2019 Astrophysics Strategic Technology Gaps TRL Scientific, Applications and Solution

Total Page:16

File Type:pdf, Size:1020Kb

2019 Astrophysics Strategic Technology Gaps TRL Scientific, Applications and Solution 2019 Astrophysics Strategic Technology Gaps TRL Scientific, Applications and Solution SOTA Engineering, and/or Potential Relevant Gap Name Description Current State-of-the-Art Performance Goals and Objectives Urgency Programmatic Astrophysics Benefits Missions Angular The capability to resolve the habitable Monolith: 3.5-m sintered SiC with < 3 µm SFE 3 3 Large (4–16 m) monolith and multi-segmented This gap is likely to be LUVOIR, HabEx, or any Demonstration of Resolution zones of nearby star systems in the (Herschel); 2.4-m ULE with ~10 nm SFE mirrors for space that meet SFE < 10 nm rms closed by development of other large UV/Vis/NIR feasibility and as (UV/Vis/NIR) UV/Vis/NIR band, with a large space (HST); Depth: Waterjet cutting is TRL 9 to 14", (wavelength coverage 400–2500 nm); Wavefront large monolithic or space observatory. much risk reduction telescope. but TRL 3 to >18". Fused core is TRL 3; stability better than 10 pm rms per wavefront control segmented telescopes. as possible prior to slumped fused core is TRL 3 (AMTD). time step; CTE uniformity characterized at the ppb Aside from angular completion of Segmented: (no flight SOA): 6.5 m Be with 25 level for a large monolith; Segmented apertures resolution, large primary Astro2020. Per nm SFE (JWST); Non-NASA: 6 DOF, 1-m leverage 6 DOF or higher control authority meter- mirrors enhance planet LUVOIR and HabEx class SiC and ULE, < 20 nm SFE, and < 5 nm class segments for wavefront control. sensitivity due to reduction Final Reports, TRL wavefront stability over 4 hr with thermal in science integration time 6 in the mid-2020’s control with greater collecting areas would be needed. and throughput enabling probing of a larger number of more distant stars’ habitable zones and improved spectral resolution. Coronagraph The capability to suppress starlight unobscured pupil: 6×10-10 raw contrast at 10% 4 3 Maximized science yield for a direct imaging This gap is likely to be LUVOIR, HabEx, or any Demonstration of Contrast with a coronagraph to the level bandwidth, angles of 3-15 λ/D (HLC demo in telescope/mission. ≤ 10-10 raw contrast, >10% closed by improvements in other coronagraph- feasibility and as needed to detect and spectrally HCIT); obscured pupil: 1.6×10-9 raw contrast at throughput, IWA ≤ 3 λ/D, obscured/segmented pupil coronagraph masks and based exoplanet direct- much risk reduction characterize Earth-like exoplanets in 10% bandwidth across angles of 3-9 λ/D optics, wavefront control, imaging mission. as possible prior to the habitable zones of Sun-like stars. (WFIRST) data post-processing. completion of Astro2020. Per LUVOIR and HabEx Final Reports, TRL 6 in the mid-2020’s would be needed. Coronagraph The capability to maintain the deep WFIRST CGI demonstrated ~10-8 contrast in 3 3 Contrast stability on time scales needed for spectral This gap is likely to be LUVOIR, HabEx, or any Demonstration of Contrast starlight suppression provided by a a simulated dynamic environment using measurements (possibly as long as days). closed by a combination of other coronagraph- feasibility and as Stability coronagraph for a time period long LOWFS (which obtained 12 pm focus Achieving this stability requires an integrated many factors in a based exoplanet direct- much risk reduction enough to detect light from an exo- sensitivity) approach to the coronagraph and telescope, possibly coronagraph/observatory imaging mission. as possible prior to Earth. SIM and non-NASA work has demonstrated including wavefront sense/control, metrology and system, including active completion of nm accuracy and stability with laser metrology correction of mirror segment phasing, vibration wavefront control at the Astro2020. Per isolation/reduction coronagraph level, thermal LUVOIR and HabEx Capacitive gap sensors demonstrated at 10 control, active and passive Final Reports, TRL pm This stability is likely to require wavefront error stability at the level of 10-100 pm per control step (of ultra-stable structures, and 6 in the mid-2020’s 80 dB vibration isolation demonstrated order 10 minutes). disturbance isolation/ would be needed. Gaia gold gas microthrusters and LISA reduction. pathfinder colloidal microthrusters can reduce vibrations 1 2019 Astrophysics Strategic Technology Gaps TRL Scientific, Applications and Solution SOTA Engineering, and/or Potential Relevant Gap Name Description Current State-of-the-Art Performance Goals and Objectives Urgency Programmatic Astrophysics Benefits Missions Cryogenic Readout schemes including cryogenic Readout schemes using HEMT or SiGe 4 3 Near-term, this scheme should result in 2000 pixels Sensitivity reduces FIR detector technology Need to Readouts for multiplexing for arrays of large-format amplifiers and frequency-multiplexed resonant per amplifier channel (enabling), 3000 observing times from many is an enabling aspect of demonstrate Large-format Far-IR detectors need to be circuits are in development. A few hundred pixels/channel (enhancing).HEMT amplifiers from hours to a few minutes (≈ all future FIR mission credibility before the Far-IR developed. channels per 1 mW HEMT amplifier have been Low Noise Factory can achieve 10 dB with 0.38 mW 100× faster), while array concepts, and is 2020 Decadal Detectors demonstrated. Low power dissipation at 4 K is of dissipation at 4 K. format increases areal essential for future Survey, and would required. For TES-based detectors a coverage by ×10-100. progress. require TRL 6 by microwave SQUID multiplexer using frequency Overall mapping speed can This technology can mission PDR division, time division or code division increase by factors of improve science anticipated in the multiplexing is needed. Frequency division thousands. capability at a fixed cost mid-2020s. multiplexing is well advanced and can meet Sensitivity enables much more rapidly than the needs of Origins when scaled to 2000 measurement of low- larger telescope sizes. pixels (resonators) per 4 GHz channel. surface-brightness debris This development serves disks and protogalaxies with Astrophysics almost an interferometer. This is exclusively (with some enabling technology. impact on planetary and Suborbital and ground- Earth studies). based platforms can be Many synergies exist used to validate with similar technologies and advance developments for x-ray TRL of new detectors. microcalorimeters Fast, Low- Lynx requires X-ray imaging arrays Silicon active pixel sensors (APS) currently 3 3 • Lynx requires large format X-ray detectors with Enables X-ray imaging of Lynx, Joint Astrophysics Need to Noise, covering wide fields of view (> 60 x 60 satisfy some of the requirements, but further sufficient spatial resolution so as not to wide fields with high spatial Nascent Universe demonstrate Megapixel X- mm) with excellent spatial resolution work is needed to meet all requirements compromise the imaging performance of the resolution and sufficient Satellite (JANUS) / X-ray credibility before the ray Imaging (i.e. <16 micron pixels, or equivalent simultaneously. Lynx optics (notionally with 0.5” half power spectral resolution to meet Time Domain Explorer 2020 Decadal Arrays with X-ray position resolution), and APS with 36-µm pixels are at TRL 6, but noise diameter, HPD); science goals of strategic X- (XTiDE) -like, or any Survey, and would Moderate moderate spectral resolution levels are still too high, and sensitivity to soft X • Multi-chip abuttablility to build detector surface ray missions. other focused X-ray require TRL 6 by Spectral (comparable to modern scientific rays needs to improve. Sparsified readout, approximating best focal surface for the mirrors; optics, or coded-aperture mission Preliminary Resolution CCDs). limited to pixels with signals, allows fast frame • roughly Fano-limited spectral resolution in the wide-field X-ray- Design Review These detectors must have good rates and is at TRL 3. 0.2-10 keV energy band; actual energy monitoring, or X-ray- (PDR) anticipated in detection efficiency across the soft X- resolution requirement is still TBD, but it will be grating mission. the mid-2020s. ray band pass, from 0.2-10 keV, and roughly CCD-like or perhaps slightly less excellent detection in the low-energy stringent (0.2 – 1 keV) end of this band pass is • Frame rates > 30~100 frames/s; essential. Therefore, optical blocking • Optical-blocking filters with minimal X-ray filters with minimal attenuation of soft absorption above 0.2 keV; X-ray will also be required. Radiation hardness supporting 5-20 years of science Fast frame rates (i.e. > 30 -100 operations at Chandra-like or L2 orbit frame/s) to minimize pile-up for demanding effective areas that are ~30x that of Chandra are also required. 2 2019 Astrophysics Strategic Technology Gaps TRL Scientific, Applications and Solution SOTA Engineering, and/or Potential Relevant Gap Name Description Current State-of-the-Art Performance Goals and Objectives Urgency Programmatic Astrophysics Benefits Missions High-efficiency Light-weight, high-efficiency (> 40- Proven technologies (grating spectrometers on 4 4 Lightweight, high efficiency (~40% or more), large- Spectrometers achieving R A spectrometer using Need to X-ray Grating 50%), large-format X-ray grating Chandra and X-ray Multi-mirror Mission- format grating arrays with high spectral resolving > 5000 throughout the soft gratings with this demonstrate Arrays for arrays enable high spectral resolving Newton, XMM-Newton) fall short in efficiency, power (R>5000) in the soft X-ray band (0.2 - 2 keV) X-ray band are mission- performance is credibility before the High- power R > 5000 in the soft X-ray band collecting area, and resolving power, by for absorption- and emission-line spectroscopy using enabling, as envisioned for Lynx, has 2020 Decadal resolution (~ 0.2 - 2 keV) for absorption- and factors of 5-10. High-efficiency gratings have large X-ray telescopes. microcalorimeters cannot been studied by NASA Survey, and would Spectroscopy emission-line spectroscopy using been demonstrated that place > 40% of the achieve that. Priority as a Probe, has been require TRL 6 by large X-ray telescopes.
Recommended publications
  • Road Map of HEAPA-Related Future Missions HEAPA 4Th Future Plan Review Committee 2020/10-2022/9 Lead: Kazuhiro Nakazawa (Nagoya-U/KMI)
    20th HEAPA WS 2021/3/8-10 Road map of HEAPA-related future missions HEAPA 4th Future Plan Review Committee 2020/10-2022/9 Lead: Kazuhiro Nakazawa (Nagoya-U/KMI) JAXA Summary of the 3rd committee outcome Vision Preface Astronomical X-ray and Gamma-ray observations are directly related with understanding the how matter and energy exits within the Universe, not only celestial objects, but also the volume itself. They are also key enablers to dig into the extreme physics. In the two broadest aims of astrophysical research, understand the Universe as of now, and understand how it came to be as such, high-energy astrophysics plays an essential role. Summary of the 3rd committee outcome Vision: three big goals Understand our Universe; matter, energy and spacetime, and its origin Dark matter : LSS/clusters to see where DM are, and search for DM direct signal Missing baryon : how the baryon and metals are distributed in the Universe Origins of the large diversity in Universe and celestial objects Galaxy and SMBH co-evolution and their impact on re-ionization Metal synthesis in the Universe Relativistic high-energy phenomena in the Universe Verifying fundamental physics in extreme condition Extreme gravitation : stellar-mass BH, SMBH Extreme high-density matter EoS : Neutron star, quark star Extreme magnetism : Magnetar Diffusive shock : wide variety of yet to be known interactions therein Dark Matter (Re): search for its direct signal Summary of the 3rd committee outcome Mission Categories by JAXA class How to launch Definition and budget Strategic H-IIA, H-III Top science. Flagship mission of Large class each community.
    [Show full text]
  • Arcus: the X-Ray Grating Spectrometer Explorer R
    Arcus: The X-ray Grating Spectrometer Explorer R. K. Smith*a, M. Abrahamb, R. Allureda, M. Bautzc, J. Bookbinderd, J. Bregmane, L. Brennemana, N. S. Brickhousea, D. Burrowsf, V. Burwitzg, P. N. Cheimetsa, E. Costantinih, S. Dawsonc, C. DeRooa, A. Falconef, A. R. Fostera, L. Galloi, C. E. Grantc, H. M. Güntherc, R. K. Heilmannc, E. Hertza, B. Hined, D. Huenemoerderc, J. S. Kaastrah, I. Kreykenbohmj, K. K. Madsenk, R. McEntafferf, E. Millerc, J. Millere, E. Morsel, R. Mushotzkym, K. Nandrag, M. Nowakc, F. Paerelsn, R. Petreo, K. Poppenhaegerp, A. Ptako, P. Reida, J. Sandersg, M. Schattenburgc, N. Schulzc, A. Smaleo, P. Temid, L. Valencicq, S. Walkerd, R. Willingaler, J. Wilmsj, S. J. Wolka aSmithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA, US; bThe Aerospace Corp, Pasadena, CA, US, cMassachusetts Institute of Technology, Cambridge, MA, US; dNASA Ames Research Center, Moffet Field, CA US; eUniversity of Michigan, Ann Arbor, MI, US; fThe Pennsylvania State University, University Park, PA, US; gMax-Planck-Institut für extraterrestrische Physik, Garching, DE; hS- RON Netherlands Institute for Space Research, Utrecht, NL; iSaint Mary’s University, Halifax, Canada; jFrie- drich-Alexander-Universitaet, Erlangen-Nürnberg, DE; kCalifornia Institute of Technology, Pasadena, CA, US; lOrbital ATK, Dulles, VA, US; mUniversity of Maryland, College Park, MD, US; nColumbia University, New York, NY, US; oNASA Goddard Space Flight Center, Greenbelt, MD, US, pQueen’s University, Belfast, UK; qJohns Hopkins University, Baltimore, MD, US; rUniversity of Leicester, Leicester, UK 1. ABSTRACT Arcus, a Medium Explorer (MIDEX) mission, was selected by NASA for a Phase A study in August 2017. The observatory provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedent- ed sensitivity: effective areas of >450 cm2 and spectral resolution >2500.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • The Future of X-Rayastronomy
    The Future of X-rayAstronomy Keith Arnaud [email protected] High Energy Astrophysics Science Archive Research Center University of Maryland College Park and NASA’s Goddard Space Flight Center Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry Themes Politics Efficient high resolution spectroscopy Mirrors Polarimetry Other missions Interferometry How do we get a new X-ray astronomy experiment? A group of scientists and engineers makes a proposal to a national (or international) space agency. This will include a science case and a description of the technology to be used (which should generally be in a mature state). In principal you can make an unsolicited proposal but in practice space agencies have proposal rounds in the same way that individual missions have observing proposal rounds. NASA : Small Explorer (SMEX) and Medium Explorer (MIDEX): every ~2 years alternating Small and Medium, three selected for study for one year from which one is selected for launch. RXTE, GALEX, NuSTAR, Swift, IXPE Arcus, a high resolution X-ray spectroscopy mission was a finalist in the latest MIDEX round but was not selected. Missions of Opportunity (MO): every ~2 years includes balloon programs, ISS instruments and contributions to foreign missions. Suzaku, Hitomi, NICER, XRISM Large missions such as HST, Chandra, JWST are not selected by such proposals but are decided as national priorities through the Astronomy Decadal process. Every ten years a survey is run by the National Academy of Sciences to decide on priorities for both land-based and space-based astronomy. 1960: HST; 1970: VLA; 1980: VLBA; 1990: Chandra and SIRTF; 2000: JWST and ALMA; 2010 WFIRST and LSST.
    [Show full text]
  • Astronomy and Astrophysics Advisory Committee for 2017
    Director’s Office 933 North Cherry Avenue Steward Observatory P.O. Box 210065 URL: www.as.arizona.edu Tucson, AZ 85721-0065 Telephone: (520) 621-6524 [email protected] March 15, 2018 Dr. France A. Córdova, Director National Science Foundation 2415 Eisenhower Avenue, Suite 19000 Alexandria, VA 22314 Mr. Robert M. Lightfoot, Jr., Acting Administrator Office of the Administrator NASA Headquarters Washington, DC 20546-0001 Mr. Richard Perry, Secretary of Energy U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 The Honorable John Thune, Chairman Committee on Commerce, Science and Transportation United States Senate Washington, DC 20510 The Honorable Lisa Murkowski, Chairwoman Committee on Energy & Natural Resources United States Senate Washington, DC 20510 The Honorable Lamar Smith, Chairman Committee on Science, Space and Technology United States House of Representatives Washington, DC 20515 Dear Dr. Córdova, Mr. Lightfoot, Secretary Perry, Chairman Thune, Chairwoman Murkowski, and Chairman Smith: I am pleased to transmit to you the annual report of the Astronomy and Astrophysics Advisory Committee for 2017. The Astronomy and Astrophysics Advisory Committee was established under the National Science Foundation Authorization Act of 2002 Public Law 107-368 to: (1) assess, and make recommendations regarding, the coordination of astronomy and astrophysics programs of the Foundation and the National Aeronautics and Space Administration, and the Department of Energy; Arizona’s First University – Since 1885 Dr.
    [Show full text]
  • NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017
    NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 NASA ADVISORY COUNCIL ASTROPHYSICS ADVISORY COUNCIL October 18-19, 2017 Teleconference MEETING MINUTES This image cannot currently be displayed. 1/14/2018 _____________________________________________________________ B. Scott Gaudi, Chair 1/14/2018 _____________________________________________________________ Hashima Hasan, Executive Secretary 1 NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 Table of Contents Introductions and Announcements 3 Astrophysics Division Update 3 Summary of Hubble/Chandra Senior Reviews 7 Webb Telescope Update 8 Spitzer Update 10 ExoPAG/PhysPAG/COPAG Updates 10 Community Comment Period 12 Discussion 12 R&A Update 13 Internal Scientist Funding Model 14 Discussion 15 SMD Cubesats Program Update 16 HEO Future Exploration Plans 17 Technology Gap Update 18 NASA Airborne Astronomy Ambassadors Program 19 Public Comment Period 19 Discussion, Recommendations, Actions 19 Adjourn 21 Appendix A- Attendees Appendix B-Membership roster Appendix C-Presentations Appendix D-Agenda Prepared by Elizabeth Sheley Ingenicomm 2 NAC Astrophysics Advisory Committee Teleconference Minutes, October 18-19, 2017 Wednesday, October 18, 2017 Introduction and Announcements Dr. Hashima Hasan, Executive Secretary of the Astrophysics Advisory Committee (APAC), opened the meeting by welcoming the Committee members. Dr. Hasan then reviewed the Federal Advisory Committee Act (FACA) rules. She noted that a few APAC members had conflicts of interest with specific topics on the agenda. Known conflicts of interest included Dr. Jason Kalirai (STScI) on the James Webb Space Telescope and Hubble Space Telescope; Drs. Mark Bautz (MIT) and Patricia Boyd (NASA GSFC) for the Transiting Exoplanet Survey Satellite (TESS); Dr. Bautz for the Chandra X-ray Observatory; Drs.
    [Show full text]
  • Space Science Acronyms
    Space Science Acronyms AA Auroral radio Absorption AACGM Altitude Adjusted Corrected GeoMagnetic ABI Auroral Boundary Index ACCENT Atmospheric Chemistry of Combustion Emissions Near the Tropopause ACE Advanced Composition Explorer ACF Auto Correlation Functions ACR Anomalous Cosmic Rays ADCS Attitude Determination and Control Subsystem ADEOS ADvanced Earth Observation Satellite (Japan) ADEP ARTIST Data Editing and Printing ADMS Atmospheric Density Mass Spectrometer AE Atmosphere Explorer AE Auroral Electrojet index AEPI Atmospheric Emissions Photometric Imager AES Auger Electron Spectroscopy AEU Antenna Element Unit AFB Air Force Base AFGL Air Force Geophysical Laboratory AFIT Air Force Institute of Technology AFOSR Air Force Office of Scientific Research AFRL Air Force Research Lab AFSCN Air Force Satellite Control Network AFSPC Air Force SPace Command AFWA Air Force Weather Agency AGILE Astrorivelatore Gamma a Immagini Leggero AGU American Geophysical Union AGW Atmospheric Gravity Waves AI Asymmetry Index AIDA Arecibo Initiative in Dynamics of the Atmosphere AIM Aeronomy of Ices in the Mesosphere AKR Auroral Kilometric Radiation AL Auroral Electrojet Lower Limit Index ALF Absorption Limiting Frequency ALIS Airglow Limb Imaging System ALOMAR Arctic Lidar Observatory for Middle Atmospheric Research ALOS Advanced Land Observing Satellite ALSP Apollo Lunar Surface Probe ALTAIR ARPA Long-Range Tracking and Identification Radar AMBER African Meridian B-field Educational Research Array AMCSR Advanced Modular Coherent Scatter Radar AMI Aeronomic
    [Show full text]
  • Cfa Strategic Plan, 2019-2024
    STRATEGIC PLAN 2019 – 2024 From the Director Charles Alcock joined the Center for Astrophysics | Harvard & Smithsonian (the “CfA”) as its third director in 2004. Before coming to the CfA, Dr. Alcock had been a professor of astron- omy at the University of Pennsylvania. With a single director, the CfA has maintained the unified vision and strategic priori- ties that brought it to world leadership in the decades following its first phase of dramatic growth in the 1960s to early 1970s. The Center for Astrophysics | Harvard & Smithsonian is the union of two distinct entities, the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO). Founded in 1839, HCO installed the 15-inch telescope known as “The Great Refractor” in 1847. SAO was founded in 1890 and grew to prominence first with Secretary Langley’s study of the Sun. In 1955, SAO relocated to Cambridge, MA, to explore collaborations with HCO. The Harvard-Smithsonian Center for Astrophysics was established in 1972. There have been many exciting developments in the time since, and today the CfA conducts observational research across the electromagnetic spectrum, investigating the Universe at scales ranging from our own star, the Sun, to the cosmic background radiation. Theoretical and compu- tational investigations provide explanations that force us to ask us new compelling — and difficult — questions. The CfA substantially influenced modern astronomy and astrophysics, bringing astronomy and the laboratory disciplines ever closer together. The relationship between
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Arcus: an ISS-attached high- resolution x-ray grating spectrometer R. K. Smith, M. Ackermann, R. Allured, M. W. Bautz, J. Bregman, et al. R. K. Smith, M. Ackermann, R. Allured, M. W. Bautz, J. Bregman, J. Bookbinder, D. Burrows, L. Brenneman, N. Brickhouse, P. Cheimets, A. Carrier, M. Freeman, J. Kaastra, R. McEntaffer, J. Miller, A. Ptak, R. Petre, G. Vacanti, "Arcus: an ISS-attached high-resolution x-ray grating spectrometer," Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91444Y (24 July 2014); doi: 10.1117/12.2062671 Event: SPIE Astronomical Telescopes + Instrumentation, 2014, Montréal, Quebec, Canada Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/14/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Arcus: an ISS-attached high-resolution X-ray grating spectrometer R. K. Smith1, M. Ackermann2, R. Allured1, M. W. Bautz3, J. Bregman4, J. Bookbinder1, D. Burrows5, L. Brenneman1, N. Brickhouse1, Peter Cheimets1, A. Carrier6, M. Freeman1, J. Kaastra7, R. McEntaffer8, J. Miller4, A. Ptak9, R. Petre9, G. Vacanti2, and the Arcus team 1Smithsonian Astrophysical Observatory, 2cosine Research, 3Massachusetts Institute of Technology, 4University of Michigan, 5Pennsylvania State University, 6Lockheed-Martin Advanced Technology Center, 7SRON, 8University of Iowa, 9NASA Goddard Space Flight Center ABSTRACT We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and gal- axies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars.
    [Show full text]
  • The X-Ray Polarization Probe Mission Concept
    The X-ray Polarization Probe mission concept Keith Jahodaa, Henric Krawczynskib, Fabian Kislatc, Herman Marshalld, Takashi Okajimaa aNASA/Goddard Space Flight Center, Greenbelt MD, 20771 bWashington University, St.Louis, MO, 63130 cUniversity of New Hampshire, Durham, NH, 03824 dMIT Kavli Institute, Cambridge, MA, 02139 Co-authors: Ivan Agudo (CSIC), Lorella Angelini (NASA/GSFC), Matteo Bachetti (INAF), Luca Baldini (U. Pisa), Matthew G. Baring (Rice U.), Wayne Baumgartner (NASA/MSFC), Ronaldo Bellazzini (INFN), Stefano Bianchi (U. Roma Tre), Niccolo` Bucciantini (INAF/OAC), Ilaria Ca- iazzo (UBC), Fiamma Capitanio (INAF/IAPS), Paolo Coppi (Yale U.), Ettore Del Monte (INAF), Alessandra De Rosa (IAPS/INAF), Laura Di Gesu (ASI), Niccolo’ Di Lalla (INFN), Victor Doroshenko (U. Tubingen),¨ Michal Dovciak (Cz. Acad. Sci.), Riccardo Ferrazzoli (INAF/IAPS), Alan Gar- ner (MIT), Pranab Ghosh (Tata Inst.), Denis Gonzalez-Caniulef´ (UBC), Victoria Grinberg (U. Tubingen),¨ Shuichi Gunji (Yamagata U.), Dieter Hartmann (Clemson U.), Kiyoshi Hayashida (Os- aka), Jeremy Heyl (UBC), Joanne Hill (NASA/GSFC), Adam Ingram (Oxford U.), Wataru Buz Iwakiri (Chuo U.), Svetlana Jorstad (BU), Phil Kaaret (U. Iowa), Timothy Kallman (NASA/GSFC), Vladimir Karas (Cz. Acad. Sci.), Ildar Khabibullin (MPA), Takao Kitaguchi (RIKEN), Jeff Kolodziejczak (NASA/MSFC), Chryssa Kouveliotou (GWU), Ioannis Liodakis (Stanford U.), Thomas Maccarone (Texas Tech U.), Alberto Manfreda (INFN), Frederic Marin (U. Strasbourg), Andrea Marinucci (ASI), Craig Markwardt (NASA/GSFC), Alan Marscher (BU), Giorgio Matt (U. Roma Tre), Mark McConnell (UNH), Jon Miller (U. Michigan), Ikuyuki Mitsubishi (Nagoya U.), Tsune- fumi Mizuno (U. Hiroshima), Alexander Mushtukov (Leiden U.), C.-Y. Ng (Hong Kong U.), Michael A. Nowak (Wash. U. in St.
    [Show full text]
  • Arcus: Exploring the Formation and Evolution of Clusters, Galaxies, and Stars
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Arcus: exploring the formation and evolution of clusters, galaxies, and stars R. K. Smith, M. Abraham, R. Allured, M. Bautz, J. Bookbinder, et al. R. K. Smith, M. Abraham, R. Allured, M. Bautz, J. Bookbinder, J. Bregman, L. Brenneman, N. S. Brickhouse, D. Burrows, V. Burwitz, P. N. Cheimets, E. Costantini, S. Dawson, C. DeRoo, A. Falcone, A. R. Foster, L. Gallo, C. E. Grant, H. M. Günther, R. K Heilmann, E. Hertz, B. Hine, D. Huenemoerder, J. S. Kaastra, I. Kreykenbohm, K. K. Madsen, R. McEntaffer, E. Miller, J. Miller, E. Morse, R. Mushotzky, K. Nandra, M. Nowak, F. Paerels, R. Petre, K. Poppenhaeger, A. Ptak, P. Reid, J. Sanders, M. Schattenburg, N. Schulz, A. Smale, P. Temi, L. Valencic, S. Walker, R. Willingale, J. Wilms, S. J. Wolk, "Arcus: exploring the formation and evolution of clusters, galaxies, and stars," Proc. SPIE 10397, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX, 103970Q (29 August 2017); doi: 10.1117/12.2272818 Event: SPIE Optical Engineering + Applications, 2017, San Diego, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/5/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Arcus: The X-ray Grating Spectrometer Explorer R. K. Smith*a, M. Abrahamb, R. Allureda, M. Bautzc, J. Bookbinderd, J. Bregmane, L. Brennemana, N. S. Brickhousea, D. Burrowsf, V. Burwitzg, P. N. Cheimetsa, E. Costantinih, S. Dawsonc, C. DeRooa, A. Falconef, A. R. Fostera, L. Galloi, C. E. Grantc, H. M. Güntherc, R.
    [Show full text]
  • Experimental Lobster Eye Nano-Satellite X-Ray Telescope
    Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering EXPERIMENTAL LOBSTER EYE NANO-SATELLITE X-RAY TELESCOPE Doctoral Thesis Vladim´ır Tich´y Prague, November 2010 PhD. Programme: Electrical Engineering and Information Technology Branch of study: Control Engineering and Robotics Supervisor: Ing. Martin Hromˇc´ık, PhD. Supervisor-Specialist: Ing. Jan Jak˚ubek, PhD. Acknowledgments This thesis could not come into existence without strong support of several institutions and many people. We kindly thank all of them. First of all, I would like to thank my supervisor Ing. Martin Hromˇc´ık, PhD. for leading the work and for support. Also, I would like to thank the headmaster of Depertment of control engineering Faculty of electrical engineering of the Czech technical university, Prof. Ing. Michal Sebek,ˇ DrSc. for supply this work. I would like to thank my supervisor-specialist Ing. Jan Jak˚ubek, PhD. for help and consultations the Medipix and Timepix Detectors. Thanks him, the Institute of Experimental and Applied Physics of Czech Technical University in Prague [72] and its headmaster, Ing. Stanislav Posp´ıˇsil, DrSc. for providing the Medipix2 and Timepix detector and related equipment. Thanks to Rigaku Innovative Technologies Europe, s.r.o. [74] for provid- ing the lobster eye optics and related equipment for the laboratory tests and for manufacturing the telescope module prototypes. Thanks to the Division of Precision Mechanics and Optics of the Depart- ment of Instrumentation and Control Engineering of Faculty of Mechanical Engineering of Czech Technical University in Prague [75] for providing the laboratory and equipment for the optical tests.
    [Show full text]