Appendix A: List of the Ellenberg's Indicator Values. X = Undetermined

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: List of the Ellenberg's Indicator Values. X = Undetermined Appendix A: List of the Ellenberg’s indicator values. X = undetermined Species L T C U R N Alismataceae Alisma lanceolatum 77 5 1067 Alisma plantago-aquatica 7X X10X8 Amaranthaceae Amaranthus albus 99 6 3X7 Amaranthus deflexus 88 5 46 9 Amaranthus retroflexus 99 7 4X9 Arthrocnemum macrostachyum 11 9 4 8 9 7 Atriplex portulacoides 11 9 4 2 6 7 Atriplex prostrata 9X X 6X9 Atriplex rosea 99 7 26 1 Atriplex tatarica 97 8 3X6 Bassia crassifolia 96 6 8X8 Bassia laniflora 99 6 25 1 Chenopodium album 77 5 45 7 Cycloloma atriplicifolium 97 7 46 1 Dysphania ambrosioides 87 5 25 5 Salicornia patula 11 7 X 8 8 7 Salsola soda 99 5 89 7 Salsola tragus 97 8 87 8 Sarcocornia fruticosa 11 9 5 8 9 7 Suaeda maritima 96 2 87 7 Amaryllidaceae Allium vineale 87 5 4X7 Apiaceae Anthriscus caucalis 78 5 46 4 Apium graveolens 77 5 75 7 Berula erecta 86 4 10X7 (continued) © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 79 A. Alessandrini et al., The Vascular Flora of the Bosco della Mesola Nature Reserve (Northern Italy), Geobotany Studies, https://doi.org/10.1007/978-3-030-63412-4 80 Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined Species L T C U R N Bupleurum tenuissimum 11 8 5 4 7 2 Daucus carota 86 5 45 4 Echinophora spinosa 12 8 5 4 7 1 Eryngium maritimum 11 8 3 4 7 1 Oenanthe lachenalii 98 3 77 4 Oenanthe pimpinelloides 57 3 45 4 Suaeda vera 11 10 5 8 9 7 Thysselinum palustre 75 6 9X4 Torilis nodosa 78 6 47 6 Apocynaceae Apocynum venetum 98 6 27 1 Vincetoxicum hirundinaria subsp. hirundinaria 65 5 37 3 Araceae Lemna gibba 76 5 1278 Lemna minor 7X 5 12XX Lemna minuta 7X 5 12XX Lemna trisulca 8X 5 1276 Spirodela polyrhiza 76 5 12X7 Araliaceae Hedera helix 45 4 5XX Hydrocotyle vulgaris 96 5 93 3 Aristolochiaceae Aristolochia clematitis 67 5 48 8 Aristolochia rotunda 67 5 46 3 Asparagaceae Asparagus acutifolius 69 4 25 5 Asparagus officinalis 88 5 55 5 Ruscus aculeatus 48 5 45 5 Asteraceae Achillea collina 96 6 27 2 Achillea nobilis 87 7 48 1 Achillea roseoalba 76 7 3X3 Ambrosia maritima 11 8 5 1 X 1 Ambrosia psilostachya 97 6 2X1 Artemisia alba 95 7 37 2 Artemisia caerulescens subsp. caerulescens 11 7 5 5 9 2 Artemisia campestris 96 5 35 2 Artemisia vulgaris 97 8 4X5 Bellis perennis 95 4 X X5 Bidens tripartitus subsp. tripartitus 8X X 8X8 Carduus acanthoides 95 6 3X8 Carduus nutans subsp. nutans 8X 5 38 6 Carduus pycnocephalus subsp. pycnocephalus 78 4 3X3 (continued) Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined 81 Species L T C U R N Centaurea calcitrapa 11 9 5 3 X 5 Centaurea nigrescens 76 5 45 4 Centaurea tommasinii 97 4 27 1 Chondrilla juncea 87 5 38 X Cichorium intybus 96 5 38 5 Cirsium arvense 8X X 4X7 Cirsium vulgare 85 5 5X8 Crepis foetida 11 9 5 2 X 2 Crepis neglecta 76 3 46 3 Crepis pulchra 86 5 45 5 Crepis sancta subsp. nemausensis 11 9 6 2 X 2 Crepis setosa 11 9 6 2 8 2 Crepis vesicaria subsp. taraxacifolia 88 3 36 2 Dittrichia viscosa subsp. viscosa 11 8 5 3 7 9 Erigeron canadensis 86 5 5X7 Eupatorium cannabinum 77 5 75 7 Galactites tomentosus 88 4 3X7 Helichrysum italicum 88 5 43 2 Helminthotheca echioides 11 8 5 2 X 2 Hypochaeris glabra 11 8 5 2 2 1 Hypochaeris radicata 98 4 2X1 Inula salicina 75 5 49 2 Jacobaea erratica 76 5 84 5 Lactuca saligna 11 7 7 4 6 4 Lactuca serriola 97 7 46 4 Laphangium luteoalbum 76 5 75 3 Lapsana communis subsp. communis 5X 5 5X7 Leontodon hispidus 8X 4 4X3 Leontodon saxatilis subsp. saxatilis 11 6 5 5 7 2 Limbarda crithmoides 66 4 47 3 Matricaria chamomilla 75 5 65 5 Onopordum acanthium 11 7 6 4 7 8 Picris hieracioides 8X 5 48 4 Pilosella officinarum 8X 4 34 2 Pilosella piloselloides 86 6 37 2 Pulicaria dysenterica 86 5 7X5 Pulicaria vulgaris 77 5 77 7 Scolymus hispanicus subsp. hispanicus 11 8 5 3 X 2 Senecio inaequidens 97 5 25 1 Senecio vulgaris 7X X 5X8 Silybum marianum 11 10 6 3 5 7 Solidago canadensis 8X 5 6X7 Solidago gigantea 8X 5 X X7 (continued) 82 Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined Species L T C U R N Sonchus asper 75 X 47 7 Sonchus maritimus 11 8 5 5 9 3 Sonchus oleraceus 75 X 48 8 Symphyotrichum squamatum 88 5 47 7 Taraxacum fulvum (gr.) 8 7 5 3 8 X Taraxacum officinale (gr.) 7 X X 5 X 7 Taraxacum palustre (gr.) 8 X 5 8 8 0 Tragopogon orientalis 75 4 47 5 Tragopogon porrifolius 99 5 35 3 Tragopogon pratensis 75 4 47 5 Tripolium pannonicum 87 X 97 7 Tussilago farfara 8X 5 68 7 Xanthium orientale subsp. italicum 87 5 5X1 Xanthium spinosum 91052X1 Xanthium strumarium 87 5 5X6 Berberidaceae Berberis vulgaris 66 5 48 3 Betulaceae Alnus glutinosa 55 5 96 8 Carpinus betulus 46 4 X XX Carpinus orientalis subsp. orientalis 47 6 34 5 Boraginaceae Anchusa azurea 11 8 5 3 4 4 Anchusa officinalis 98 6 37 5 Buglossoides purpurocaerulea 57 6 48 4 Cynoglossum creticum 11 9 5 3 X 7 Cynoglossum officinale 85 5 37 8 Echium vulgare 97 5 45 4 Heliotropium europaeum 11 8 5 3 7 2 Lithospermum officinale 6X 5 X 8 6 Myosotis arvensis 65 5 5X6 Myosotis ramosissima 98 5 24 3 Symphytum officinale 76 4 8X8 Brassicaceae Alyssum alyssoides 11 6 5 3 8 1 Arabidopsis thaliana 6X 5 45 4 Arabis hirsuta 75 5 48 X Arabis sagittata 76 6 48 3 Arabis turrita 67 6 67 3 Cakile maritima subsp. maritima 98 2 6X8 Capsella bursa-pastoris 7X 5 55 4 Capsella rubella 89 5 24 2 Cardamine hirsuta 78 5 35 4 (continued) Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined 83 Species L T C U R N Cardamine pratensis 55 X 7XX Cardaria draba 87 7 38 4 Descurainia sophia 77 8 36 2 Diplotaxis tenuifolia 87 5 46 5 Erophila verna 97 4 24 1 Eruca vesicaria 78 6 35 5 Hornungia petraea 97 5 26 2 Raphanus raphanistrum 11 5 5 X 4 5 Rapistrum rugosum 77 5 45 5 Sisymbrium officinale 86 5 4X7 Cannabaceae Humulus lupulus 76 4 86 8 Caprifoliaceae Dipsacus fullonum 68 5 75 5 Knautia arvensis 75 5 45 3 Lomelosia argentea 98 6 27 2 Lonicera caprifolium 65 6 6X5 Lonicera etrusca 78 5 36 4 Scabiosa triandra 75 7 35 2 Valeriana officinalis 76 5 87 5 Valerianella locusta 75 5 57 X Caryophyllaceae Agrostemma githago 7X XX 4 3 Arenaria leptoclados 99 5 23 1 Arenaria serpyllifolia subsp. serpyllifolia 95 X 4XX Cerastium glomeratum 7X 5 55 5 Cerastium holosteoides 66 6 65 6 Cerastium ligusticum 11 9 4 2 3 1 Cerastium semidecandrum 87 5 4XX Minuartia hybrida subsp. hybrida 77 5 36 2 Minuartia mediterranea 11 9 4 2 3 2 Petrorhagia saxifraga 98 7 28 3 Polycarpon tetraphyllum subsp. diphyllum 77 5 45 6 Polycarpon tetraphyllum subsp. tetraphyllum 77 5 45 6 Saponaria officinalis 76 4 57 5 Silene colorata 11 9 3 1 X 1 Silene conica 97 5 25 2 Silene dioica 75 5 67 8 Silene italica 57 5 46 5 Silene latifolia subsp. alba 69 4 34 2 Silene vulgaris 8X X 47 2 Spergularia media 77 5 78 5 Stellaria media subsp. media 6X X 47 8 (continued) 84 Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined Species L T C U R N Stellaria pallida 88 5 35 4 Celastraceae Euonymus europaeus 65 5 58 5 Ceratophyllaceae Ceratophyllum demersum 67 X1288 Cistaceae Cistus creticus subsp. eriocephalus 11 9 4 2 3 2 Cistus salviifolius 11 9 4 2 2 2 Fumana procumbens 96 7 37 1 Helianthemum apenninum 97 3 27 2 Helianthemum jonium 11 10 4 2 7 1 Helianthemum nummularium 9X 6 47 2 Commelinaceae Commelina communis 76 5 86 2 Convolvulaceae Calystegia sepium 86 5 67 9 Calystegia soldanella 11 8 4 1 X 1 Convolvulus arvensis 77 5 45 5 Cuscuta campestris 87 5 X XX Cuscuta epithymum 8X 5 X XX Dichondra micrantha 58 5 63 2 Cornaceae Cornus mas 67 6 58 4 Cornus sanguinea subsp. hungarica 75 5 78 X Crassulaceae Sedum acre 85 4 1X1 Sedum album 11 X 5 2 X 1 Cupressaceae Juniperus communis 80 0 40 4 Cyperaceae Bolboschoenus maritimus 8X 4 1085 Carex acutiformis 75 5 97 5 Carex caryophyllea 85 5 4X2 Carex distans 96 5 78 X Carex divisa 88 2 35 3 Carex divulsa 76 5 45 5 Carex extensa 95 3 70 4 Carex flacca 75 5 68 X Carex hirta 76 4 6X5 Carex liparocarpos 87 6 26 2 Carex otrubae 95 5 9X5 Carex panicea 84 4 7X3 Carex pendula 55 5 86 5 (continued) Appendix A: List of the Ellenberg’s indicator values. X ¼ undetermined 85 Species L T C U R N Carex punctata 76 3 1043 Carex riparia 75 5 1065 Carex rostrata 84 4 1042 Carex viridula 8X 5 8X2 Cladium mariscus 9X 5 1093 Cyperus capitatus 11 9 3 3 5 1 Cyperus eragrostis 89 5 1066 Cyperus flavescens 66 5 95 5 Cyperus fuscus 66 5 95 5 Cyperus glomeratus 98 5 1155 Cyperus laevigatus subsp.
Recommended publications
  • Gene and Transposable Element Expression
    Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud, Oscar Lima, Mathieu Rousseau-Gueutin, Armel Salmon, Malika Ainouche To cite this version: Delphine Giraud, Oscar Lima, Mathieu Rousseau-Gueutin, Armel Salmon, Malika Ainouche. Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae). Frontiers in Genetics, 2021, 12, 10.3389/fgene.2021.589160. hal-03216905 HAL Id: hal-03216905 https://hal.archives-ouvertes.fr/hal-03216905 Submitted on 4 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fgene-12-589160 March 19, 2021 Time: 12:36 # 1 ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fgene.2021.589160 Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud1, Oscar Lima1, Mathieu Rousseau-Gueutin2, Armel Salmon1 and Malika Aïnouche1* 1 UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France, 2 IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
    Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level.
    [Show full text]
  • Design a Database of Italian Vascular Alimurgic Flora (Alimurgita): Preliminary Results
    plants Article Design a Database of Italian Vascular Alimurgic Flora (AlimurgITA): Preliminary Results Bruno Paura 1,*, Piera Di Marzio 2 , Giovanni Salerno 3, Elisabetta Brugiapaglia 1 and Annarita Bufano 1 1 Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy; [email protected] (E.B.); [email protected] (A.B.) 2 Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy; [email protected] 3 Graduate Department of Environmental Biology, University “La Sapienza”, 00100 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Despite the large number of data published in Italy on WEPs, there is no database providing a complete knowledge framework. Hence the need to design a database of the Italian alimurgic flora: AlimurgITA. Only strictly alimurgic taxa were chosen, excluding casual alien and cultivated ones. The collected data come from an archive of 358 texts (books and scientific articles) from 1918 to date, chosen with appropriate criteria. For each taxon, the part of the plant used, the method of use, the chorotype, the biological form and the regional distribution in Italy were considered. The 1103 taxa of edible flora already entered in the database equal 13.09% of Italian flora. The most widespread family is that of the Asteraceae (20.22%); the most widely used taxa are Cichorium intybus and Borago officinalis. The not homogeneous regional distribution of WEPs (maximum in the south and minimum in the north) has been interpreted. Texts published reached its peak during the 2001–2010 decade. A database for Italian WEPs is important to have a synthesis and to represent the richness and Citation: Paura, B.; Di Marzio, P.; complexity of this knowledge, also in light of its potential for cultural enhancement, as well as its Salerno, G.; Brugiapaglia, E.; Bufano, applications for the agri-food system.
    [Show full text]
  • Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae)
    fgene-12-589160 March 19, 2021 Time: 12:36 # 1 ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fgene.2021.589160 Gene and Transposable Element Expression Evolution Following Recent and Past Polyploidy Events in Spartina (Poaceae) Delphine Giraud1, Oscar Lima1, Mathieu Rousseau-Gueutin2, Armel Salmon1 and Malika Aïnouche1* 1 UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France, 2 IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6–10 my, Edited by: at the origin of differential phenotypic and ecological traits. Of particular interest Yves Van de Peer, are the recent (19th century) hybridizations between the two hexaploids Spartina Ghent University, Belgium alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in Reviewed by: Pamela Soltis, two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and University of Florida, United States Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of Clayton J. Visger, S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica California State University, Sacramento, United States (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and *Correspondence: the enrichment of previously published reference transcriptomes for hexaploids and Malika Aïnouche the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing [email protected] 21 transcribed transposable element (TE) lineages across the seven investigated Specialty section: Spartina species.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Comparative Analyses of Saprotrophy in Salisapilia Sapeloensis and Diverse Plant Pathogenic Oomycetes Reveal Lifestyle-Specific
    FEMS Microbiology Ecology, 96, 2020, fiaa184 doi: 10.1093/femsec/fiaa184 Advance Access Publication Date: 12 September 2020 Research Article RESEARCH ARTICLE Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression Sophie de Vries1,*,†, Jan de Vries1,2,3,4,5,‡, John M. Archibald1,§ and Claudio H. Slamovits1,# 1Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada, 2Institute of Microbiology, Technische Universitat¨ Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany, 3Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany, 4Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany and 5Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany ∗Corresponding authors: Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada. Tel: +1-902-494-7894; E-mail: [email protected] One sentence summary: Comparative analyses between the saprotrophic oomycete Salisapilia sapeloensis and its pathogenic relatives indicate that distinct gene expression patterns underpin the different lifestyles in oomycetes. Editor: Angela Sessitsch †Sophie de Vries, http://orcid.org/0000-0002-5267-8935 ‡Jan de Vries, http://orcid.org/0000-0003-3507-5195
    [Show full text]
  • Expanded Understanding of Eleusine Diversity and Evolution
    Expanded Understanding of Eleusine Diversity and Evolution by Hui Zhang A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 4, 2018 Key words: Next-generation sequencing, Illumina, Genome, Transcriptome, Phylogenetic, Goosegrass Copyright 2018 by Hui Zhang Approved by J. Scott McElroy, Chair, Professor of Crop, Soil and Environmental Sciences Charles Y. Chen, Professor of Crop, Soil and Environmental Sciences Leslie R. Goertzen, Associate Professor of Biological Sciences Eric Peatman, Associate Professor of Fisheries, Aquaculture, and Aquatic Sciences i Abstract Eleusine, including 9 to 12 species, is a small genus of annual and perennial grass species within the Eragrosteae tribe and Chloridoideae subfamily. There are very few genomic information about this genus. The primary goal of this dissertation research is to expand understanding of Eleusine diversity and evolution. The dissertation opens with a brief literature review regarding the motivation for this research. In chapter 2 we report a draft assembly of approximately 498 Mb whole-genome sequences of goosegrass obtained by de novo assembly of paired-end and mate-paired reads generated by Illumina sequencing of total genomic DNA. From around 88 GB of the clean data, the genome was assembled into 24,063 scaffolds with N50 = 233,823 bp. The nuclear genome assembly contains 25,467 predicted unique protein-coding genes. Sixteen target herbicide resistant genes and four non-target herbicide resistant gene families were obtained from this draft genome. Chapter 3 presents a complete plastid genome sequence of goosegrass obtained by de novo assembly of paired-end and mate-paired reads obtained in chapter 2.
    [Show full text]
  • Diversification Into Novel Habitats in the Africa Clade of Dioscorea (Dioscoreaceae): Erect Habit and Elephant’S Foot Tubers Olivier Maurin1,2, A
    Maurin et al. BMC Evolutionary Biology (2016) 16:238 DOI 10.1186/s12862-016-0812-z RESEARCHARTICLE Open Access Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): erect habit and elephant’s foot tubers Olivier Maurin1,2, A. Muthama Muasya3*, Pilar Catalan4,5, Eugene Z. Shongwe1, Juan Viruel 6,7, Paul Wilkin 2 and Michelle van der Bank1 Abstract Background: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or “elephant’sfoot” structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. Results: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Lindfield Rural and Urban Parishes ESD/14/65 Prepared for Terry Oliver 10th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Lindfield Rural and Urban Parishes 10/02/2014 Prepared for Terry Oliver ESD/14/65 The following information is enclosed within this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI L61 - Waspbourne Wood; M08 - Costells, Henfield & Nashgill Woods; M10 - Scaynes Hill Common; M18 - Walstead Cemetery; M25 - Scrase Valley Local Nature Reserve; M49 - Wickham Woods. SSSI Chailey Common. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; Notable Road Verge; Woodland Trust Site. Habitats Ancient tree; Ancient woodland; Coastal and floodplain grazing marsh; Ghyll woodland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from the SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Black Bryony, Called by Some in the Common Tongue Bryonia and Others Cheironios Ambelos
    Dioscorides’s bruonia melaina is Bryonia alba , not Tamus communis , and an illustration labeled bruonia melaina in the Codex Vindobonensis is Humulus lupulus not Bryonia dioica 1 S.S. Renner 1*, J. Scarborough 2, H. Schaefer 1, H.S. Paris 3, and J. Janick 4 1 Department of Biology, University Munich, Menzinger Strasse 67, D-80638 Munich, Germany 2 School of Pharmacy and Departments of History and Classics, University of Wisconsin, 777 Highland Drive, Madison, Wisconsin 53705, USA 3 Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya’ar Research center, PO Box 1021, Ramat Yishay 30-095, Israel 4 Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, Indiana 47907-2010, USA * Corresponding author e-mail: [email protected] Keywords: Botanical illustration, European Cucurbitaceae , medicinal plants, pharmaceutical uses, Pliny the Elder Abstract The Cucurbitaceae genus Bryonia contains ten species that are distributed throughout the Mediterranean to North Africa and from central Europe to Kazakhstan. References to the medicinal uses of species of Bryonia span two millennia, including two passages in Dioscorides’s De Materia Medica , written in about 65 CE. An illustrated copy of this text, known as the Codex Vindobonensis and dated 512 CE, is enriched with illustrations, including two labeled as bru ōnia or bryonia. Here we argue that while Dioscorides’s text clearly concerns the black- fruited B. alba and a red-fruited species, perhaps B. cretica or B. dioica , only one of the plates in the Codex shows a species of Bryonia , while the other shows Humulus lupulus .
    [Show full text]