Variety of Proline-Specific Peptidases in Higher Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ISSN 0513-5222 Official Publication of the International Commission on Yeasts of the International Union of Microbiological Soci
ISSN 0513-5222 Official Publication of the International Commission on Yeasts of the International Union of Microbiological Societies (IUMS) DECEMBER 2012 Volume LXI, Number II Marc-André Lachance, Editor University of Western Ontario, London, Ontario, Canada N6A 5B7 <[email protected] > http://www.uwo.ca/biology/YeastNewsletter/Index.html Associate Editors Peter Biely Patrizia Romano Kyria Boundy-Mills Institute of Chemistry Dipartimento di Biologia, Herman J. Phaff Culture Slovak Academy of Sciences Difesa e Biotecnologie Collection Dúbravská cesta 9, 842 3 Agro-Forestali Department of Food Science 8 Bratislava, Slovakia Università della Basilicata, and Technology Via Nazario Sauro, 85, 85100 University of California Davis Potenza, Italy Davis California 95616-5224 WI Golubev, Puschino, Russia . 30 CP Kurtzman, Peoria, Illinois, USA . 42 M Kopecká, Brno, Czech Republic . 30 A Caridi, Reggio Calabria, Italie . 45 GI Naumov and E.S. Naumova, E Breirerová, Bratislava, Slovakia . 47 Moscow, Russia ..................... 31 P Buzzini, Perugia, Italy. 49 J du Preez, Bloemfontein, South Africa . 32 M Sipiczki, Debrecen, Hungary . 49 D Kregiel, Lodz, Poland ................. 34 JP Tamang, Tadong, Gangtok, India . 52 B Gibson, VTT, Finland ................. 35 MA Lachance, London, Ontario, Canada . 52 G Miloshev, Sofia, Bulgaria . 36 Forthcoming Meeting .................... 54 D Begerow and A Yurkov, Bochum, Germany 38 Fifty Years Ago ........................ 54 A Yurkov, Braunshweig, Gremany . 41 Editorial Complete Archive of Yeast Newsletter Back Issues Available Thanks to Kyria Boundy-Mills, readers can now have access to all back issues of the Yeast Newsletter as PDF scans. The archive is available at the following link: http://www.uwo.ca/biology/YeastNewsletter/BackIssues.html Addition of these large files made it necessary to move the YNL web site to a new server. -
S41467-021-25308-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics .............................................................................................................................. -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Genome-Wide Maps of Nucleosomes of the Trichostatin a Treated and Untreated Archiascomycetous Yeast Saitoella Complicata
AIMS Microbiology, 2(1): 69-91. DOI: 10.3934/microbiol.2016.1.69 Received: 28 January 2016 Accepted: 11 March 2016 Published: 15 March 2016 http://www.aimspress.com/journal/microbiology Research article Genome-wide maps of nucleosomes of the trichostatin A treated and untreated archiascomycetous yeast Saitoella complicata Kenta Yamauchi 1, Shinji Kondo 2, Makiko Hamamoto 3, Yutaka Suzuki 4, and Hiromi Nishida 1,* 1 Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan 2 National Institute of Polar Research, Tokyo, Japan 3 Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan 4 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan * Correspondence: E-mail: [email protected]; Tel: 81-766-56-7500; Fax: 81-766-56-2498. Abstract: We investigated the effects of trichostatin A (TSA) on gene expression and nucleosome position in the archiascomycetous yeast Saitoella complicata. The expression levels of 154 genes increased in a TSA-concentration-dependent manner, while the levels of 131 genes decreased. Conserved genes between S. complicata and Schizosaccharomyces pombe were more commonly TSA-concentration-dependent downregulated genes than upregulated genes. We calculated the correlation coefficients of nucleosome position profiles within 300 nucleotides (nt) upstream of a translational start of S. complicata grown in the absence and the presence of TSA (3 μg/mL). We found that 20 (13.0%) of the 154 TSA-concentration-dependent upregulated genes and 22 (16.8%) of the 131 downregulated genes had different profiles (r < 0.4) between TSA-free and TSA-treated. -
The Diversity of Fungal Genome Tapan Kumar Mohanta* and Hanhong Bae*
Mohanta and Bae Biological Procedures Online (2015) 17:8 DOI 10.1186/s12575-015-0020-z Biological Procedures Online REVIEW Open Access The diversity of fungal genome Tapan Kumar Mohanta* and Hanhong Bae* Abstract The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus. Keywords: Ascomycota, Basidiomycota, Chytridiomycota, Monoblepharidomycota, Neocallimastigomycota, Blastocladiomycota, Glomeromycota, Entomophthoromycota, Stramenopiles and micorsporidia Introduction fungus makes them important from an evolutionary point Fungi are the larger group of eukaryotic organisms that of view. That is why fungi are subjected to intense phylo- ranges from yeast and slime molds to mushrooms. These genetic, ecological and molecular studies. The advancement organisms are majorly classified as monophyletic Eumycota in high throughput sequencing technology progressed rap- group and their diversity ranges from 500 thousand to 9.9 idly that led to sequencing of large numbers of fungal ge- million spanning over 1 billion years of evolutionary his- nomes. -
Phylogeny and Evolutionary Perspective of Opisthokonta Protists
Phylogeny and evolutionary perspective of Opisthokonta protists Guifré Torruella i Cortés ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. -
Elsevier Editorial System(Tm) for Mycological Research
Elsevier Editorial System(tm) for Mycological Research Manuscript Draft Manuscript Number: MYCRES-D-07-00031R2 Title: A Higher-Level Phylogenetic Classification of the Fungi Article Type: Original Research Keywords: AFTOL, Eumycota, Lichens, Molecular phylogenetics, Mycota, Nomenclature, Systematics Corresponding Author: David S. Hibbett, Corresponding Author's Institution: Clark University First Author: David S Hibbett, PhD Order of Authors: David S Hibbett, PhD; David S. Hibbett Manuscript Region of Origin: UNITED STATES Abstract: A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 19 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Agaricomycetes, Dacrymycetes, Monoblepharidomycetes, Neocallimastigomycetes, Tremellomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. -
Fungal Communities in Woodpecker Cavities at Pringle
Fungal communities in woodpecker cavities at Pringle Falls Experimental Forest: Preliminary results from post-treatment woodpecker surveys and fungal sequencing on Lookout Mountain. December 18, 2017 Dan ReiffDan Report by Teresa J. Lorenz Sequencing by Michelle A. Jusino Pringle Falls Experimental Forest (PFEF) was established in 1931 as a natural laboratory for research on ponderosa pine (Pinus ponderosa) management and silvics in the eastern Oregon Cascades. Between 2011 and 2015, thinning and prescribed burning treatments were conducted on Lookout Mountain at PFEF for a project entitled Forest dynamics after thinning and fuel reduction in dry forests. The larger goals of this project were to evaluate the short- and long-term effects of thinning and fuel reduction treatments on forest vegetation (Youngblood 2009). To evaluate treatment effects on wildlife Saab and Lehmkuhl (2011) established surveys to measure cavity excavating birds pre- and post-treatment. Surveys focused on white-headed woodpecker (Leuconotopicus albolarvatus), which is a species of concern in dry forests of the northwestern U.S. Pre-treatment surveys were conducted on Lookout Mountain in spring 2011. Only six woodpecker nests were documented in the pre-treatment area and no white-headed woodpecker nests were found within the area to be treated. Thus, a decision was made that post-treatment monitoring on Lookout Mountain should focus on new research questions, if possible. Ideally, monitoring of cavity excavators post-treatment would explore questions of management interest that could be meaningfully examined within a small geographic area. Currently, biologists lack information on fungi that cause wood decay for woodpecker cavity excavation in western North America. -
Comparative Genomics of Biotechnologically Important Yeasts
Comparative genomics of biotechnologically important yeasts Robert Rileya, Sajeet Haridasa, Kenneth H. Wolfeb, Mariana R. Lopesc,d, Chris Todd Hittingerc,e, Markus Gökerf, Asaf A. Salamova, Jennifer H. Wisecaverg, Tanya M. Longh,i, Christopher H. Calveyj, Andrea L. Aertsa, Kerrie W. Barrya, Cindy Choia, Alicia Cluma, Aisling Y. Coughlanb, Shweta Deshpandea, Alexander P. Douglassb, Sara J. Hansonb, Hans-Peter Klenkf,k, Kurt M. LaButtia, Alla Lapidusa,1, Erika A. Lindquista, Anna M. Lipzena, Jan P. Meier-Kolthofff, Robin A. Ohma,2, Robert P. Otillara, Jasmyn L. Pangilinana, Yi Penga, Antonis Rokasg, Carlos A. Rosad, Carmen Scheunerf, Andriy A. Sibirnyl,m, Jason C. Slotn, J. Benjamin Stielowf,o, Hui Suna, Cletus P. Kurtzmanp, Meredith Blackwellq,r, Igor V. Grigorieva,3, and Thomas W. Jeffriesh,3 aDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; bUniversity College Dublin Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland; cLaboratory of Genetics, Genetics/Biotechnology Center, University of Wisconsin–Madison, Madison, WI 53706; dDepartamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; eDepartment of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI 53726; fDeutsche Sammlung von Mikroorganismen und Zellkulturen German Collection of Microorganisms and Cell Cultures, Leibniz Institute, 38124 Braunschweig, Germany; gDepartment of Biological Sciences, Vanderbilt University,