PETROLEUM EXPLORATION in NORTHERN CANADA a Guide To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heraldry in the Republic of Macedonia (1991-2019)
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2021 doi:10.20944/preprints202109.0027.v1 Article Heraldry in the Republic of Macedonia (1991-2019) Jovan Jonovski1, * 1 Macedonian Heraldic Society; [email protected] * Correspondence: [email protected]; Tel.: +38970252989 Abstract: Every country has some specific heraldry. In this paper, we will consider heraldry in the Republic of Macedonia, understood by the multitude of coats of arms, and armorial knowledge and art. The paper covers the period from independence until the name change (1991-2019). It co- vers the state coat of arms of the Republic of Macedonia especially the 2009 change. Special atten- tion is given to the development of the municipal heraldry, including the legal system covering the subject. Also personal heraldry developed in 21 century is considered. The paper covers the de- velopment of heraldry and the heraldic thought in the given period, including the role of the Macedonian Heraldic Society and its journal Macedonian Herald in development of theoretic and practical heraldry, as well as its Register of arms and the Macedonian Civic Heraldic System. Keywords: Heraldry in Macedonia; Macedonian civic heraldry; Republic of Macedonia. 1. Introduction The Republic of Macedonia became independent from the Socialist Federative Re- public of Yugoslavia with the Referendum of 8 September 1991. The Democratic Federal Macedonia was formed during the first session of the Anti-Fascist Assembly for the Na- tional Liberation of Macedonia (ASNOM) on 2 August 1944 (it later became the People’s Republic of Macedonia, a federal unit of the Federal People’s Republic of Yugoslavia). -
MILIEUX MÉSIQUES ET SECS DE L'île BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002
UNIVERSITÉ. DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES DÉPÔT FINAL COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCES DE L'ENVIRONNEMENT PAR ISABELLE DUCLOS MILIEUX MÉSIQUES ET SECS DE L'ÎLE BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002 © Isabelle Duclos 2002 Université du Québec à Trois-Rivières Service de la bibliothèque Avertissement L’auteur de ce mémoire ou de cette thèse a autorisé l’Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse. Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses droits de propriété intellectuelle, incluant le droit d’auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d’une partie importante de ce mémoire ou de cette thèse requiert son autorisation. Il Résumé La densité de familles de la Grande Oie des neiges a augmenté récemment dans les milieux mésiques et secs de l'île Bylot, Nunavut (Canada). Ces milieux qui représentent environ 90% de la plaine sud de l'île sont aussi utilisés, parfois intensément, par les lemmings. Cette étude est la première à caractériser la végétation de ces milieux et à quantifier l'utilisation faite par ces principaux herbivores. L'utilisation et la sélection des habitats humides et mésiques par les familles d'oies ont également été étudiées via des décomptes d'oies. Dix communautés végétales ont été identifiées en 2000 et 2001. Leur couvert total de végétation était élevé (>95%), à l'exception de deux communautés végétales xériques. -
Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting
Polarforschung 74 (1-3), 21 – 39, 2004 (erschienen 2006) Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting by H. Ruth Jackson1, Tim Hannon1, Sönke Neben2, Karsten Piepjohn2 and Tom Brent3 Abstract: Three major tectonic boundaries are predicted to be present beneath durch eine folgende kompressive Phase reaktiviert wurde. Als Arbeitshypo- the waters of this segment of Nares Strait: (1) the orogenic front of the Paleo- these fassen wir die oberflächennahen Teile dieses Systems als Stirn der Plat- zoic Ellesmerian Foldbelt between thrust sheets on Ellesmere Island and flat- tengrenze zwischen Nordamerika und Grönland auf. lying foreland rocks on Greenland, (2) the supposed sinistral strike-slip plate boundary of Paleocene age between the Ellemere Island section of the North America plate and the Greenland plate, and (3) the orogenic front of the Eocene to Oligocene Eurekan Foldbelt that must lie between thrust tectonics INTRODUCTION on Ellesmere Island and undeformed rocks of Greenland. To understand this complicated situation and to look for direct evidence of the plate boundary, The Late Cretaceous and Tertiary deformation on Ellesmere new seismic reflection profiles were collected and, together with industry data in the south, interpreted. The profiles are clustered in three areas controlled by Island (Fig. 1) called the Eurekan Orogeny has been attributed the distribution of the sea ice. Bathymetry is used to extrapolate seismic to the counter clockwise rotation of Greenland (e.g., OKULITCH features with a topographic expression between the regions. Based on high- & TRETTIN 1991). However reconciling the geology on oppo- resolution boomer and deeper penetration airgun profiles five seismic units are mapped. -
Proceedings Template
Canadian Science Advisory Secretariat (CSAS) Research Document 2020/032 Central and Arctic Region Ecological and Biophysical Overview of the Southampton Island Ecologically and Biologically Significant Area in support of the identification of an Area of Interest T.N. Loewen1, C.A. Hornby1, M. Johnson2, C. Chambers2, K. Dawson2, D. MacDonell2, W. Bernhardt2, R. Gnanapragasam2, M. Pierrejean4 and E. Choy3 1Freshwater Institute Fisheries and Oceans Canada 501 University Crescent Winnipeg, MB R3T 2N6 2North/South Consulting Ltd. 83 Scurfield Blvd, Winnipeg, MB R3Y 1G4 3McGill University. 845 Sherbrooke Rue, Montreal, QC H3A 0G4 4Laval University Pavillon Alexandre-Vachon 1045, , av. of Medicine Quebec City, QC G1V 0A6 July 2020 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2020 ISSN 1919-5044 Correct citation for this publication: Loewen, T. N., Hornby, C.A., Johnson, M., Chambers, C., Dawson, K., MacDonell, D., Bernhardt, W., Gnanapragasam, R., Pierrejean, M., and Choy, E. 2020. Ecological and Biophysical Overview of the Southampton proposed Area of Interest for the Southampton Island Ecologically and Biologically Significant Area. DFO Can. Sci. Advis. Sec. Res. -
(Late Tertiary) As Seen from Prince Patrick Island, Arctic Canada’ JOHN G
ARCTIC WL. 43, NO. 4 (DECEMBER 1990) P. 393-403 Beaufort Formation (Late Tertiary) as Seen from Prince Patrick Island, Arctic Canada’ JOHN G. FYLES’ (Received 20 March 1990; accepted in revked form 14 June 1990) ABSTRACT. The Beaufort Formation, in its typearea on Prince Patrick Island, is a single lithostratigraphicunit, a few tens of metres thick, consisting of unlithified sandy deposits of braided rivers. Organicbeds in the sand have yielded more than 200 species of plants and insects and probably originated during the Pliocene, when the area supported coniferous forest. ThisBeaufort unit forms the thin eastern edge of a northwest-thickeningwedge of sand and gravel beneath the western part of the island. These largely unexposed beds,up to several hundred metres thick, include the Beaufort unit and perhaps other older or younger deposits.On the islands northeast and southwest of PrincePatrick Island (MeighenIsland to Banks Island),the name BeaufortFormation has been appliedto similar deposits of late Rrtiary age. Most recorded Beaufort beds on these islands are stratigraphically and paleontologically equivalentto the “type” Beaufort, but a few sites that have been called Beaufort (suchas Duck Hawk Bluffsand the lower unit at Ballast Brook,on Banks Island) differ stratigraphicallyand paleontologically from the “type” Beaufort. This paper recommends that these deposits (probably middle Miocene) and others like them be assigned new stratigraphic names and not be included in the Beaufort Formation as now defined. Informal names Mary Sachs gravel (Duck HawkBluffs) and Ballast Brookbeds are proposed as an initial step. Formal use of the name Beaufort Formation shouldrestricted be to the western Arctic Islands. -
Research Cruise Report: Mission HLY031
Research Cruise Report: Mission HLY031 Conducted aboard USCGC Healy In Northern Baffi n Bay and Nares Strait 21 July –16 August 2003 Project Title: Variability and Forcing of Fluxes through Nares Strait and Jones Sound: A Freshwater Emphasis Sponsored by the US National Science Foundation, Offi ce of Polar Programs, Arctic Division Table of Contents Introduction by Chief Scientist . 4 Science Program Summary . 6 Science Party List . 7 Crew List . 8 Science Component Reports CTD-Rosette Hydrography . 9 Internally recording CTD . 29 Kennedy Channel Moorings . 33 Pressure Array . 41 Shipboard ADCP . 47 Bi-valve Retrieval . 51 Coring . 55 Seabeam Mapping . 65 Aviation Science Report . 71 Ice Report . 79 Weather Summary . 91 Inuit Perspective . 95 Photojournalist Perspective . 101. Website Log . 105 Chief Scientist Log . 111 Recommendations . .125 Introduction Dr. Kelly Kenison Falkner Chief Scientist Oregon State University In the very early hours of July 17, 2003, I arrived at collected via the ship’s Seabeam system and the underway the USCGC Healy moored at the fueling pier in St. John’s thermosalinograph system was put to good use throughout Newfoundland, Canada to assume my role as chief scientist much of the cruise. for an ambitious interdisciplinary mission to Northern Part of our success can be attributed to luck with Mother Baffi n Bay and Nares St. This research cruise constitutes Nature. Winds and ice worked largely in our favor as we the inaugural fi eld program of a fi ve year collaborative wound our way northward. Our winds were generally research program entitled Variability and Forcing of moderate and out of the south and the ice normal to light. -
Beaufort Sea Oil Spills State of Knowledge Review and Identification of Key Issues
Environmental Studies Research Funds 177 Beaufort Sea Oil Spills State of Knowledge Review and Identification of Key Issues November 2010 Correct citation for this report is: SL Ross Environmental Research Ltd., DF Dickins Associates LLC., Envision Planning Solutions Inc. 2010. Beaufort Sea Oil Spills State of Knowledge Review and Identification of Key Issues. Environmental Studies Research Funds Report No. 177. Calgary. 126p. The Environmental Studies Research Funds are financed from special levies on the oil and gas industry and administered by Natural Resources Canada for the Minister of Natural Resources Canada and the Minister of Indian Affairs and Northern Development. The Environmental Studies Research Funds and any person acting on their behalf assume no liability arising from the use of the information contained in this document. The opinions expressed are those of the authors and do not necessarily reflect those of the Environmental Studies Research Funds agencies. The use of trade names or identification of specific products does not constitute an endorsement or recommendation for use. Published under the auspices of the Environmental Studies Research Funds NE22-4/177E-PDF Environmental Research Studies Funds Report No. 177 November 2010 Beaufort Sea Oil Spills State of Knowledge Review and Identification of Key Issues by SL Ross Environmental Research Ltd. Ottawa, ON with DF Dickins Associates LLC La Jolla, CA and Envision Planning Solutions Inc. Calgary, AB Table of Contents Table of Contents........................................................................................................................... -
3.1.9 Wildlife and Wildlife Habitat This Section of the Document Focuses On
EIRB File No. 02/10-05 May 2011 ISSUED FOR USE 215 3.1.9 Wildlife and Wildlife Habitat This section of the document focuses on terrestrial mammals likely to be found within the local and regional study area and is based on a review of background information and traditional knowledge as well as the results of field studies. As defined under the IFA, “wildlife” means all fauna in a wild state other than reindeer. Section 3.1.9 considers terrestrial mammals and Section 3.1.10 considers birds. 3.1.9.1 Terrestrial Mammals There are 34 species of terrestrial mammals potentially occurring in the Regional Study Area for the proposed Highway (Table 3.1.9-1). The local and regional abundance and distribution of these species varies considerably depending on habitat availability and access to terrain suitable for various life history phases, such as calving and denning. No terrestrial mammal species were assessed as “at risk” under the NWT General Status Ranking Program (GNWT ENR 2011a). TABLE 3.1.9-1 TERRESTRIAL MAMMALS POTENTIALLY OCCURRING WITHIN THE REGIONAL STUDY AREA Common Name Scientific Name NWT General Status Rank Cinereus Shrew (Masked Shrew) Sorex cinereus Secure Dusky Shrew Sorex monticolus Secure Arctic Shrew Sorex arcticus Secure Tundra Shrew Sorex tundrensis Undetermined Barren-ground Shrew Sorex ugyunak Undetermined Snowshoe Hare Lepus americanus Secure Arctic Hare Lepus arcticus Secure Arctic Ground Squirrel Spermophilus parryii Secure Red Squirrel Tamiasciurus hudsonicus Secure Beaver Castor canadensis Secure Northern Red-backed -
Volume 12, 1959
THE ARCT IC CIRCLE THE COMMITTEE 1959 Officers President: Dr. D.C. Rose Vice -Presidents Mr. L.A.C.O. Hunt Secretary: Mr. D. Snowden Treasurer: Mr. J .E. Cleland Publications Secretary: Miss Mary Murphy Editor: Mrs .G.W. Rowley Members Mr. Harvey Blandford Mr. Welland Phipps Mr. J. Cantley Mr. A. Stevenson Mr. F..A. Cate Mr. Fraser Symington L/Cdr. J.P. Croal, R.C.N. Mr. J .5. Tener Miss Moira Dunbar Dr. R. Thorsteinsson W IC K. R. Greenaway, R.C.A.F. Dr. J.S. Willis Mr. T .H. Manning Mr. J. Wyatt Mr. Elijah Menarik CONTENTS VOLUME XlI, 1959 NO.1 Meetings of the Arctic Circle 1 Officers and Committee Members for 1959 Z Research in the Lake Hazen region of northern Ellesmere Island in the International Geophysical Year Z Anthropological work in the Eastern Arctic, 1958 13 Geomorphological studies on Southampton Island, 1958 15 Bird Sanctuaries in Southampton Island 17 Subscriptions for 1959 18 Change of Address 18 Editorial Note 18 NO. Z U.S. Navy airship flight to Ice Island T3 19 Firth River archaeological activities. 1956 and 1958 Z6 A light floatplane operation in the far northern islands, 1958 Z9 Change of Address 31 Editorial Note 31 NO.3 Meetings of the Arctic Circle 3Z The Polar Continental Shelf Project, 1959 3Z Jacobsen-McGill Arctic Research Expedition to Axel Heiberg Island 38 Biological work on Prince of Wales Island in the summer of 1958 40 Geographical Branch Survey in southern Melville Peninsula, 1959 43 Pilot of Arctic Canada 48 Subsc riptions for 1960 50 Change of Address 51 • Editorial Note 51 I NO.4 Meetings of the Arctic Circle 52 Officers and Committee Members for 1960 52 Some factors regarding northern oil and gas 53 Nauyopee. -
Annual Report: October 1, 2014 Assessing the Impact of Small, Canadian Arctic River Flows to the Freshwater Budget of the Canadian Archipelago Matthew B
Annual Report: October 1, 2014 Assessing the impact of small, Canadian Arctic River flows to the freshwater budget of the Canadian Archipelago Matthew B. Alkire, University of Washington Assessing the impact of small, Canadian Arctic river flows to the freshwater budget of the Canadian Archipelago (or SCARFs) is a scientific research project funded by the National Science Foundation (USA). The purpose of this project is to collect water samples from seven different rivers and their adjoining estuaries throughout the Canadian Arctic Archipelago (see Fig. 1) in order to determine whether or not their chemical signatures differ from larger North American rivers such as the Mackenzie and Yukon Rivers. Five of the rivers are located within Nunavut, Canada: the Coppermine River (near Kugluktuk), Ellice River (~140 km southeast of Cambridge Bay), Back River (~180 km southeast of Gjoa Haven), Cunningham River (~77 km southeast of Resolute Bay on Somerset Island), and Kangiqtugaapik River (near Clyde River, Baffin Island). Two of the rivers are located within the Northwest Territories, Canada: the Kujjuua River (located approximately 67 km northeast of Ulukhaktok on Victoria Island) and Thomsen River (specifically near the mouth of the river where it empties into Castel Bay, on Banks Island). Figure 1. Map of the Canadian Arctic Archipelago. The red stars indicate the mouths of the rivers sampled during this study: (1) Coppermine R., (2) Ellice R., (3) Back R., (4) Kuujuua R. (Victoria Island), (5) Thomsen R. (Banks Island), (6) Cunningham R. (Somerset Island), and (7) Clyde R. (Baffin Island). The Coppermine, Ellice, and Back Rivers are located on the mainland of Nunavut. -
Joint Industry Programme
CETACEAN STOCK ASSESSMENT IN RELATION TO EXPLORATION AND PRODUCTION INDUSTRY SOUND by Prepared for Joint Industry Programme 30 September 2009 LGL Report TA4582-1 CETACEAN STOCK ASSESSMENT IN RELATION TO EXPLORATION AND PRODUCTION INDUSTRY SOUND by LGL Limited, environmental research associates 22 Fisher Street, POB 280 King City, Ontario, Canada L7B 1A6 9768 Second Street Sidney, British Columbia, Canada V8L 3Y8 and LGL Alaska Research Associates Inc. 1101 East 76th Avenue, Suite B Anchorage, Alaska, United States 99518 Prepared for Joint Industry Programme 30 September 2009 LGL Report TA4582-1 Executive Summary Purpose and Objectives This project investigated the relationship between the oil industry‘s offshore E&P activities and trends in the distribution, abundance and rates of increase of key cetacean stocks found in three areas where E&P activities are intensive. The approach taken was to compare the status and population trends of stocks of key cetacean species in three areas with E&P activities―Alaska (subdivided into three regions, the Beaufort, Bering and Chukchi seas), Australia (Western and southeast regions), and Sakhalin Island, Russia―with corresponding parameters for stocks of the same species (where possible) in areas where E&P activities were absent or greatly reduced. The project involved a critical review of existing and historical data on cetacean stocks, and a compilation of data on E&P activities and non-industry factors that may have influenced stocks, in the areas of interest. Data were assessed in terms of quality, quantity, and temporal and spatial coverage to determine whether sufficient data were available for a reasonable assessment of correlations between cetacean populations and E&P activities. -
Using GPS Mapping Software to Plot Place Names and Trails in Igloolik (Nunavut) CLAUDIO APORTA1
ARCTIC VOL. 56, NO. 4 (DECEMBER 2003) P. 321–327 New Ways of Mapping: Using GPS Mapping Software to Plot Place Names and Trails in Igloolik (Nunavut) CLAUDIO APORTA1 (Received 11 July 2001; accepted in revised form 10 February 2003) ABSTRACT. The combined use of a GPS receiver and mapping software proved to be a straightforward, flexible, and inexpensive way of mapping and displaying (in digital or paper format) 400 place names and 37 trails used by Inuit of Igloolik, in the Eastern Canadian Arctic. The geographic coordinates of some of the places named had been collected in a previous toponymy project. Experienced hunters suggested the names of additional places, and these coordinates were added on location, using a GPS receiver. The database of place names thus created is now available to the community at the Igloolik Research Centre. The trails (most of them traditional, well-traveled routes used in Igloolik for generations) were mainly mapped while traveling, using the track function of a portable GPS unit. Other trails were drawn by experienced hunters, either on paper maps or electronically using Fugawi mapping software. The methods employed in this project are easy to use, making them helpful to local communities involved in toponymy and other mapping projects. The geographic data obtained with this method can be exported easily into text files for use with GIS software if further manipulation and analysis of the data are required. Key words: Inuit place names, Inuit trails, mapping, Geographic Information System, GIS, Global Positioning System, GPS, Igloolik, toponymy RÉSUMÉ. L’utilisation combinée d’un récepteur GPS et d’un logiciel de cartographie s’est révélée être une façon directe, souple et peu coûteuse de cartographier et de présenter (sous forme numérique ou imprimée) 400 lieux-dits et 37 pistes utilisés par les Inuits d’Igloolik, dans l’est de l’Arctique canadien.