Data-Driven Background Estimation Study for Stealth Supersymmetry
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingenier´ıas Data-driven background estimation study for stealth supersymmetry searches in events with structure-rich jets and low missing energy in pp collisions at 8 TeV Particle Physics Proyecto de investigaci´on Santiago Rafael Paredes S´aenz F´ısica Trabajo de titulaci´onpresentado como requisito para la obtenci´ondel t´ıtulode Licenciatura en F´ısica Quito, 21 de diciembre de 2015 2 UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingenier´ıas HOJA DE CALIFICACION´ DE TRABAJO DE TITULACION´ Data-driven background estimation study for stealth supersymmetry searches in events with structure-rich jets and low missing energy in pp collisions at 8 TeV Santiago Rafael Paredes S´aenz Calificaci´on: Nombre del profesor, T´ıtuloacad´emico: Edgar Carrera, Ph.D. Firma del profesor: Quito, 22 de diciembre de 2015 3 Derechos de Autor Por medio del presente documento certifico que he le´ıdo todas las Pol´ıticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Pol´ıticade Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los dere- chos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Pol´ıticas. Asimismo, autorizo a la USFQ para que realice la digitalizaci´ony publicaci´onde este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Org´anicade Educaci´onSuperior. Firma del estudiante: Nombres y apellidos: Santiago Rafael Paredes S´aenz C´odigo: 00103811 C´edulade Identidad: 1713475893 Lugar y fecha: Quito, diciembre de 2015 4 RESUMEN En vista de que las b´usquedasde supersimetr´ıaconcentradas en encontrar energ´ıa faltante no han sido exitosas hasta el momento, modelos alternativos c´omola super- simetr´ıasigilosa, que permiten poca, o ninguna, energ´ıafaltante han tomado mucho inter´es. Una estimaci´onexperimental de eventos de fondo fue desarrollada para una se~nalde teor´ıade supersimetr´ıasigilosa con cuatro jets en el estado final. C´omoparte de este proceso, eventos de supersimetr´ıasigilosa fueron generados mediante herramientas computacionales y estas simulaciones fueron analizadas. Datos del experimento CMS p en CERN de colisiones prot´on-prot´ona s = 8 TeV y 21.79 fb−1 fueron analiadosLa concordancia entre las distribuciones de la estimaci´onde eventos de fondo y la de los verdaderos eventos de fondo experimentales sugiere que esta t´ecnica, y los l´ımitesen las variables que fueron definidos en este estudio, proveer´ıanuna aproximaci´onadecuada de los eventos de fondo que simulan el decaimiento estudiado de un squark, y podr´ıa ser usado c´omoparte de una b´usquedacompleta de supersimetr´ıasigilosa. Palabras clave: Modelo est´andar,supersimetr´ıa,supersimetr´ıasigilosa, sub-estructura de jets, estimaci´onde eventos de fondo. 5 ABSTRACT As searches for supersymmetry (SUSY) looking for missing energy have proven un- successful so far, SUSY models that allow low, or non, missing energy, like stealth supersymmetry, have acquired increasing interest. A data-driven background estima- tion was performed for a stealth supersymmetry signal with four jets and low missing energy in the final state. As part of this process, stealth SUSY events were gener- ated via software and later studied. Data from the CMS experiment of pp collisions p at s = 8 TeV and 21.79 fb−1 were analyzed. The close agreement between the es- timated background distributions and true background from data suggests that this technique, and the variable thresholds that were defined in this work, would provide an appropriate representation of the background events which mimic the squark decay under study. Key words: Standard model, supersymmetry, stealth supersymmetry, jet substruc- ture, background estimation. 6 AGRADECIMIENTOS A mis compa~neros y amigos, con quienes hemos festejado y sufrido d´ıaa d´ıaen estos a~nosuniversitarios. En especial a mi familia, que con apoyo y motivaci´onme ayudaron a seguir la carrera que amo. A mis profesores y otros mentores, quienes con su conocimiento y ense~nanzas convirtieron estos ´ultimosa~nosen retos y aventuras. En especial Yuri Gershtein, qui´enadem´asde haber supervisado este proyecto, fue un gran gu´ıadurante mi estad´ıa en Fermilab. Un agradecimiento especial para mi director en este, y algunos otros, proyectos Edgar Carrera, qui´encon su gu´ıay apoyo me ha ayudado a conseguir m´asmetas de las que podr´ıahaber imaginado al iniciar mi carrera en F´ısica. CONTENTS 7 Contents 1 Introduction and Motivation8 1.1 The Standard Model of Particle Physics.................8 1.2 Limitations of the Standard Model....................9 1.2.1 Dark Matter.............................9 1.2.2 The Hierarchy Problem....................... 10 1.3 Supersymmetry............................... 11 1.4 Stealth Supersymmetry........................... 14 2 SUSY Signal and Background Processes 15 2.1 Signal.................................... 15 2.2 Background Processes........................... 17 3 The LHC and the CMS Detector 17 4 Analysis 19 4.1 Simulated Signal Events.......................... 19 4.2 Data Selection Criteria........................... 21 4.3 Experimental Data Events......................... 24 4.4 Background Estimation........................... 26 5 Conclusions 28 6 Annexes 33 6.1 Plots..................................... 33 8 1 Introduction and Motivation 1.1 The Standard Model of Particle Physics Since its appearance in 1970's, the Standard Model of Particle Physics has passed every experimental test. This elegant theory describes all the elementary particles of nature, as well as how they interact with each other. Moreover, it predicted the existence of particles that had not been observed, and through exhaustive experimental procedures were later found (such is the case of the top quark and the higgs boson among others). The Standard Model (SM) states that all matter is composed of elementary parti- cles, which are divided into two groups: quarks and leptons. Additionally, the forces between these particles are mediated by bosons. There are three generations of quarks: up(u)-down(d), charm(c)-strange(s) and top(t)-bottom or -beauty(b); with the corre- sponding leptons: electron(e)-electron neutrino(νe), muon(µ)- muon neutrino(νµ) and tau(τ)-tau neutrino(ντ ). Finally, there are four gauge bosons: the photon γ, which mediates the electromagnetic force; the gluon g, which is responsible for the strong nu- clear force, and the W and Z bosons, which mediate the weak nuclear force. Separate from these is the Higgs boson(H), which is responsible for the mechanism that allows other elementary particles to have mass[1][2]. Figure 1: Periodic table of elementary particles. Image credit: Wikipedia Commons. This model of our universe can be nicely, and compactly, summarized by the la- 1.2 Limitations of the Standard Model 9 grangian from which its fields and interactions are derived: 1 L = − F F µν + i ¯D + h:c: + ¯ y φ + h:c: + jD φj2 − V (φ) (1) 4 µν i ij j µ As a quick overview, and speaking quite roughly, the terms that contain either an Fµν or a D (with D denoting the covariant derivative) describe gauge fields: photon, W and Z bosons and gluon. The terms containing a describe matter particles, and the ones with φ describe the higgs boson. Also note that here h:c: stands for Hermitian Conjugate. The interactions between fields are described by the terms containing vari- ous of these symbols[2]. Over and over again have scientists proven that the predictions of the SM are correct, and that it does indeed describe our universe. Nevertheless, de- spite the elegance and simplicity of the SM, we know that it is an incomplete model, as there are phenomena in nature that it cannot describe. The hierarchy problem and the existence of dark matter are two notable unresolved issues in physics, which the SM, in its current state, cannot explain. Furthermore, the SM is a precise tool to describe the universe and even make predictions about it, but the theory itself raises a few questions: why are there three generations of quarks and leptons even though just the first generation is necessary to create all ordinary stable matter? What sets the scale of the Higgs boson mass? This type of questions is precisely what is most interesting for scientists, since their solutions might shed light over new physics. 1.2 Limitations of the Standard Model Two of these unsolved problems, dark matter and the hierarchy problem, are specially relevant to this work, hence, a closer look at them is in order. 1.2.1 Dark Matter In a galaxy, stars orbit around its center due to its gravitational potential, which is given by its distribution of mass. In the same way, galaxies orbit around the center of clusters due to the overall distribution of mass of the galaxy cluster. On the other hand, astronomers can determine the speed at which galaxies orbit by measuring the Doppler shift of the light they emit [3]. Hence, by measuring the orbiting speeds of galaxies in a cluster, it is possible to estimate the mass present in the cluster, as well 1.2 Limitations of the Standard Model 10 as obtain clues about its distribution. Using this method, in 1933 Fritz Zwicky studied the Coma Cluster and found that the orbiting speeds of galaxies did not follow the pattern expected from the distri- bution of masses of all its stars. In fact, he determined that the total mass in the cluster was around 400 times more than the mass of all the stars. This large amount of unaccounted-for mass, known only by its gravitational effects1, was appropriately named Dark Matter [3]. Since Zwicky's observations, astronomers have studied the rotation curves of galax- ies (which depict the orbiting speed of a galaxy as a function of the distance r to its center).