(12) Patent Application Publication (10) Pub. No.: US 2009/0005327 A1 GRANATA Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2009/0005327 A1 GRANATA Et Al US 20090005327A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005327 A1 GRANATA et al. (43) Pub. Date: Jan. 1, 2009 (54) ESSENTIAL, N-3 FATTY ACDS IN CARDAC continuation of application No. 10/451,623, filed on IN SUFFICIENCY AND HEART FAILURE Nov. 21, 2003, now abandoned, filed as application THERAPY No. PCT/EP02/00507 on Jan. 16, 2002. (75) Inventors: Francesco GRANATA, Milan (IT): (30) Foreign Application Priority Data Franco Pamparana, Milan (IT): Eduardo Stragliotto, Milan (IT) Jan. 25, 2001 (IT) .......................... MI2OO1 AOOO129 Correspondence Address: Publication Classification ARENT FOX LLP (51) Int. Cl. 1050 CONNECTICUT AVENUE, N.W., SUITE A6II 3L/202 (2006.01) 400 A63L/704 (2006.01) WASHINGTON, DC 20036 (US) A6IP 9/10 (2006.01) (73) Assignee: PFIZER ITALIA S.R.L., Latina (52) U.S. Cl. ........................................... 514/34: 514/560 (IT) (57) ABSTRACT (21) Appl. No.: 12/207,068 The present invention concerns a method of therapeutic pre vention and treatment of a heart disease chosen from cardiac (22) Filed: Sep. 9, 2008 insufficiency and heart failure including the administration of an essential fatty acid containing a mixture of eicosapen Related U.S. Application Data taenoic acid ethyl ester (EPA) and docosahexaenoic acid (63) Continuation of application No. 1 1/333.387, filed on ethyl ester (DHA), either alone or in combination with Jan. 17, 2006, now Pat. No. 7,439,267, which is a another therapeutic agent. US 2009/0005327 A1 Jan. 1, 2009 ESSENTIALN-3 FATTY ACDS IN CARDAC tensin Converting Enzymes inhibitors), diuretics, non-digi IN SUFFICIENCY AND HEART FAILURE talis positive inotropic drugs such as adrenergics and THERAPY inhibitors of phosphodiesterase, arteriolar and venular vasodilators, e.g. hydralazine and isosorbide dinitrate, beta CROSS-REFERENCE TO RELATED blockers e.g. metoprolol and bisoprolol and digitalis deriva APPLICATIONS tives, e.g. digotoxin. 0001. This application is a continuation of U.S. patent 0012 Heart failure is at present one of the most important application Ser. No. 10/451,623, which is a National Stage of causes of morbidity and mortality in the industrialized coun International Application No. PCT/EP02/00507, filed Jan. tries, as clearly demonstrated by the present case-series: in 16, 2002. The disclosures of the above applications are incor USA 4.7 million persons have a congestive heart failure, with porated herein by reference. an incidence equal to 400,000 new cases a year. 0002 The present invention belongs to the field of phar 0013 The prevalence of chronic cardiac insufficiency maceutical chemistry and cardiovascular medicine and pro rises from 8 cases of heart failure out of 1,000 subjects of age vides a method of prevention and management of cardiac ranging from 50 to 59 years, to 66 cases out of 1,000 subjects insufficiency and heart failure: two heart diseases in which the between 80 and 89 years. second one is the result of the progressive evolution of the first 0014 If we consider that about 35% of patients with heart OC. failure are hospitalised at least once a year and that 80% of 0003 Cardiac insufficiency is a condition in which the men and 65% of women die within 6 years, the social-health heart pump function is inadequate to meet the bodily meta entity of the problem emerges in its full dramatic evidence. bolic requirements. Depending on the different severity of the 0015 Moreover, the incidence of heart failure seems to pump deficit, cardiac insufficiency may be symptom-free or increase paradoxically with the reduction of death rate for clinically manifest. myocardial infarction and for other cardiovascular diseases. 0004 Cardiac insufficiency could have various causes, The ageing of the population seems to be a contributing factor C.2. to amplify the relevance of the phenomenon. 0005 disorders of myocardial function, which is the most 0016. Therefore, there is the need of a safe and convenient frequent cause, due to a reduced contractility, but also to a loss method of prevention and therapeutic treatment of cardiac of contractile tissue; insufficiency and heart failure, in particular in elderly 0006 a volume load, due to disorders requiring the ven patients, in order to restore (or to control) the usual pump tricle to expel more blood than the normal per minute; function of the heart. 0007 a pressure load, due to disorders increasing the resis 0017. The present invention provides a method for the tance to the outflow from the ventricles. prevention and therapeutic treatment of cardiac insufficiency 0008 Heart failure is the result of the progressive evolu tion of cardiac insufficiency. Moreover, a broad spectrum of and heart failure in a patient in need of this treatment com diseases could cause an impaired filling or emptying of heart prising the administration to such patient of a therapeutically chambers, such as: the diseases resulting from a monogenic effective amount of an essential fatty acid containing a mix (familial hypertrophic cardiomyopathy, mitochondral cardi ture of (20:5 () 3) eicosapentaenoic acid ethyl ester (EPA) and omyopathies) or multigenic defect which are bound to envi of (20:6 (O3) docosahexaenoic acid ethyl ester (DHA), either ronmental factors such as cigarette Smoking, diet, physical alone or in combination with another therapeutic agent. exercise, secondary heart diseases. All these diseases take the 0018. It is well known in the art that some essential fatty “common end path' towards heart failure, which sees at first acids, in particular () 3 PUFA, contained for example in the an impairment of the molecular mechanisms and then an fish oil, have atherapeutic effect in the prevention and therapy impairment of the ventricular function and heart failure. of cardiovascular disorders, e.g. in the prevention and treat Therefore, heart failure is a syndrome with a various etiology ment of atherothrombotic events and hyperlipidemia. resulting from an anatomo-functional anomaly of the heart (0019 WO 89/11521 describes in particular an industrial with inability in keeping a stroke adequate to the metabolic process for the extraction of mixtures having a high content in requirements of the tissues or maintaining the stroke Volume poly-unsaturated acids, also including EPA and DHA and by a high filling pressure. their ethyl esters, from animal and/or vegetable oils. Mixtures 0009 Heart failure is characterized by clinical signs and offatty acids, in particular EPA/DHA, obtained according to symptoms secondary to the inadequate response to the body WO 89/11521, are indicated as particularly useful in the metabolic requirements. This condition could occur acutely treatment of cardiovascular pathologies. or have a chronic course. 0020. Therefore, object of the present invention is the use 0010. The pathophysiological interpretations of heart fail of an essential fatty acid containing a mixture of eicosapen ure have had a remarkable evolution in time. This syndrome taenoic acid ethyl ester (EPA) and docosahexaenoic acid was considered as a pump deficiency associated with a renal ethyl ester (DHA) in the preparation of a medicament for the dysfunction in years 50-60, a pump dysfunction associated prevention and treatment of a heart disease chosen from car with an increase in peripheral resistance in years 70-80 and diac insufficiency and heart failure, both chronic and acute. is considered at present as a failure of the pump function 0021 For convenience of description, eicosapentaenoic associated with the neuro-hormonal activation with resulting acid ethyl ester and docosahexaenoic acid ethyl ester are hemodynamic impairments which take to a dysfunction of mentioned here below respectively as “EPA' and “DHA’. many organs and apparatuses. 0022. An essential fatty acid, according to the invention, is 0011. The present drug therapy of cardiac “pump func preferably a fatty acid having a high content in EPA and DHA. tion' includes the use of drugs acting by various modes of for example with a content in EPA and DHA higher than 25% action on different points of the etiopathogenesis of the dis by weight, preferably from about 30% to about 100% by eases. We mention as an example: ACE-inhibitors (Angio weight, in particular about 85%. US 2009/0005327 A1 Jan. 1, 2009 0023) EPA is present in the EPA/DHA mixture preferably deslanoside, methyldigoxin and gitoformat, in particular in a percentage ranging from 25% to about 45% by weight digitoxin, digoxin, acetyldigoxin and metidigoxin. and DHA is present preferably in a percentage ranging from 0039 Examples of positive inotropic agents are: pimoben 55% to about 75% by weight. dan and Vesnarinone, in particular pimobendan. 0024. At any rate, the most preferred ratio between EPA 0040. A further object of the invention is a method for and DHA is about 0.6-1.1/1.3-1.8; in particular about 0.9/1.5. preventing and treating a heart disease chosen from cardiac 0025. An essential fatty acid according to the present insufficiency and heart failure, both chronic and acute, com invention can be obtained by known methods, e.g. as prising administering to a patient in need thereof a therapeu described in U.S. Pat. No. 5,656,667 and WO 89/11521. tically effective amount of an unsaturated essential acid con 0026. Object of the present invention is also the use of an taining a mixture of eicosapentaenoic acid ethyl ester (EPA) essential fatty acid containing a mixture of eicosapentaenoic and docosahexaenoic acid ethyl ester (DHA). acid ethyl ester (EPA) and docosahexaenoic acid ethyl ester 0041. A further object of the invention is a method to (DHA) in the preparation of a medicament for the prevention prevent and treat a heart disease chosen from cardiac insuffi and treatment of a heart disease chosen from cardiac insuffi ciency and heart failure, both chronic and acute, comprising ciency and heart failure, both chronic and acute, where the administering to a patient in need thereof a therapeutically medicament is for combined therapy with another therapeutic effective amount of an essential fatty acid containing a mix agent.
Recommended publications
  • Cardioactive Agents : Metoprolol, Sotalol and Milrinone. Influence of Myocardial Content and Systolic Interval
    3Õ' î'qt ACUTE HAEMODYNAMIC EFFECTS OF THREE CARDIOACTIVE AGENTS : METOPROLOL, SOTALOL AND MILRINONE. INFLUENCE OF MYOCARDIAL CONTENT AND SYSTOLIC INTERVAL. by Rebecca Helen Ritchie, B.Sc (Hons) A thesis submitted for the degree of Doctor of Philosophy ln The University of Adelaide (Faculty of Medicine) February 1994 Department of Medicine (Cardiology Unit, The Queen Elizabeth Hospital) The University of Adelaide Adelaide, SA, 5000. ll ¡ r -tL',. r,0';(', /1L.)/'t :.: 1 TABLE OF CONTENTS Table of contents 1 Declaration vtl Acknowledgements v111 Publications and communications to learned societies in support of thesis D( Summary xl Chapter 1: General Introduction 1 1.1 Overview 2 1.2 Acute effeots of cardioactive drugs 3 1.2.1 Drug effects 4 l.2.2Determnants of drug effects 5 1.3 Myocardial drug gPtake of cardioactive agents 8 1.3.1 Methods of assessment in humans invívo 9 1.3.2 Results of previous studies 10 1.4Influence of cardioactive drugs on contractile state 11 1.4. 1 Conventional indices 11 I.4.2 The staircase phenomenon t2 1.4.3 The mechanical restitution curve t2 1.5 The present study t4 1.5.1 Current relevant knowledge of the acute haemodynamic effects of the cardioactive drugs under investigation r4 1.5.1.1 Metoprolol 15 1.5.1.2 Sotalol 28 1.5.1.3 Milrinone 43 1.5.2 Cunent relevant knowledge of the short-term pharmacokinetics of the cardioactive drugs under investigation 59 1.5.2.1Metoprolol 59 1.5.2.2 Sotalol 7I ll 1.5.2.3 Milrinone 78 1.5.3 Current relevant knowledge of the potential for rate-dependence of the effects of these
    [Show full text]
  • Supplementary Appendix 1. Search Strategy for the Systematic Review and Meta-Analysis
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax Supplementary Appendix 1. Search strategy for the systematic review and meta-analysis # COVID-19 AND (ACEI or ARB) Pubmed #1. COVID-19 ((((novel[Title/Abstract]) AND (((corona[Title/Abstract]) AND virus[Title/Abstract]) OR (coronavirus[Title/Abstract]))) OR ((COVID[Title/Abstract]) OR (COVID-19[Title/Abstract]) OR (nCoV[Title/Abstract]) OR (2019-nCoV[Title/Abstract]) OR (Novel Coronavirus Pneumon.ia[Title/Abstract]) OR (NCP[Title/Abstract]) OR (severe acute respiratory infection[Title/Abstract]) OR (SARI[Title/Abstract]) OR (SARS-CoV-2[Title/Abstract]))) #2. ARB (("Angiotensin Receptor Antagonists"[Mesh]) OR (((angiotensin receptor blocker[Title/Abstract]) OR angiotensin receptor blockers[Title/Abstract]) OR ARB.*[Title/Abstract]) OR (((angiotensin[Title/Abstract]) AND receptor[Title/Abstract]) AND (antagonist.*[Title/Abstract] OR inhibitor.*[Title/Abstract] OR blocker.*[Title/Abstract]))) OR (ARB[Title/Abstract]) OR (olmesartan[Title/Abstract]) OR (valsartan[Title/Abstract]) OR (eprosartan[Title/Abstract]) OR (irbesartan[Title/Abstract]) OR (candesartan[Title/Abstract]) OR (losartan[Title/Abstract]) OR (telmisartan[Title/Abstract]) OR (azilsartan[Title/Abstract]) OR (tasosartan[Title/Abstract]) OR (embusartan[Title/Abstract]) OR (forasartan[Title/Abstract]) OR (milfasartan[Title/Abstract]) OR (saprisartan[Title/Abstract]) OR (zolasartan[Title/Abstract])
    [Show full text]
  • Renoprotective Effect of the Addition of Losartan to Ongoing Treatment with an Angiotensin Converting Enzyme Inhibitor in Type-2 Diabetic Patients with Nephropathy
    929 Hypertens Res Vol.30 (2007) No.10 p.929-935 Original Article Renoprotective Effect of the Addition of Losartan to Ongoing Treatment with an Angiotensin Converting Enzyme Inhibitor in Type-2 Diabetic Patients with Nephropathy Hirohiko ABE1), Shinya MINATOGUCHI1), Hiroshige OHASHI1), Ichijiro MURATA1), Taro MINAGAWA1), Toshio OKUMA1), Hitomi YOKOYAMA1), Hisato TAKATSU1), Tadatake TAKAYA1), Toshihiko NAGANO1), Yukio OSUMI1), Masao KAKAMI1), Tatsuo TSUKAMOTO1), Tsutomu TANAKA1), Kunihiko HIEI1), and Hisayoshi FUJIWARA1) Angiotensin converting enzyme inhibitors (ACE-Is) and angiotensin II receptor blockers (ARBs) are fre- quently used for the treatment for glomerulonephritis and diabetic nephropathy because of their albumin- uria- or proteinuria-reducing effects. To many patients who are nonresponsive to monotherapy with these agents, combination therapy appears to be a good treatment option. In the present study, we examined the effects of the addition of an ARB (losartan) followed by titration upon addition and at 3 and 6 months (n=14) and the addition of an ACE-I followed by titration upon addition and at 3 and 6 months (n=20) to the drug regimen treatment protocol in type 2 diabetic patients with nephropathy for whom more than 3-month administration of an ACE-I or the combination of an ACE-I plus a conventional antihypertensive was inef- fective to achieve a blood pressure (BP) of 130/80 mmHg and to reduce urinary albumin to <30 mg/day. Dur- ing the 12-month treatment, addition of losartan or addition of an ACE-I to the treatment protocol reduced systolic blood pressure (SBP) by 10% and 12%, diastolic blood pressure (DBP) by 7% and 4%, and urinary albumin excretion by 38% and 20% of the baseline value, respectively.
    [Show full text]
  • CASE REPORTS Rhabdomyolysis Following Cardiopulmonary Bypass and Treatment with Enoximone in a Patient Susceptible to Malignant
    Ⅵ CASE REPORTS Anesthesiology 2001; 94:355–7 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Rhabdomyolysis following Cardiopulmonary Bypass and Treatment with Enoximone in a Patient Susceptible to Malignant Hyperthermia Friedrich-Christian Riess, M.D.,* Marko Fiege, M.D.,† Sina Moshar, M.D.,‡ Heinz Bergmann, M.D.,§ Niels Bleese, M.D.,ʈ Joachim Kormann, M.D.,# Ralf Weißhorn, M.D.,† Frank Wappler, M.D.†† SEVERE hypercapnia, muscle rigidity, hyperthermia, and After implantation of a mechanical valve (Medtronic Hall; Medtronic, rhabdomyolysis characterize malignant hyperthermia Minneapolis, MN), the ascending aorta was closed and the aortic 1 cross-clamp removed. During reperfusion, the patient exhibited ST (MH) in fulminant form. However, during cardiac opera- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/367/402332/0000542-200102000-00029.pdf by guest on 29 September 2021 elevations, with maximal values of 12 mV in all leads. The left ventricle tions using cardiopulmonary bypass (CPB), typical symp- appeared to be ischemic and hypokinetic. A triple bypass was per- toms of MH may not be present. We observed a patient formed using saphenous grafts to the left anterior descending, first undergoing aortic valve replacement, in whom severe post- diagonal branch and the circumflex artery. The patient was then operative rhabdomyolysis and arrhythmias developed after successfully weaned from CPB using a moderate dose of adrenalin (4 ␮ treatment with enoximone during CPB and cardioplegic g/min) and 50 mg enoximone (Perfan; Hoechst, Bad Soden am Ts., Germany). However, toward the completion of the operation, the arrest. Subsequently, in vitro contracture testing showed urine became dark and the minute ventilation necessary to maintain that the patient was susceptible to MH.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Theophylline and Selective PDE Inhibitors As Bronchodilators and Smooth Muscle Relaxants
    Eur Respir J, 1995, 8, 637–642 Copyright ERS Journals Ltd 1995 DOI: 10.1183/09031936.95.08040637 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'THEOPHYLLINE AND PHOSPHODIESTERASE INHIBITORS' Edited by M. Aubier and P.J. Barnes Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants K.F. Rabe, H. Magnussen, G. Dent Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Krankenhaus Grosshansdorf, Zentrum für K.F. Rabe, H. Magnussen, G. Dent. ERS Journals Ltd 1995. Pneumologie und Thoraxchirurgie, LVA ABSTRACT: In addition to its emerging immunomodulatory properties, theophy- Hamburg, Grosshansdorf, Germany. lline is a bronchodilator and also decreases mean pulmonary arterial pressure in vivo. The mechanism of action of this drug remains controversial; adenosine Correspondence: K.F. Rabe Krankenhaus Grosshansdorf antagonism, phosphodiesterase (PDE) inhibition and other actions have been advanced Wöhrendamm 80 to explain its effectiveness in asthma. Cyclic adenosine monophosphate (AMP) and D-22927 Grosshansdorf cyclic guanosine monophosphate (GMP) are involved in the regulation of smooth Germany muscle tone, and the breakdown of these nucleotides is catalysed by multiple PDE isoenzymes. The PDE isoenzymes present in human bronchus and pulmonary artery Keywords: Bronchi have been identified, and the pharmacological actions of inhibitors of these enzy- 3',5'-cyclic-nucleotide phosphodiesterase mes have been investigated. phosphodiesterase inhibitors Human bronchus and pulmonary arteries are relaxed by theophylline and by pulmonary artery selective inhibitors of PDE III, while PDE IV inhibitors also relax precontracted smooth muscle theophylline bronchus and PDE V/I inhibitors relax pulmonary artery. There appears to be some synergy between inhibitors of PDE III and PDE IV in relaxing bronchus, and Received: February 1 1995 a pronounced synergy between PDE III and PDE V inhibitors in relaxing pulmon- Accepted for publication February 1 1995 ary artery.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Manidipine and Delapril 30-10Mg-PIL (3.0)
    Package Leaflet: Information for the user ADAPTUS/DELAMAN 30 mg / 10 mg tablets Delapril hydrochloride / manidipine hydrochloride Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. - Keep this leaflet. You may need to read it again. - If you have any further questions, ask your doctor or pharmacist. - This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. - If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What Adaptus/Delaman is and what it is used for 2. What you need to know before you take Adaptus/Delaman 3. How to take Adaptus/Delaman 4. Possible side effects 5. How to store Adaptus/Delaman 6. Contents of the pack and other information 1. WHAT ADAPTUS/DELAMAN IS AND WHAT IT IS USED FOR Adaptus/Delaman is Adaptus/Delaman is a combination of two active substances, delapril hydrochloride and manidipine hydrochloride. Delapril hydrochloride belongs to a group of medicines known as angiotensin-converting enzyme inhibitors (ACE inhibitor medicines). Angiotensin II is a substance produced in the body that causes the narrowing of blood vessels. This results in an increase in blood pressure. Delapril hydrochloride prevents the production of Angiotensin II and so causes a lowering of blood pressure. Manidipine hydrochloride is one of a group of medicines called calcium-channel blockers that blocks calcium flow into smooth muscle cells of the blood vessels causing the blood vessels to relax and a corresponding reduction in the blood pressure.
    [Show full text]
  • Combination of Pretreatments with Acetic Acid and Sodium Methoxide for Efficient Digoxin Preparation from Digitalis Glycosides in Digitalis Lanata Leaves
    Pharmacology & Pharmacy, 2016, 7, 200-207 Published Online May 2016 in SciRes. http://www.scirp.org/journal/pp http://dx.doi.org/10.4236/pp.2016.75026 Combination of Pretreatments with Acetic Acid and Sodium Methoxide for Efficient Digoxin Preparation from Digitalis Glycosides in Digitalis lanata Leaves Yasuhiko Higashi*, Yukari Ikeda, Youichi Fujii Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan Received 21 April 2016; accepted 28 May 2016; published 31 May 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We previously developed an HPLC method for determination of lanatoside C, digoxin and α-acetyl- digoxin in digitalis glycosides isolated from Digitalis lanata leaves. Here, we present an improved HPLC-UV method to determine those compounds and deslanoside. We used the improved method to examine the effects of various pretreatments on the amounts of the four compounds isolated from the leaves, with the aim of maximizing the yield of digoxin. Leaves were extracted with 50% methanol, followed by clean-up on a Sep-Pak C18 cartridge prior to HPLC analysis. The amounts of lanatoside C, digoxin and α-acetyldigoxin per 100 mg of the leaves without pretreatment were 115.6, 7.45 and 23.8 μg, respectively (deslanoside was not detected). Pretreatment with acetic ac- id, which activated deglucosylation mediated by digilanidase present in the leaves, increased the amounts of digoxin and α-acetyldigoxin, while lanatoside C and deslanoside were not detected. Pretreatment with sodium methoxide, which hydrolyzed lanatoside C to deslanoside, increased the yields of deslanoside and digoxin, while lanatoside C and α-acetyldigoxin were not detected.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • Pharmacokinetics, Bioavailability and Serum Levels of Cardiac Glycosides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE JACCVol. 5, No.5 provided by Elsevier - Publisher43A Connector May 1985:43A-50A Pharmacokinetics, Bioavailability and Serum Levels of Cardiac Glycosides THOMAS W. SMITH, MD, FACC Boston. Massachusetts Digoxin, the cardiac glycoside most frequently used in bioavailability of digoxin is appreciably less than that of clinical practice in the United States, can be givenorally digitoxin, averaging about two-thirds to three-fourths of or intravenously and has an excretory half-life of 36 to the equivalent dose given intravenously in the case of 48 hours in patients with serum creatinine and blood currently available tablet formulations. Recent studies urea nitrogen values in the normal range. Sincethe drug have shown that gut ftora of about 10% of patients re­ is excreted predominantly by the kidney, the half-life is duce digoxin to a less bioactive dihydro derivative. This prolonged progressivelywithdiminishingrenal function, process is sensitiveto antibiotic administration, creating reaching about 5 days on average in patients who are the potential for important interactions among drugs. essentially anephric. Serum protein binding of digoxin Serum or plasma concentrations of digitalis glycosides is only about 20%, and differs markedly in this regard can be measured by radioimmunoassay methods that are from that of digitoxin, which is 97% bound by serum nowwidelyavailable, but knowledgeofserum levelsdoes albumin at usual therapeutic levels. Digitoxin is nearly not substitute for a sound working knowledge of the completely absorbed from the normal gastrointestinal clinical pharmacology of the preparation used and care­ tract and has a half-lifeaveraging 5 to 6 days in patients ful patient follow-up.
    [Show full text]