Atlas 2 at Cambridge Mathematical Laboratory (And Aldermaston and CAD Centre)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ALGOL 60 Programming on the Decsystem 10.Pdf
La Trobe University DEPARTMENT OF MATHEMATICS ALGOL 60 Programming on the DECSystem 10 David Woodhouse Revised, August 1975 MELBOURNE, AUSTRALIA ALGOL 60 Programming on the DECSystem 10 David Woodhouse Revised, August 1975 CE) David Woodhouse National Library of Australia card number and ISBN. ISBN 0 85816 066 8 INTRODUCTION This text is intended as a complete primer on ALGOL 60 programming. It refers specifically to Version 4 of the DECSystem 10 implementation. However, it avoids idiosyncracies as far as possible, and so should be useful in learning the language on other machines. The few features in the DEC ALGOL manual which are not mentioned here should not be needed until the student is sufficiently advanced to be using this text for reference only. Exercises at the end of each chapter illustrate the concepts introduced therein, and full solutions are given. I should like to thank Mrs. K. Martin and Mrs. M. Wallis for their patient and careful typing. D. Woodhouse, February, 1975. CONTENTS Chapter 1 : High-level languages 1 Chapter 2: Languagt! struct.ure c.f ALGOL 6n 3 Chapter 3: Statemp.nts: the se'1tences {'\f the language 11 Chapter 4: 3tandard functions 19 Chapter 5: Input an~ Outp~t 21 Chapter 6: l>rray~ 31 Chapter 7 : For ane! ~hil~ statements 34 Chapter 8: Blocks anr! ',: ock sc rll,~ turr. 38 Chapter 9: PrOCe(:l1-:-~S 42 Chapter 10: Strin2 vp·jaLlps 60 Chapter 11: Own v~rj;lI'.i..es clOd s~itc.hef, 64 Chapter 12: Running ~nd ,;ebllggi"1g 67 Bibliography 70 Solutions to Exercises 71 Appendix 1 : Backus NOlUlaj F\:q'm 86 Appendix 2 : ALGuL-like languages 88 Appenclix 3. -
Archived: Autocode User's Guide
MATRIXx TM AutoCodeTM User’s Guide MATRIXx AutoCode User’s Guide The MATRIXx products and related items have been purchased from Wind River Systems, Inc. (formerly Integrated Systems, Inc.). These reformatted user materials may contain references to those entities. Any trademark or copyright notices to those entities are no longer valid and any references to those entities as the licensor to the MATRIXx products and related items should now be considered as referring to National Instruments Corporation. National Instruments did not acquire RealSim hardware (AC-1000, AC-104, PCI Pro) and does not plan to further develop or support RealSim software. NI is directing users who wish to continue to use RealSim software and hardware to third parties. The list of NI Alliance Members (third parties) that can provide RealSim support and the parts list for RealSim hardware are available in our online KnowledgeBase. You can access the KnowledgeBase at www.ni.com/support. NI plans to make it easy for customers to target NI software and hardware, including LabVIEW real-time and PXI, with MATRIXx in the future. For information regarding NI real-time products, please visit www.ni.com/realtime or contact us at [email protected]. May 2003 Edition Part Number 370767A-01 Support Worldwide Technical Support and Product Information ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100 Worldwide Offices Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 -
Chapter 1 Basic Principles of Programming Languages
Chapter 1 Basic Principles of Programming Languages Although there exist many programming languages, the differences among them are insignificant compared to the differences among natural languages. In this chapter, we discuss the common aspects shared among different programming languages. These aspects include: programming paradigms that define how computation is expressed; the main features of programming languages and their impact on the performance of programs written in the languages; a brief review of the history and development of programming languages; the lexical, syntactic, and semantic structures of programming languages, data and data types, program processing and preprocessing, and the life cycles of program development. At the end of the chapter, you should have learned: what programming paradigms are; an overview of different programming languages and the background knowledge of these languages; the structures of programming languages and how programming languages are defined at the syntactic level; data types, strong versus weak checking; the relationship between language features and their performances; the processing and preprocessing of programming languages, compilation versus interpretation, and different execution models of macros, procedures, and inline procedures; the steps used for program development: requirement, specification, design, implementation, testing, and the correctness proof of programs. The chapter is organized as follows. Section 1.1 introduces the programming paradigms, performance, features, and the development of programming languages. Section 1.2 outlines the structures and design issues of programming languages. Section 1.3 discusses the typing systems, including types of variables, type equivalence, type conversion, and type checking during the compilation. Section 1.4 presents the preprocessing and processing of programming languages, including macro processing, interpretation, and compilation. -
On Barron and Strachey's Cartesian Product Function
BRICS RS-07-14 Danvy & Spivey: On Barron and Strachey’s Cartesian Product Function BRICS Basic Research in Computer Science On Barron and Strachey’s Cartesian Product Function Olivier Danvy Michael Spivey BRICS Report Series RS-07-14 ISSN 0909-0878 July 2007 Copyright c 2007, Olivier Danvy & Michael Spivey. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus IT-parken, Aabogade 34 DK–8200 Aarhus N Denmark Telephone: +45 8942 9300 Telefax: +45 8942 5601 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/07/14/ On Barron and Strachey’s Cartesian Product Function Possibly the world’s first functional pearl∗ Olivier Danvy Michael Spivey Department of Computer Science Computing Laboratory University of Aarhus Oxford University IT-parken, Aabogade 34 Wolfson Building, Parks Road DK-8200 Aarhus N, Denmark† Oxford OX1 3QD, England‡ July 20, 2007 Abstract Over forty years ago, David Barron and Christopher Strachey published a startlingly elegant program for the Cartesian prod- uct of a list of lists, expressing it with a three nested occurrences of the function we now call foldr. This program is remark- able for its time because of its masterful display of higher-order functions and lexical scope, and we put it forward as possibly the first ever functional pearl. -
EEE Anna/S of the History of Computing, Volume 14, 1992, Subject/Title Index (Author Index Appears on P
EEE Anna/s of the History of Computing, Volume 14, 1992, Subject/Title Index (Author Index appears on p. 92) 51 Nemausa, Oct. 92,28,29 Artifact Collectors, July 92,49 Boilen, Sheldon, Jan. 92,22; Apr. 92,42 2001:A Space Odyssey, July 92,53 Artificial intelligence (AI), Jan. 92, 21, 40, 62; Bolt Beranek and Newman (BBN), Jan. 92,22; A Apr. 92,31; July 92,68,80 Apr. 92,15,16,42 ASCC, see Automatic Sequence Controlled Bolt, Dick, Apr. 92,5 A-O, Jan. 92,55; Apr. 92,57 Calculator, Apr. 92,14; Oct. 92,13 Bombe, Apr. 92,52; July 92,9,12 A-2, Apr. 92,57 Aspray, William, Apr. 92,4; July 92,5; Oct. 92, Bonfanti, Corrado, Jan. 92,56 Aberdeen Proving Ground, July 92,76; Oct. 92, 14 Boole, George, July 92,44 11 Assembly language, Jan. 92.38.62 Booth, G.W., Oct. 92,43 ACM, see Association for Computing Ma- Association for Computing Machinery (ACM), Bootstrap, Oct. 92,45 chinery, Apr. 92,58; July 92,77 Apr. 92,58; July 92,77 Boston Tech, July 92,55 Adams, Charlie, Jan. 92,35 Atari: July 92,67 Boundary registries, Jan. 92,42 Admiral Grace Murray Hopper Scholarship, Atlas operating system, Oct. 92,57 Bowker, Geoffrey, Oct. 92,14 July 92,51 Atlas, Oct. 92,57 Bowman, Ray, July 92,17 Advanced Research Proiects Agency (ARPA), Atomic structures, Oct. 92,29 Boys, S.F., Oct. 92,30,32 Jan. 92,3,21; Apr. 92,4,16,-17 Autocorrelation function, Jan. 92,35 Bragg, Lawrence, Oct. -
Early Nordic Compilers and Autocodes Version 2.0.0 of 2014-09-21
Early Nordic compilers and autocodes Version 2.0.0 of 2014-09-21 Peter Sestoft IT University of Copenhagen Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark [email protected] Abstract. The early development of compilers for high-level program- ming languages, and of so-called autocoding systems, is well documented at the international level but not as regards the Nordic countries. The goal of this paper is to provide a survey of compiler and autocode development in the Nordic countries in the early years, roughly 1953 to 1965, and to relate it to international developments. We also touch on some of the historical societal context. To appear in Gram, Heide, Impagliazzo (editors): History of Nordic Com- puting 2014. Springer Lecture Notes in Computer Science. 1 Introduction A compiler translates a high-level, programmer-friendly programming language into the machine code that computer hardware can execute. An \autocode" is a term used in the 1950s to denote a combination of simple compiler, assembler, linker and loader; in general, a program that made loading another program into a computer more convenient than using binary or hexadecimal codes. Whereas the history of computer hardware and the history of programming languages both are well described, the history of compilers, tying the two other subjects together as it were, is not as thoroughly charted. Nevertheless, surveys by Bauer (1974), Knuth (1977) and Ershov and Shura-Bura (1980) give inter- esting descriptions of the history of compiler development at the international level. However, they mostly neglect the particular developments in the Nordic countries, especially those before 1960. -
1900 Software - Two Views from the Board
VVP issue 1.0 05/02/2004 3- ICT/ICL 1900 Range Software......................................................................................................... 2 3.1 – The FP 6000 Software (Before the 1900 Range)..................................................................... 2 3.2 - ICT 1900 Range Software – The Start ..................................................................................... 4 3.3 – Programming Aids (Software) in 1966.................................................................................... 6 3.4- The Operating Systems (George). ............................................................................................. 7 3.5 ICT/ICL 1900 Software - Two views from the Board.............................................................. 14 3.6- ICT/ICL 1900 Software -............................................................................................................ 15 3- ICT/ICL 1900 Range Software During the period of development of the1900 Range, the Software activity evolved from a Sales Support Aid into a major computer industry driver, which, towards the end of the period, was absorbing development resources in excess of the hardware. This Section will outline its evolution in the context of the ICT/ICL 1900 Range 3.1 – The FP 6000 Software (Before the 1900 Range) The following is the relevant extract from the “FP6000- Report on Visit to Ferranti-Packard” in April 1963, detailing present or planned software while recommending the adoption of the FP6000 as the Ferranti 1900 (To -
The Atlas Story
The Atlas story. Simon Lavington. Second edition, 6 th December 2012. Contents. Introduction page 1 Birth pains 1 Atlas at Manchester 1 Ferranti and the market place 5 Timeline 6 Technical innovations: facts and figures 6 The London Atlas 8 The Chilton Atlas 9 The Atlas 2 developments 11 Titan at Cambridge 13 Atlas 2 at AWRE Aldermaston 13 Atlas 2 at the CAD centre 13 More technical details of Atlas installations 15 Physical layout 17 Organisation of the Atlas storage hierarchy 17 Format of an Atlas instruction. 19 Guide to the Atlas Supervisor 20 People and places 21 More information 22 Originally produced for the Atlas Symposium held on 5 th December 2012 in the School of Computer Science, Kilburn Building, University of Manchester. It is a pleasure to acknowledge the help given by many former Atlas pioneers in the writing of this brochure. Comments on the text are welcomed and should be sent to Simon Lavington : [email protected] Picture credits to copyright holders. Computer Laboratory, University of Cambridge: Figure 9 Graham Penning: Figure 10 Simon Lavington: Figure 3 Iain MacCallum: Front cover Museum of Science & Industry, Manchester Figures 1, 2, 4, 5, 6 STFC Rutherford Appleton Laboratory: Figures 7a, 7b, 8 (On 5 th December the original printed version of this document had a cover design based on photographs of the Atlas at Manchester University in 1963). i By the end of 1955 there were less than 16 production digital computers in use in the UK. They were of five British designs, from five different companies, and were single-user systems with practically no systems software. -
Christopher Strachey and the Development Of
Christopher Strachey and the Development of CPL by Martin Richards [email protected] www.cl.cam.ac.uk/users/mr10 Computer Laboratory University of Cambridge Mon Oct 17 08:16:40 BST 2016 Abstract Chrisopher Strachey was the most significant contributor to the design and implementation of the programming language CPL. At the time there was little understanding of the complexities of computer language design and how type systems could cope with lists and the kinds of structures needed to represent, for instance, parse trees. The CPL project cannot be regarded as being successful since it did not result in a usable CPL compiler. The reasons being that the language became too large and complicated, there were insufficient people to implement the compiler and, in the middle of the three year project, all work had to be transferred from Edsac 2 to Titan, a newly designed version of the Ferranti Atlas computer which as yet had no operating system. Even so, we can be proud of the work that went into CPL and its influence on the design of many later languages. Keywords: Edsac, Titan, CPL, BCPL 1 Introduction Before discussing the development of CPL it it necessary to have some understanding of what computer facilities were available at Cambridge at the time. The first electronic computer in Cambridge was constructed under the Direction of Maurice Wilkes and successfully ran its first program in May 1949. It was a serial machine with up to 512 35-bit words of memory stored in mercury delay lines. Each word could contain two 17-bit instructions. -
CA341 - Comparative Programming Languages Introduction
Introduction CA341 - Comparative Programming Languages Introduction Dr. David Sinclair Introduction Overview This module will examine the essential concepts on which modern programming languages are based, to understand the design decisions in current languages and the design features that may be introduced into future languages. In this module we will cover: • Data Types and Scope • Pointers and Memory Management • Abstraction • Control • Data Abstraction • Functions, Parameter Matching and Parameter Passing • Assertions and Exceptions • Object-Oriented Programming Paradigm • Memory Models • Logic Programming Paradigm • Functional Programming Paradigm Introduction Texts Supplementary: • Robert V. Sebesta 2015, Concepts of Programming Languages, 11 Ed., Pearson [ISBN: 9780133943023] • Michael L. Scott 2015, Programming Language Pragmatics, 4 Ed., San Diego; Morgan Kaufmann [ISBN: 9780124104099] • David A. Watt 2004, Programming Language Design Concepts, John Wiley & Sons [ISBN: 978-047085320] • John C. Mitchell 2003, Concepts in programming language, Cambridge University Press New York [ISBN: 978-052178098] • M. Ben-Ari 1996, Understanding Programming Languages, John Wiley & Sons [ISBN: 978-047195846] Introduction Contact Details Lecturer: Dr. David Sinclair Office: L253 Phone: 5510 Email: [email protected] WWW: https://www.computing.dcu.ie/∼davids Course web page: https://www.computing.dcu.ie/∼davids/courses/CA341/CA341.html Introduction How do I successfully complete this module? The module mark is a straight weighted average of: • -
History and Spirit of C
History and Spirit of C Olve Maudal, Cisco Systems 45 minute session at NDC TechTown, Kongsberg, 19. October 2017 The history of C in 90 seconds http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg At Bell Labs. http://www3.nd.edu/~atrozzol/BellLabs1959.jpg Back in 1969. http://www.multicians.org/picnics.html Ken Thompson wanted to play. Ken Space Travel http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg He found a little used PDP-7. http://en.wikipedia.org/wiki/PDP-7#/media/File:Pdp7-oslo-2005.jpeg Ended up writing a nearly complete operating system from scratch. https://archive.org/stream/byte-magazine-1983-08/1983_08_BYTE_08-08_The_C_Language#page/n190/mode/1up In about 4 weeks. “Essentially one person for a month, it was just my self.” (Ken Thompson, 1989 Interview) In pure assembler of course. http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf Dennis Ritchie soon joined the effort. http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg While porting Unix to a PDP-11 Dennis Ken http://cm.bell-labs.com/who/dmr/picture.html they invented C, http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf heavily inspired by Martin Richards’ portable systems programming language BCPL. GET “LIBHDR” LET START() BE WRITES(“Hello, World”) Martin Richards, Dec 2014 http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf In 1972 Unix was rewritten in C. https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c Due to Steve Johnsons Portable C Compiler, Fact: from “The Development of the C Language” by Dennis Ritchie Unix and C could be ported to all kinds of computer architectures. -
Edsac, David Wheeler and the Cambridge Connection
CODING EDSAC AND DAVID WHEELER EDSAC, DAVID WHEELER AND TUTORIAL THE CAMBRIDGE CONNECTION Programmers everywhere, give thanks for EDSAC and David JULIET KEMP Wheeler, first implementer of the subroutine. his month we return to the early days of first bit couldn’t be used, so an instruction consisted modern computing. Specifically, to Cambridge of a 5-bit instruction code, one unused bit, a 10-bit T(UK) in the late 1940s, and the first electronic memory address, and a marker bit that identified digital stored-program computer to see regular whether the instruction was to operate on a number service: the Electronic Delay Storage Automatic that was contained in one word or in two. This meant Calculator, or EDSAC (inspired by von Neumann’s First that EDSAC wasn’t restricted to 17-bit numbers but Draft of a Report on the EDVAC). The machine itself could also use 35-bit numbers contained in two shared a lot of features with other computers of words. Numbers were stored as binary two’s similar vintage, but it was while working on EDSAC complement. The accumulator held 71 bits, so two that David Wheeler developed the idea of subroutines 35-bit numbers could be multiplied without loss of and the first very basic assembler, making a precision. Initially it had only an accumulator and a contribution to computing that continues to this day. multiplier registers -- David Wheeler designed and EDSAC was constructed by Maurice Wilkes and his added an index register in 1953. team at the University of Cambridge Mathematical Laboratory. It first ran in May 1949 and was EDSAC and subroutines immediately operational for research.