63 Dark Matter Primarily from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

63 Dark Matter Primarily from Wikipedia, the Free Encyclopedia Dark Matter Primarily from Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Dark_matter) Mark Herbert, PhD World Development Institute 39-06 Main Street, Flushing, Queens, New York 11354, USA, [email protected] Abstract: Dark matter is a form of matter composed for approximately 85% of the matter in the universe and about a quarter of its total mass - energy density. Primary evidence for dark matter comes from calculations showing that many galaxies would fly apart, or that they would not have formed or would not move as they do, if they did not contain a large amount of unseen matter. Other lines of evidence include observations in gravitational lensing and in the cosmic microwave background, along with astronomical observations of the observable universe's current structure, the formation and evolution of galaxies, mass location during galactic collisions, and the motion of galaxies within galaxy clusters. In the standard Lambda-CDM model of cosmology, the total mass–energy of the universe contains 5% ordinary matter and energy, 27% dark matter and 68% of a form of energy known as dark energy. [Mark Herbert. Dark Matter. N Y Sci J 2020;13(11):63-79]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 9. doi:10.7537/marsnys131120.09. Keywords: dark matter; universe; energy; galaxy; gravity; cosmic microwave background, cosmology Dark matter is a form of matter composed for while dark energy plus dark matter constitute 95% of approximately 85% of the matter in the universe and total mass–energy content.[9][10][11][12] about a quarter of its total mass - energy density (about Because dark matter has not yet been observed 2.241×10−27 kg/m3). Its presence is implied in a variety directly, if it exists, it must barely interact with of astrophysical observations, including gravitational ordinary baryonic matter and radiation, except through effects that cannot be explained by accepted theories gravity. Most dark matter is thought to be non- of gravity unless more matter is present than can be baryonic in nature; it may be composed of some as-yet seen. For this reason, most experts think that dark undiscovered subatomic particles.[b] The primary matter is abundant in the universe and that it has had a candidate for dark matter is some new kind of strong influence on its structure and evolution. Dark elementary particle that has not yet been discovered, in matter is called dark because it does not appear to particular, weakly interacting massive particles interact with the electromagnetic field, which means it (WIMPs).[13] Many experiments to directly detect and doesn't absorb, reflect or emit electromagnetic study dark matter particles are being actively radiation, and is therefore difficult to detect.[1] undertaken, but none have yet succeeded.[14] Dark Primary evidence for dark matter comes from matter is classified as cold, warm, or hot according to calculations showing that many galaxies would fly its velocity (more precisely, its free streaming length). apart, or that they would not have formed or would not Current models favor a cold dark matter scenario, in move as they do, if they did not contain a large amount which structures emerge by gradual accumulation of of unseen matter.[2] Other lines of evidence include particles. observations in gravitational lensing[3] and in the Although the existence of dark matter is cosmic microwave background, along with generally accepted by the scientific community, some astronomical observations of the observable universe's astrophysicists, intrigued by certain observations current structure, the formation and evolution of which do not fit some dark matter theories, argue for galaxies, mass location during galactic collisions,[4] various modifications of the standard laws of general and the motion of galaxies within galaxy clusters. In relativity, such as modified Newtonian dynamics, the standard Lambda-CDM model of cosmology, the tensor–vector–scalar gravity, or entropic gravity. total mass–energy of the universe contains 5% These models attempt to account for all observations ordinary matter and energy, 27% dark matter and 68% without invoking supplemental non-baryonic matter.[15] of a form of energy known as dark energy.[5][6][7][8] Thus, dark matter constitutes 85%[a] of total mass, 63 New York Science Journal 2020;13(11) http://www.sciencepub.net/newyork NYJ History 1940 Jan Oort discovered and wrote about the large Early history non-visible halo of NGC3115.[31] The hypothesis of dark matter has an elaborate history.[16] In a talk given in 1884,[17] Lord Kelvin 1970s estimated the number of dark bodies in the Milky Way Vera Rubin, Kent Ford, and Ken Freeman's work from the observed velocity dispersion of the stars in the 1960s and 1970s[32] provided further strong orbiting around the center of the galaxy. By using evidence, also using galaxy rotation curves.[33][34][35] these measurements, he estimated the mass of the Rubin and Ford worked with a new spectrograph to galaxy, which he determined is different from the mass measure the velocity curve of edge-on spiral galaxies of visible stars. Lord Kelvin thus concluded many of with greater accuracy.[35] This result was confirmed in our stars, perhaps a great majority of them, may be 1978.[36] An influential paper presented Rubin and dark bodies.[18][19] In 1906 Henri Poincaré in The Ford's results in 1980.[37] They showed most galaxies Milky Way and Theory of Gases used dark must contain about six times as much dark as visible matter.[20][19] mass;[38] thus, by around 1980 the apparent need for The first to suggest the existence of dark matter dark matter was widely recognized as a major using stellar velocities was Dutch astronomer Jacobus unsolved problem in astronomy.[33] Kapteyn in 1922.[21][22] Fellow Dutchman and radio At the same time Rubin and Ford were exploring astronomy pioneer Jan Oort also hypothesized the optical rotation curves, radio astronomers were making existence of dark matter in 1932.[22][23][24] Oort was use of new radio telescopes to map the 21 cm line of studying stellar motions in the local galactic atomic hydrogen in nearby galaxies. The radial neighborhood and found the mass in the galactic plane distribution of interstellar atomic hydrogen (H-I) often must be greater than what was observed, but this extends to much larger galactic radii than those measurement was later determined to be erroneous.[25] accessible by optical studies, extending the sampling In 1933, Swiss astrophysicist Fritz Zwicky, who of rotation curves – and thus of the total mass studied galaxy clusters while working at the California distribution – to a new dynamical regime. Early Institute of Technology, made a similar inference.[26][27] mapping of Andromeda with the 300 foot telescope at Zwicky applied the virial theorem to the Coma Cluster Green Bank[39] and the 250 foot dish at Jodrell Bank[40] and obtained evidence of unseen mass he called dunkle already showed the H-I rotation curve did not trace the Materie (dark matter). Zwicky estimated its mass expected Keplerian decline. As more sensitive based on the motions of galaxies near its edge and receivers became available, Morton Roberts and compared that to an estimate based on its brightness Robert Whitehurst[41] were able to trace the rotational and number of galaxies. He estimated the cluster had velocity of Andromeda to 30 kpc, much beyond the about 400 times more mass than was visually optical measurements. Illustrating the advantage of observable. The gravity effect of the visible galaxies tracing the gas disk at large radii, Figure 16 of that was far too small for such fast orbits, thus mass must paper[41] combines the optical data[35] with the H-I data be hidden from view. Based on these conclusions, between 20–30 kpc, exhibiting the flatness of the outer Zwicky inferred some unseen matter provided the galaxy rotation curve; the solid curve peaking at the mass and associated gravitation attraction to hold the center is the optical surface density, while the other cluster together.[28] Zwicky's estimates were off by curve shows the cumulative mass, still rising linearly more than an order of magnitude, mainly due to an at the outermost measurement. In parallel, the use of obsolete value of the Hubble constant;[29] the same interferometric arrays for extragalactic H-I calculation today shows a smaller fraction, using spectroscopy was being developed. In 1972, David greater values for luminous mass. Nonetheless, Rogstad and Seth Shostak[42] published H-I rotation Zwicky did correctly conclude from his calculation curves of five spirals mapped with the Owens Valley that the bulk of the matter was dark.[19] interferometer; the rotation curves of all five were very Further indications the mass-to-light ratio was flat, suggesting very large values of mass-to-light ratio not unity came from measurements of galaxy rotation in the outer parts of their extended H-I disks. curves. In 1939, Horace W. Babcock reported the A stream of observations in the 1980s supported rotation curve for the Andromeda nebula, which the presence of dark matter, including gravitational suggested the mass-to-luminosity ratio increases lensing of background objects by galaxy clusters,[43] radially.[30] He attributed it to either light absorption the temperature distribution of hot gas in galaxies and within the galaxy or modified dynamics in the outer clusters, and the pattern of anisotropies in the cosmic portions of the spiral and not to the missing
Recommended publications
  • Axion Portal ⌘ [Weinberg, Wilczek, KSVZ, DFSZ] 4 EFT for a (Neutral) Dark Sector
    Snowmass RF6 - August 12, 2020 Dark Sector Portals at High Intensity Adam Ritz University of Victoria – New physics in a dark sector Empirical evidence for new physics, e.g. neutrino mass, dark matter, arguably points to a dark/hidden sector (but not directly to a specific mass scale) mediators Standard Model Dark Sector May contain light states, if UV Physics sufficiently weakly coupled • Neutrino mass - (HL)(HL)/ΛUV • DM - WIMPs etc Discoverability frontier IR Physics Direct • Neutrino mass - light (RH) singlets searches • DM - axions, sterile neutrinos, etc Energy Frontier Visibility Frontier ➠ Dark sectors present a huge model-space a priori, but an EFT approach to the mediator channel allows for a classification (large community effort over past decade) EFT for a (neutral) dark sector mediators Standard Model Dark Sector (+ gravity) There are just three UV-complete relevant or marginal “portals” to a SM-neutral hidden sector, unsuppressed by the (possibly large) new physics scale Λ c 1 = n (SM) (med) = + L ⇤n Ok Ol Lportals O ⇤ n=k+l 4 ✓ ◆ X− ✏ µ⌫ 2 ij 1 = B A0 H†H(AS + λS ) Y L¯ HN ++ −2 µ⌫ − − N i j OO ⇤ Vector portal Higgs portal Neutrino portal ✓ ◆◆ [Okun; Galison & Manohar; [Patt & Wilczek] Holdom; Foot et al] Many more UV-sensitive interactions at dim # 5 "3 EFT for a (neutral) dark sector mediators Standard Model Dark Sector (+ gravity) There are just three UV-complete relevant or marginal “portals” to a SM-neutral hidden sector, unsuppressed by the (possibly large) new physics scale ! c 1 = n (SM) (med) = + L ⇤n Ok Ol Lportals
    [Show full text]
  • Axions & Wisps
    FACULTY OF SCIENCE AXIONS & WISPS STEPHEN PARKER 2nd Joint CoEPP-CAASTRO Workshop September 28 – 30, 2014 Great Western, Victoria 2 Talk Outline • Frequency & Quantum Metrology Group at UWA • Basic background / theory for axions and hidden sector photons • Photon-based experimental searches + bounds • Focus on resonant cavity “Haloscope” experiments for CDM axions • Work at UWA: Past, Present, Future A Few Useful Review Articles: J.E. Kim & G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys., 82(1), 557 – 601, 2010. M. Kuster et al. (Eds.), Axions: Theory, Cosmology, and Experimental Searches, Lect. Notes Phys. 741 (Springer), 2008. P. Arias et al., WISPy Cold Dark Matter, arXiv:1201.5902, 2012. [email protected] The University of Western Australia 3 Frequency & Quantum Metrology Research Group ~ 3 staff, 6 postdocs, 8 students Hosts node of ARC CoE EQuS Many areas of research from fundamental to applied: Cryogenic Sapphire Oscillator Tests of Lorentz Symmetry & fundamental constants Ytterbium Lattice Clock for ACES mission Material characterization Frequency sources, synthesis, measurement Low noise microwaves + millimetrewaves …and lab based searches for WISPs! Core WISP team: Stephen Parker, Ben McAllister, Eugene Ivanov, Mike Tobar [email protected] The University of Western Australia 4 Axions, ALPs and WISPs Weakly Interacting Slim Particles Axion Like Particles Slim = sub-eV Origins in particle physics (see: strong CP problem, extensions to Standard Model) but become pretty handy elsewhere WISPs Can be formulated as: Dark Matter (i.e. Axions, hidden photons) ALPs Dark Energy (i.e. Chameleons) Low energy scale dictates experimental approach Axions WISP searches are complementary to WIMP searches [email protected] The University of Western Australia 5 The Axion – Origins in Particle Physics CP violating term in QCD Lagrangian implies neutron electric dipole moment: But measurements place constraint: Why is the neutron electric dipole moment (and thus θ) so small? This is the Strong CP Problem.
    [Show full text]
  • Stabilized Singlets in Supergravity As a Source of the Μ-Parameter
    IASSNS-HEP-97-137 CERN-TH/98-75 RU-97-97 hep-ph/9803310 March 1998 Stabilized Singlets in Supergravity as a Source of the µ-parameter Christopher Kolda 1, Stefan Pokorski 2,3 and Nir Polonsky 4 1 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA 2 CERN Theory Division, CH-1211 Geneva 23, Switzerland 3 Institute of Theoretical Physics, Warsaw University, H˙oza 69, 00-681 Warsaw, Poland 4 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA Abstract Within the context of supergravity-coupled supersymmetry, fields which are gauge and global singlets are usually considered anathema. Their vacuum ex- pectation values are shifted by quadratically divergent tadpole diagrams which are cutoff at the Planck scale, destabilizing the classical potential and driving the singlet field to large values. We demonstrate a new and generic mechanism which stabilizes the singlet in the presence of an extended gauge symmetry. Such a symmetry will be broken down to the Standard Model by the super- gravity interactions near the scale of spontaneous supersymmetry-breaking in the hidden-sector (∼ 1010−11 GeV). The resulting singlet expectation value is stabilized and naturally of order the gravitino mass, providing therefore a weak-scale mass for the Higgs fields of the supersymmetric Standard Model (a µ-parameter). The resulting low-energy theory is the minimal supersymmetric Standard Model, with all new fields decoupling at the intermediate scale. One of the primary motivations for low-energy supersymmetry (SUSY) is the stabilization of the weak scale (mW ) against quadratic divergences which appear at the quantum level and can drive mW up to the Planck scale (MP ).
    [Show full text]
  • The Future of Dark Matter and Dark Forces
    THE FUTURE OF DARK MATTER AND DARK FORCES International Symposium on the Future of Physics and Astronomy T. D. Lee Institute, Shanghai Jiao Tong University Jonathan Feng, University of California, Irvine 16 September 2017 16 Sep 2017 Feng 1 A HAPPY OCCASION Birthplace of my father in 1937 16 Sep 2017 Feng 2 DARK MATTER • “The Future of Physics and Astronomy”: Identifying dark matter is a central problem in both fields, and appreciation of its importance has grown rapidly in recent years 1997 2007 2017 LHC LHC LHC Gauge Hierarchy GaugeHierarchy GaugeHierarchy StandardModel Dark Matter Higgs Boson Higgs Boson Higgs Boson Dark Matter 16 Sep 2017 Feng 3 CLASSIC CANDIDATES • Three excellent candidates: sterile neutrinos, axions, WIMPs • Axions are highly motivated by the strong CP problem Peccei, Quinn (1977); Wilczek (1978); Weinberg (1978) • For axion DM, if θi ~1, then 12 fa ~ 10 GeV ma ~ 1-100 µeV Graham, Irastorza, Lamoreaux, Lindner, van Bibber (2016) 16 Sep 2017 Feng 4 LATEST RESULTS: ADMX G2 van Bibber (2017) 16 Sep 2017 Feng 5 WIMPs The WIMP Miracle WIMP Searches X q _ X q Feng (2008) • The WIMP miracle motivates diverse experiments that are (unfortunately) bigger, longer, and more expensive 16 Sep 2017 Feng 6 DIRECT DETECTION EXPERIMENTS (2013) Asymmetric nDM ~ nB 16 Sep 2017 Feng 7 LATEST RESULTS: PandaX-II 16 Sep 2017 Feng 8 RECENT DEVELOPMENTS • In the last few years, these classic candidates have been generalized to broad classes of dark matter Axions à Axion-like Particles (ALPs) à Ultralight DM WIMPs à WIMPless DMà Hidden Sector
    [Show full text]
  • The Beryllium Anomaly and New Physics
    THE BERYLLIUM ANOMALY AND NEW PHYSICS New Physics at the Intensity Frontier CERN-EPFL-Korea Theory Institute Jonathan Feng, University of California, Irvine 21 February 2017 21 Feb 2017 Feng 1 OUTLINE A. J. Krasznhorkay et al., “Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson,” 1504.01527 [nucl-ex], PRL 116, 042501 (2016) J. Feng et al., “Protophobic Fifth Force Interpretation of the Observed Anomaly in 8Be Nuclear Transitions,” 1604.07411 [hep-ph], PRL 117, 071803 (2016) J. Feng et al., “Particle Physics Models for the 17 MeV Anomaly in Beryllium Nuclear Decays,” 1608.03591 [hep-ph], PRD 95, 035017 (2017) Jonathan Bart Iftah Susan Jordan Tim Flip Feng Fornal Galon Gardner Smolinsky Tait Tanedo 21 Feb 2017 Feng 2 NEW PHYSICS AT THE INTENSITY FRONTIER • There are currently many outstanding puzzles: neutrino masses, gauge hierarchy, strong CP, flavor, dark matter, baryogenesis, dark energy,... • Some of these motivate searches for new particles and forces at high energies: the energy frontier • But some also motivate searches for new physics that is light, but weakly coupled: the intensity frontier • Of particular interest here are connections to dark matter 21 Feb 2017 Feng 3 DARK MATTER AT THE INTENSITY FRONTIER !!! 21 Feb 2017 Feng 4 DARK SECTORS • All evidence for dark matter is gravitational. Perhaps it’s in a hidden sector, composed of particles with no SM gauge interactions (electromagnetic, weak, strong) Visible Dark Sector Sector • The dark sector may have a rich structure with matter and forces of its own Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982); Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); Pospelov, Ritz, Voloshin (2007); Feng, Kumar (2008);..
    [Show full text]
  • Glueball Dark Matter in Non-Standard Cosmologies
    Prepared for submission to JHEP Glueball dark matter in non-standard cosmologies Bobby S. Acharya,a;b Malcolm Fairbairn,a Edward Hardyb;c aKings College London, Strand, London, WC2R 2LS, United Kingdom bAbdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy cDepartment of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom E-mail: [email protected], [email protected], [email protected] Abstract: Hidden sector glueball dark matter is well motivated by string theory, compact- ifications of which often have extra gauge groups uncoupled to the visible sector. We study the dynamics of glueballs in theories with a period of late time primordial matter domina- tion followed by a low final reheating temperature due to a gravitationally coupled modulus. Compared to scenarios with a high reheating temperature, the required relic abundance is possible with higher hidden sector confinement scales, and less extreme differences in the entropy densities of the hidden and visible sectors. Both of these can occur in string derived models, and relatively light moduli are helpful for obtaining viable phenomenology. We also study the effects of hidden sector gluinos. In some parts of parameter space these can be the dominant dark matter component, while in others their abundance is much smaller than that of glueballs. Finally, we show that heavy glueballs produced from energy in the hidden sector prior to matter domination can have the correct relic abundance if they are sufficiently
    [Show full text]
  • Data-Driven Background Estimation Study for Stealth Supersymmetry
    UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingenier´ıas Data-driven background estimation study for stealth supersymmetry searches in events with structure-rich jets and low missing energy in pp collisions at 8 TeV Particle Physics Proyecto de investigaci´on Santiago Rafael Paredes S´aenz F´ısica Trabajo de titulaci´onpresentado como requisito para la obtenci´ondel t´ıtulode Licenciatura en F´ısica Quito, 21 de diciembre de 2015 2 UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingenier´ıas HOJA DE CALIFICACION´ DE TRABAJO DE TITULACION´ Data-driven background estimation study for stealth supersymmetry searches in events with structure-rich jets and low missing energy in pp collisions at 8 TeV Santiago Rafael Paredes S´aenz Calificaci´on: Nombre del profesor, T´ıtuloacad´emico: Edgar Carrera, Ph.D. Firma del profesor: Quito, 22 de diciembre de 2015 3 Derechos de Autor Por medio del presente documento certifico que he le´ıdo todas las Pol´ıticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Pol´ıticade Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los dere- chos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Pol´ıticas. Asimismo, autorizo a la USFQ para que realice la digitalizaci´ony publicaci´onde este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Org´anicade Educaci´onSuperior. Firma del estudiante: Nombres y apellidos: Santiago Rafael Paredes S´aenz C´odigo: 00103811 C´edulade Identidad: 1713475893 Lugar y fecha: Quito, diciembre de 2015 4 RESUMEN En vista de que las b´usquedasde supersimetr´ıaconcentradas en encontrar energ´ıa faltante no han sido exitosas hasta el momento, modelos alternativos c´omola super- simetr´ıasigilosa, que permiten poca, o ninguna, energ´ıafaltante han tomado mucho inter´es.
    [Show full text]
  • Dark Glueballs and Their Ultralight Axions
    Dark glueballs and their ultralight axions James Halverson, Brent D. Nelson, and Gustavo Salinas Department of Physics, Northeastern University, Boston, MA 02115-5000 USA Fabian Ruehle Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK Dark gauge sectors and axions are well-motivated in string theory. We demonstrate that if a confining gauge sector gives rise to dark glueballs that are a fraction of the dark matter, and the associated axion has a decay constant near the string scale, then this axion is ultralight and naturally realizes the fuzzy dark matter scenario with a modest tuning of a temperature ratio. Astrophysical observations constrain the size of the glueball component relative to the axionic component, while electric dipole moments constrain mixing with the QCD axion. Extended gauge and axion sectors are ubiquitous in the dark glueball problem is simultaneously eliminated. string theory and provide natural candidates for hidden Constraints on the model arising from astrophysics and sector dark matter. More specifically, gauge groups may electric dipole moment measurements are considered in have high rank, and gauge sectors that interact only via sections III A and III B, respectively. Finally, in sec- gravity, moduli, or axions are common. While not all tion IV, we discuss the scenario in a string theory con- string axions are necessarily associated with gauge sec- text, and consider how many of the assumptions made, tors, each gauge sector must couple via its field strength and conclusion drawn, are supported by broad arguments to some subset of the axions due to the dynamical nature in string theory.
    [Show full text]
  • Strongly Coupled Hidden Sector
    KANAZAWA-10-13 Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector 1, 2, 1, 1, Martin Holthausen, ∗ Jisuke Kubo, y Kher Sham Lim, z and Manfred Lindner x 1Max-Planck-Institut f¨urKernphysik, 69117 Heidelberg, Germany 2Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan Abstract The LHC and other experiments show so far no sign of new physics and long-held beliefs about naturalness should be critically reexamined. We discuss therefore in this paper a model with a combined breaking of conformal and electroweak symmetry by a strongly coupled hidden sector. Even though the conformal symmetry is anomalous, this may still provide an explanation of the smallness of electroweak scale compared to the Planck scale. Specifically we start from a classically conformal model, in which a strongly coupled hidden sector undergoes spontaneous chiral symmetry breaking. A coupling via a real scalar field transmits the breaking scale to the Standard Model Higgs and triggers electroweak symmetry breaking. The model contains dark matter candidates in the form of dark pions, whose stability is being guaranteed by the flavor symmetry of hidden quark sector. We study its relic abundance and direct detection prospects with the Nambu-Jona-Lasinio method and discuss the phase transition in the dark sector as well as in the electroweak sector. arXiv:1310.4423v2 [hep-ph] 15 Jan 2014 ∗ [email protected] y [email protected] z [email protected] x [email protected] 1 I. INTRODUCTION At the present level of our understanding, nature has (at least) three fundamental scales: the Planck scale MP l, where gravitational interactions become strong, the QCD scale ΛQCD at which the interactions of quantum chromodynamics (QCD) grow strong and the elec- troweak (EW) scale v = 246 GeV, around where - in the absence of the Higgs - the longitu- dinal gauge boson interactions would have become strong.
    [Show full text]
  • Statistical Coupling Constants from Hidden Sector Entanglement
    Statistical coupling constants from hidden sector entanglement Vijay Balasubramanian1;2∗, Jonathan J. Heckman1†, Elliot Lipeles1‡, and Andrew P. Turner1§ 1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 2Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium Abstract String theory predicts that the couplings of Nature descend from dynamical fields. All known string-motivated particle physics models also come with a wide range of possible extra sectors. It is common to posit that such moduli are frozen to a background value, and that extra sectors can be nearly completely decoupled. Performing a partial trace over all sectors other than the visible sector generically puts the visible sector in a mixed state, with coupling constants drawn from a quantum statistical ensemble. An observable consequence of this entanglement between visible and extra sectors is that the reported values of couplings will appear to have an irreducible variance. Including this variance in fits to experimental data arXiv:2012.09182v3 [hep-th] 9 Mar 2021 gives an important additional parameter that can be used to distinguish this scenario from the case where couplings are treated as fixed parameters. There is a consequent interplay between energy range and precision of an experiment that allows an extended reach for new physics. ∗e-mail: [email protected] †e-mail: [email protected] ‡e-mail: [email protected] §e-mail: [email protected] 1 Introduction The coupling constants of Nature are not truly \constant." This, at least, is what string theory predicts since such parameters descend from background values of moduli fields, the low energy remnants of higher-dimensional quantum gravity in our 4D world.
    [Show full text]
  • The Everpresent Eta-Problem: Knowledge of All Hidden Sectors
    Preprint typeset in JHEP style - HYPER VERSION ITFA10-44 The everpresent η-problem: knowledge of all hidden sectors required Sjoerd Hardemana, Johannes M. Oberreuterb, Gonzalo A. Palmac, Koenraad Schalma and Ted van der Aalsta aInstituut-Lorentz for Theoretical Physics, Universiteit Leiden Niels Bohrweg 2, Leiden, The Netherlands bInstituut voor Theoretische Fysica, Universiteit van Amsterdam Science Park 904, Amsterdam, The Netherlands cPhysics Department, FCFM, Universidad de Chile Blanco Encalada 2008, Santiago, Chile Email: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We argue that the η-problem in supergravity inflation cannot be solved without knowledge of the ground state of hidden sectors that are gravitationally coupled to the inflaton. If the hidden sector breaks supersymmetry independently, its fields cannot be stabilized during cosmological evolution of the inflaton. We show that both the subsequent dynamical mixing between sectors as well as the lightest mass of the hidden sector are set by the scale of supersymmetry breaking in the hidden sector. The true cosmological η-parameter arises from a linear combination of the lightest mode of the hidden sector with the inflaton. Generically, either the true η deviates considerably from the na¨ıve η implied by the inflaton sector alone, or one has to consider a multifield model. Only if the lightest mass in the hidden sector is much larger than the inflaton mass and if the inflaton mass is much larger than the scale of hidden sector supersymmetry breaking, is the effect of the hidden sector on the slow-roll dynamics of the inflaton negligible.
    [Show full text]
  • Recent Progress in Search for Dark Sector Signatures M.A
    Recent Progress in Search for Dark Sector Signatures M.A. Deliyergiyev ∗ † ∗Department of Experimental Particle Physics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia, and †Department of High Energy Nuclear Physics, Institute of Modern Physics, CAS, Nanchang Road 509, 730000 Lanzhou, China Submitted to Open Physics Many difficulties are encountered when attempting to pinpoint a clusters, the rotation curves of galaxies, large scale structure common origin for several observed astrophysical anomalies, and simulations and observations from high-z supernovae, collid- when assessing their tension with existing exclusion limits. These ing clusters of galaxies, gravitational lensing and so on [4, 6]. include systematic uncertainties affecting the operation of the de- Over the last 15 years we have established with very high tectors, our knowledge of their response, astrophysical uncertainties, confidence that the matter density (visible and dark) accounts and the broad range of particle couplings that can mediate interac- 1 tion with a detector target. Particularly interesting astrophysical for only 27% of the critical value ΩM + ΩΛ ≈ 1 , so the rest is evidence has motivated a search for dark-photon, and focused our attributed to the vacuum energy density, and thus to the cos- attention on a Hidden Valleys model with a GeV-scale dark sector mological constant. Moreover, we have concluded from CMB that produces exciting signatures. Results from recent underground data that the Universe has a dark, or vacuum, energy density experiments are also considered. ΩΛ, of 0.73, which seems to be eerily uniform – smoothly dis- There is a `light' hidden sector (dark sector), present in many mod- tributed through space, and persistent (non-diluting) through els of new physics beyond the Standard Model, which contains a time.
    [Show full text]