implicated in an array of processes including neuronal differentiation and migration, and axon growth and fasciculation. The secreted recombinant human CDH2 is a disulfide-linked homodimeric In addition, N-Cadherin expression was upregulated in human HSC during protein. The reduced monomer comprises 813 amino acids and has a activation in culture, and function or expression blocking of N-Cadherin predicted molecular mass of 89.9 kDa. As a result of glycosylation, it promoted apoptosis. During apoptosis, N-Cadherin was cleaved into 20- migrates as an approximately 114 and 119 kDa band in SDS-PAGE under 100 kDa fragments.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • And MUC1 in Mammary Epithelial Cells
    Linköping University Post Print Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells Stina Petersson, E. Shubbar, M. Yhr, A. Kovacs and Charlotta Enerbäck N.B.: When citing this work, cite the original article. The original publication is available at www.springerlink.com: Stina Petersson, E. Shubbar, M. Yhr, A. Kovacs and Charlotta Enerbäck, Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells, 2011, Breast Cancer Research and Treatment, (125), 1, 13-25. http://dx.doi.org/10.1007/s10549-010-0820-4 Copyright: Springer Science Business Media http://www.springerlink.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-63954 1 Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells Petersson S1, Shubbar E1, Yhr M1, Kovacs A2 and Enerbäck C3 Departments of 1Clinical Genetics and 2Pathology, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; 3Department of Clinical and Experimental Medicine, Division of Cell Biology and Dermatology, Linköping University, SE-581 85 Linköping, Sweden E-mail: [email protected] E-mail: maria.yhr@ clingen.gu.se E-mail: [email protected] E-mail: [email protected] Correspondence: Stina Petersson, Department of Clinical Genetics, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden E-mail: [email protected] 2 Abstract Psoriasin (S100A7), a member of the S100 gene family, is highly expressed in high-grade comedo ductal carcinoma in situ (DCIS), with a higher risk of local recurrence. Psoriasin is therefore a potential biomarker for DCIS with a poor prognosis.
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • CDH2 and CDH11 Act As Regulators of Stem Cell Fate Decisions Stella Alimperti A, Stelios T
    Stem Cell Research (2015) 14, 270–282 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/scr REVIEW CDH2 and CDH11 act as regulators of stem cell fate decisions Stella Alimperti a, Stelios T. Andreadis a,b,⁎ a Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA b Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA Received 18 September 2014; received in revised form 24 January 2015; accepted 10 February 2015 Abstract Accumulating evidence suggests that the mechanical and biochemical signals originating from cell–cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell–cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • In Prostate Cancer Tissues of Men with Type 2 Diabetes
    biomedicines Article Increased Expressions of Matrix Metalloproteinases (MMPs) in Prostate Cancer Tissues of Men with Type 2 Diabetes Andras Franko 1,2,3 , Lucia Berti 2,3 , Jörg Hennenlotter 4 , Steffen Rausch 4, Marcus O. Scharpf 5, Martin Hrabe˘ de Angelis 3,6, Arnulf Stenzl 4 , Andreas Peter 2,3,7, Andreas L. Birkenfeld 1,2,3, Stefan Z. Lutz 1,8, Hans-Ulrich Häring 1,2,3 and Martin Heni 1,2,3,7,* 1 Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] (A.F.); [email protected] (A.L.B.); [email protected] (H.-U.H.) 2 Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany; [email protected] 3 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany 4 Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] (J.H.); steff[email protected] (S.R.); [email protected] (A.S.) 5 Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] 6 Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; [email protected] 7 Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] 8 Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-7071-29-82714 Received: 3 October 2020; Accepted: 12 November 2020; Published: 16 November 2020 Abstract: Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa).
    [Show full text]
  • N Cadherin (CDH2) Mouse Monoclonal Antibody [Clone ID: OTI3B10] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA503775 N Cadherin (CDH2) Mouse Monoclonal Antibody [Clone ID: OTI3B10] Product data: Product Type: Primary Antibodies Clone Name: OTI3B10 Applications: FC, IHC, WB Recommend Dilution: WB 1:2000, IHC 1:150, FLOW 1:100 Reactivity: Human Host: Mouse Isotype: IgG2a Clonality: Monoclonal Immunogen: Full length human recombinant protein of human CDH2(NP_001783) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Predicted Protein Size: 97.2 kDa Gene Name: cadherin 2 Database Link: NP_001783 Entrez Gene 1000 Human Background: This gene is a classical cadherin from the cadherin superfamily. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. The protein functions during gastrulation and is required for establishment of left-right asymmetry. At certain central nervous system synapses, presynaptic to postsynaptic adhesion is mediated at least in part by this gene product. [provided by RefSeq] Synonyms: CD325; CDHN; CDw325; NCAD Protein Families: Druggable Genome, ES Cell Differentiation/IPS, Transmembrane Protein Pathways: Arrhythmogenic right ventricular cardiomyopathy (ARVC), Cell adhesion molecules (CAMs) This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2020 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 N Cadherin (CDH2) Mouse Monoclonal Antibody [Clone ID: OTI3B10] – TA503775 Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY CDH2 ([RC207170], Right lane) cDNA for 48 hrs and lysed.
    [Show full text]
  • Epithelial-Mesenchymal Transition (EMT) Markers in Human Pituitary Adenomas Indicate a Clinical Course
    ANTICANCER RESEARCH 35: 2635-2644 (2015) Epithelial-mesenchymal Transition (EMT) Markers in Human Pituitary Adenomas Indicate a Clinical Course WANG JIA1,2,3 , JINKUI ZHU1,4, TRACEY A. MARTIN2,3,6, AIHUA JIANG5, ANDREW J. SANDERS2,3,6 and WEN G. JIANG2,3,6 1Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, P.R. China; 2Cancer and 3Brain Institutes, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Capital Medical University, Beijing, P.R. China; 4Department of Neurosurgery, Zhaoyuan City Hospital, YanTai, Shandong, P.R. China; 5Department of Anaesthesia, YuHuangDing Hospital, YanTai, P.R. China; 6CCMRC Cardiff University-Capital Medical University Joint Centre for Biomedical Research, Cardiff University School of Medicine, Heath Park, Cardiff, U.K. Abstract. Background/Aim: Pituitary adenomas are brain progression, bone destruction and endocrine functions. These tumors with invasive properties. Epithelial-mesenchymal- markers are valuable biomarkers in assessing the clinical transition (EMT) is a cellular process linked to the course of pituitary adenomas. transformation to an aggressive cancer phenotype. In the present study, we investigated the expression of a panel of Pituitary adenoma is a common benign tumor of the central EMT markers, namely E-cadherin, N-cadherin, SLUG, SNA1 nervous system with a number of biological behaviours and TWIST in a cohort of human pituitary adenomas. similar to malignant tumors, including invasion of the Materials and Methods: Fresh-frozen human pituitary tumors surrounding structures, such as the cavernous sinus, (n=95) were collected immediately after surgery for hypothalamus and sphenoid sinus, where it is named invasive histology. Gene transcripts of the EMT markers were adenoma (1).
    [Show full text]
  • Comprehensive Profiling of Novel Epithelial–Mesenchymal Transition
    www.nature.com/scientificreports OPEN Comprehensive profling of novel epithelial–mesenchymal transition mediators and their clinical signifcance in colorectal cancer Satoshi Ishikawa1, Naohiro Nishida1,2*, Shiki Fujino1, Takayuki Ogino1, Hidekazu Takahashi1, Norikatsu Miyoshi1, Mamoru Uemura1, Taroh Satoh1,2, Hirofumi Yamamoto1, Tsunekazu Mizushima1, Yuichiro Doki1 & Hidetoshi Eguchi1 Epithelial–mesenchymal transition (EMT) is a drastic phenotypic change during cancer metastasis and is one of the most important hallmarks of aggressive cancer. Although the overexpression of some specifc transcription factors explains the functional alteration of EMT-induced cells, a complete picture of this biological process is yet to be elucidated. To comprehensively profle EMT-related genes in colorectal cancer, we quantifed the EMT induction ability of each gene according to its similarity to the cancer stromal gene signature and termed it “mesenchymal score.” This bioinformatic approach successfully identifed 90 candidate EMT mediators, which are strongly predictive of survival in clinical samples. Among these candidates, we discovered that the neuronal gene ARC, possibly originating from the retrotransposon, unexpectedly plays a crucial role in EMT induction. Profling of novel EMT mediators we demonstrated here may help understand the complexity of the EMT program and open up new avenues for therapeutic intervention in colorectal cancer. Epithelial–mesenchymal transition (EMT) is a phenotypic change of epithelial cells, in which cells lose epithelial
    [Show full text]
  • Hsa Circ 001659 Serves As a Diagnostic and Prognostic Biomarker for Colorectal Cancer
    Hsa_circ_001659 serves as a diagnostic and prognostic biomarker for colorectal cancer Baoyu He Shanghai Jiao Tong University School of Medicine Aliated Renji Hospital Wei Chao Guangxi Medical University Zhizhuo Huang Guangxi Medical University Jianchao Zeng Guangxi medical university Jie Yang Guangxi medical university Delan Luo First Peoples Hospital of Neijiang Shishun Huang Guangxi medical university Hongli Pan ( [email protected] ) Guangxi medical university Yujun Hao Shanghai Jiao Tong University School of Medicine Aliated Renji Hospital Research Keywords: circular RNA, biomarker, early diagnosis, prognosis prediction, epithelial-mesenchymal transition, cytoskeleton, colorectal cancer Posted Date: December 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-135226/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background: Colorectal cancer (CRC) is prevalent worldwide and novel diagnostic and prognostic biomarkers are needed to improve precision medicine. Circulating circular RNAs (circRNAs) are currently being considered as emerging tumor biomarkers. Methods: Candidate circRNA was selected by integrating analysis of Gene Expression Omnibus (GEO) database using GEO2R program. The expression data of serum circ_001659 were obtained from the quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic curves were applied to evaluate the clinical applications of circ_001659. Finally, biological functions and potential mechanisms of circ_001659 in tumor progression were investigated in CRC progression. Results: The results showed that the diagnostic performance of serum circ_001659 were excellent for CRC detection. The predictive values and likelihood ratios were satisfactory for the diagnosis of CRC, including patients in early-stage disease or patients with carcinoembryonic antigen (CEA)-negative status.
    [Show full text]
  • The Art of Mast Cell Adhesion
    cells Review The Art of Mast Cell Adhesion Joanna Pastwi ´nska 1,2, Paulina Zelechowska˙ 2, Aurelia Walczak-Drzewiecka 1, Ewa Brzezi ´nska-Błaszczyk 2 and Jarosław Dastych 1,* 1 Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; [email protected] (J.P.); [email protected] (A.W.-D.) 2 Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; [email protected] (P.Z.);˙ [email protected] (E.B.-B.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 10 December 2020; Published: 11 December 2020 Abstract: Cell adhesion is one of the basic phenomena occurring in a living organism, affecting many other processes such as proliferation, differentiation, migration, or cell viability. Mast cells (MCs) are important elements involved in defending the host against various pathogens and regulating inflammatory processes. Due to numerous mediators, they are contributing to the modulation of many basic cellular processes in a variety of cells, including the expression and functioning of different adhesive molecules. They also express themselves many adhesive proteins, including ICAM-1, ICAM-3, VCAM-1, integrins, L-selectin, E-cadherin, and N-cadherin. These molecules enable MCs to interact with other cells and components of the extracellular matrix (ECM), creating structures such as adherens junctions and focal adhesion sites, and triggering a signaling cascade. A thorough understanding of these cellular mechanisms can create a better understanding of MC biology and reveal new goals for MC targeted therapy. This review will focus on the current knowledge of adhesion mechanisms with the involvement of MCs.
    [Show full text]