EU-Funded FP6 Research Projects on Antimicrobial Drug Resistance

Total Page:16

File Type:pdf, Size:1020Kb

EU-Funded FP6 Research Projects on Antimicrobial Drug Resistance EU-funded FP6 Research projects on Antimicrobial Drug Resistance Project information Interested in European research? Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and Spanish. A free sample copy or free subscription can be obtained from: European Commission Directorate-General for Research Communication Unit B-1049 Brussels Fax (32-2) 29-58220 E-mail: [email protected] Internet: http://ec.europa.eu/research/research-eu EUROPEAN COMMISSION Directorate-General for Research Directorate Health Unit Infectious Diseases http://ec.europa.eu/research/health/infectious-diseases/poverty-diseases/contact_en.html Contact: Rachida GHALOUCI European Commission Office CDMA 02/155 B-1049 Brussels Tel. (32-2) 29-64826 Fax (32-2) 29-94561 E-mail: [email protected] EUROPEAN COMMISSION EU-funded FP6 Research projects on Antimicrobial Drug Resistance Directorate-General for Research 2010 Cooperation/Health EN Europe Direct is a service to help you find answers to your questions about the European Union Freephone number(*): 00 800 6 7 8 9 10 11 (*)Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commis- sion is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the au- thor and do not necessarily reflect the views of the European Commission. More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2010 ISBN 978-92-79-16745-4 doi:10.2777/22731 © European Union, 2010 Reproduction is authorised provided the source is acknowledged. TABLE OF CONTENTS Introduction 6 ABS INTERNATIONAL COMBIG-TOP Implementing antibiotic strategies (ABS) Combinatorial biosynthesis of industrial for appropriate use of antibiotics in hospitals glycopeptides: technology, optimization in member states of the European Union 8 and production 27 ACE Approaches to control multi-resistant CombiGyrase enterococci: studies on molecular ecology, Development of new gyrase inhibitors horizontal gene transfer, fitness and prevention 10 by combinatorial biosynthesis 29 ACE-ART Assessment and critical evaluation of antibiotic resistance transferability CRAB in food chain - ACE-ART 12 Combating resistance to antibiotics 31 ActinoGEN Integrating genomics-based applications DRESP2 to exploit actinomycetes as a resource Role of mobile genetic elements in the spread for new antibiotics 14 of antimicrobial drug resistance 32 e-Bug Development and dissemination AMIS of a school antibiotic and hygiene Antimicrobials by immune stimulation 16 education pack and website across Europe 33 EACCAD ANTIBIOTARGET European approach to combat outbreaks Molecular and functional genomic approaches of Clostridium difficile associated diarrhoea to novel antibacterial target discovery 17 by development of new diagnostic tests 35 BACELL HEALTH EAR Bacterial stress management relevant Effects of antibiotic resistance on bacterial to infectious disease and biopharmaceuticals 19 fitness, virulence and transmission 36 BURDEN EARSS Burden of resistance and disease The European antimicrobial resistance in European nations 21 surveillance system 37 CanTrain Host-pathogen interaction systems as tools ERAPharm to identify antifungal targets in C. albicans Environmental risk assessment and C. dubliniensis 22 of pharmaceuticals 39 CHAMP Changing behaviour of healthcare professionals ESAC and the general public towards a more prudent European surveillance use of anti-microbial agents 24 of antimicrobial consumption 41 COBRA Combating resistance to antibiotics by broadening the knowledge on molecular ESSTI mechanisms behind resistance to inhibitors European surveillance of sexually transmitted of cell wall synthesis. 25 infections 43 GRACE ET-PA Genomics to combat resistance Enabling techniques for the development against antibiotics in community-acquired LRTI of a novel class of protein antibiotics 45 in Europe 67 HAPPY AUDIT EU-IBIS Health alliance for prudent prescribing, yield Invasive bacterial infections surveillance and use of antimicrobial drugs in the treatment in European Union 46 of respiratory tract infections 69 EUCAST European committee IPSE on antimicrobial susceptibility testing 49 Improving patient safety in Europe 71 LeishEpiNetSA Control strategies for visceral leishmaniasis (VL) EUR-INTAFAR and mucocutaneous leishmaniasis (MCL) Inhibition of new targets in South America: for fighting antibiotic resistance 51 applications of molecular epidemiology 73 EURESFUN Integrated post-genomic approaches MagRSA for the understanding, detection Fully automated and integrated microfluidic and prevention of antifungal drug platform for real-time molecular diagnosis resistance in fungal pathogens 53 of methicillin-resistant Staphylococcus aureus 75 EuResist Integration of viral genomics MalariaPorin with clinical data to predict response Validation of the plasmodium aquaglyceroporin to anti-HIV treatment 55 as a drug target 76 Eurofungbase Strategy to build up and maintain an integrated sus- tainable European fungal genomic database required MANASP for innovative genomics research on filamentous Development of novel management strategies fungi important for biotechnology and human health 57 for invasive aspergillosis 77 EPG micro-MATRIX European virtual institute for functional Workshop on strategies to address genomics of bacterial pathogens – antimicrobial resistance through EuroPathoGenomics 59 the exploitation of microbial genomics 78 EuropeHIVResistance MOSAR European cohort coordinating network Mastering hospital antimicrobial resistance and on HIV drug resistance 60 its spread into the community 79 EuroTB NewHiv Targets Surveillance of tuberculosis in Europe 62 Identifying novel classes of HIV inhibitors 81 NEWTBDRUGS New drugs for persistent tuberculosis: FUNGWALL exploitation of 3D structure The fungal cell wall as a target of novel targets, lead optimisation for antifungal therapies 64 and functional in vivo evaluation 82 GENOSEPT NM4TB Genetics of sepsis in Europe 66 New medicines for tuberculosis 83 NPARI Tailoring of novel peptide coatings and therapeutics derived from a newly identified Tat machine component of the human innate immunity Functional genomic characterisation against resistant infections 85 of the bacterial Tat complex 103 Phagevet-P Veterinary phase therapies as alternatives TB Treatment Marker to antibiotics in poultry production 86 Establishing a TB treatment efficacy marker 105 TB-DRUG OLIGOCOLOR Development of a molecular platform PNEUMOPEP for the simultaneous detection New methods of treatment of Mycobacterium tuberculosis resistance of antibiotic-resistant pneumococcal disease 88 to rifampicin and fluoroquinolones 106 PREVIS TRAINAU Pneumococcal resistance epidemicity Training risk assessment in non-human and virulence – an international study 89 antimicrobial usage 107 READ-UP TRIoH Redox antimalarial drug discovery 91 Targeting replication and integration of HIV 109 Tuberculosis China REBAVAC The diversity of Mycobacterium tuberculosis Novel opportunities to develop vaccines strains in China: tracing the origins to control antibiotic resistant bacteria: of theworldwide dispersion of the multidrug- from the trials back to the laboratory 92 resistant Beijing genotype 111 REPLACE UNITE-MORE Plants and their extracts and other natural Uniformity in testing alternatives to antimicrobials in feeds 93 and monitoring HIV resistance 112 SAFEWASTES Evaluating physiological and environmental consequences of using organic wastes after VIRGIL technological processing in diets European vigilance network for the for livestock and humans 95 management of antiviral drug resistance 113 SavinMucoPath Novel therapeutic and prophylactic strategies to VIROLAB control mucosal infections A virtual lab for decision support by South American bacterial strains 96 in viral diseases treatment 116 SIGMAL Targeting malaria transmission through VITBIOMAL interference with signalling in Plasmodium Vitamin biosynthesis as a target falciparum gametocytogenesis 98 for antimalarial therapy 117 SLIC Biosensors in molecular diagnostics nanotechnology for the analysis of species- specific microbial transcripts 100 Index of Acronyms 118 StaphDynamics Functional genomic characterisation of molecular determinants for staphylococcal fitness, virulence and drug resistance 101 Index of Coordinators 119 6 | INTRODUctiON COMBAtiNG ANtiMicROBIAL DRUG RESISTANCE The discovery and use of antibiotics has had an enormous impact on our healthcare system. Nowadays, the treatment and pre- vention of microbial infections fully depends on the availability of effective antibiotics. In addition to this, advanced surgical proce- dures like organ transplants, cancer chemo- therapy and care of preterm babies heavily rely on effective antibiotics. Unfortunately, the emergence of and rise in resistance to the currently available antimicrobial drugs threatens the treatment of both hospital- and community-acquired bacterial infections and endangers many modern medical prac- tices. This situation is further aggravated by a sharp decline in the discovery of new an- timicrobial drugs needed to overcome drug resistance. Such developments represent
Recommended publications
  • CAPITULO 01.Indd
    DRUG RESISTANCE: 1. DEFINITIONS AND CONCEPTS • José Ramón Santos • Marc Noguera-Julian • Maria Casadellà • Josep Maria Llibre • Bonaventura Clotet • Roger Paredes 1.1. INTRODUCTION Definition Antiretroviral drug resistance is the ability of HIV to replicate in the presence of antiretroviral drug concentrations that suppress viral replication of non-resistant virus. Most antiretroviral drugs are competitive inhibitors, i.e. they inhibit a viral enzyme (protease, PR; reverse transcriptase, RT; integrase, IN) by competing with its natural substrate for attachment to the enzyme’s catalytic site. Resistance to competitive inhibitors is a function of viral susceptibility and the drug levels achieved in the target cells. Higher drug levels can suppress partially resistant viruses, with resistance occurring in a continuum. Viral susceptibility to competitive inhibitors is expressed as the drug concentration able to inhibit virus growth in vitro to 50% (50% inhibitory concentration, 1 IC50) or 90% (IC90), relative to a wildtype reference virus. The small-molecule CCR5 antagonists, are allosteric inhibitors of the human CCR5 transmembrane protein, one of the two co-receptors required for HIV entry into target cells. Due to their allosteric inhibition, decrease in viral susceptibility to CCR5 antagonists is reflected by progressive decreases in the percent of maximal inhibition rather than by shifts in IC50. Further increases in drug concentrations once drug resistance is established do not achieve further virological suppression. Pathogenesis HIV has a quasispecies distribution.1 Soon after infection with a relatively homogeneous viral population, viral replication ensues at an extraordinary rate: 109-12 new virions are generated every day. Because HIV’s RT lacks proofreading ability, 10-3 to 10-4 mutations (one or two per genome) are spontaneously generated per replication cycle.2, 3 Given HIV’s high replication rate, any single mutant and some dual mutants could be generated per day.
    [Show full text]
  • The Euresist Approach for Predicting Response to Anti HIV-1 Therapy!
    97! www.geno2pheno.org www.euresist.org The EuResist approach for predicting response to anti HIV-1 therapy! Andre Altmann1, Michal Rosen-Zvi2, Mattia Prosperi3, Ehud Aharoni2, Hani Neuvirth2, Eugen Schülter4, Joachim Büch1, Yardena Peres2, Francesca Incardona5, Anders Sönnerborg6, Rolf Kaiser4, Maurizio Zazzi7, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 IBM Research Laboratory in Haifa, Haifa, Israel; 3 University of Roma TRE, Rome, Italy; 4 University of Cologne, Cologne, Germany; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 University of Siena, Siena, Italy _____________________________________________________________ Background ____________________________________________________________ The aims of the EuResist project are integration of clinical and virologic data from a large cohort of patients and training of a data-driven therapy response prediction system for guiding treatment selection using these data. The EuResist Integrated Database (EIDB) currently comprises 18,467 patients, 22,006 sequences, 64,864 therapies, and 240,795 viral load (VL) measurements collected from Italy, Sweden, Germany, and Luxembourg. _______________________________________________________________ Methods______________________________________________________________ Therapy success (failure) is defined as a VL measurement below (above) 500 cp/ml at 8 [4-12] weeks after therapy start. Baseline VL and genotype must be obtained at most three months before therapy start to allow for inclusion in the training set. Using this Standard Datum definition we extracted 3,023 samples for training three different prediction engines. The engines were designed to work with viral genotype and intended regimen as the only information (minimal feature set) as well as with additional measurements (e.g. baseline VL) and information derived from previous treatments and genotypes (maximal feature set) to enhance prediction performance.
    [Show full text]
  • Fusion of Pure Data-Driven Approaches with Rules-Based Methods
    92! www.geno2pheno.org www.euresist.org Keeping models that predict response to antiretroviral therapy up-to- date: fusion of pure data-driven approaches with rules-based methods Andre Altmann1, Alexander Thielen1, Dineke Frentz2, Kristel Van Laethem3, Laura Bracciale4, Francesca Incardorna5, Anders Sönnerborg6, Maurizio Zazzi7, Rolf Kaiser8, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 Erasmus Medical Centre Rotterdam, Rotterdam, the Netherlands; 3 Katholieke Universiteit Leuven, Leuven, Belgium; 4 Catholic University of Rome, Rome, Italy; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 Department of Molecular Biology, University of Siena, Siena, Italy; 8 Institute of Virology, University of Cologne, Cologne, Germany ______________________________________________________________ Background ___________________________________________________________ Purely data-driven approaches predicting response to antiretroviral combination therapy (ART) are frequently criticized for not being easily applicable to novel compounds. This drawback originates from lack of treatments containing novel compounds in clinical databases that constitute the source of training data for statistical-learning methods. Here we present a method that integrates rules-based methods into data-driven approaches to overcome this limitation. __________________________________________________________ Material & Methods _______________________________________________________ Treatment Data Novel drug GSS (ndGSS) 4,538 treatment change episodes (TCEs) were extracted from the EuResist The 4,538 training TCEs did not contain novel drugs according to today's and Violab databases as training data for the approach. Response to ART was definition. However, for training of the new approach all drugs in a treatment dichotomized to success and failure based on the 8 (4-12) week follow-up viral that were approved by FDA at most 4 years prior to treatment start were treated load (VL), i.e.
    [Show full text]
  • Particularities of Visualisation of Medical and Wellness Data Through a Digital Patient Avatar
    ___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION Particularities of Visualisation of Medical and Wellness Data through a Digital Patient Avatar Vadym Kramar, Markku Korhonen, Yury Sergeev Oulu University of Applied Sciences, School of Engineering Raahe, Finland {vadym.kramar, markku.korhonen, yury.sergeev}@oamk.fi Abstract—In this work particularities of visualisation of Descriptive – as providing access to any medical and medical and wellness data through a digital patient avatar are wellness data, including relevant to life-style; given from a standpoint of a proposed approach, under which Interpretive – as helping to be interpreted in order to data for a visualisation may be obtained from a variety of sources through defined interfaces, while end-user interfaces gain knowledge out of data; of distinct complexity and level of immersion into the model Integrative – as combining any possible data for may be exposed to different categories of users. A short retrieving decision-support required information; introduction of important medical data exchange standards, Predictive – as evaluating, anticipating, and predicting specifications and models is offered. A brief overview of the development of health aspects. projects relevant to a subject of this work is given. The proposed approach is presented along with examples of use- Taking into account a maturity of modern human to cases. computer interaction and user interface technologies, the key enablers for maturity of digital
    [Show full text]
  • Abstracts Presented at the International Workshop on Antiviral Drug Resistance: Meeting the Global Challenge June 3–7 2014, Berlin, Germany
    Abstracts presented at the International Workshop on Antiviral Drug Resistance: Meeting the Global Challenge June 3–7 2014, Berlin, Germany cover page.indd 1 09/06/2014 15:52:38 cover page.indd 2 09/06/2014 15:52:38 ORGANIZING COMMITTEE Carlo-Federico Perno, Guest Co-Chair University of Rome Tor Vergata, Italy Deenan Pillay, Guest Co-Chair University College London, UK Brendan Larder RDI, UK Stephen Locarnini Victorian Infectious Diseases Reference Laboratory (VIDRL), Doherty Institute, Australia John Mellors University of Pittsburgh, USA Douglas Richman, Course Director VA San Diego Healthcare System and University of California San Diego, USA Christoph Sarrazin J.W. Goethe-University Hospital, Germany SCIENTIFIC COMMITTEE Silvia Bertagnolio World Health Organization, Switzerland Bonaventura Clotet Fundacio IRSI Caixa, Spain John Coffin Tufts University, USA Abel De La Rosa Emory Institute for Drug Development & Drug Innovation Ventures at Emory University, USA Jim Demarest ViiV Healthcare LLC, USA Matthias Götte McGill University, Canada Robert Grant Gladstone/UCSF, USA Huldrych Günthard University Hospital Zurich, Switzerland David Hall Boehringer Ingelheim Pharmaceuticals, USA George Hanna Bristol-Myers Squibb, USA Richard Harrigan BC Centre for Excellence in HIV/AIDS, Canada Daria Hazuda Merck Research Labs, USA Walid Heneine Centers for Disease Control and Prevention, USA Gillian Hunt National Institute for Communicable Diseases (NICD), South Africa Rolf Kaiser University of Cologne, Germany Tara Kieffer Vertex Pharmaceuticals,
    [Show full text]
  • Prediction of Response to Antiretroviral Therapy by Human Experts and by the Euresist Data-Driven Expert System (The EVE Study)
    DOI: 10.1111/j.1468-1293.2010.00871.x r 2010 British HIV Association HIV Medicine (2010) ORIGINAL RESEARCH Prediction of response to antiretroviral therapy by human experts and by the EuResist data-driven expert system (the EVE study) M Zazzi,1 R Kaiser,2 ASo¨nnerborg,3 D Struck,4 A Altmann,5 M Prosperi,6 M Rosen-Zvi,7 A Petroczi,8 Y Peres,9 E Schu¨lter,2 CA Boucher,10 F Brun-Vezinet,11 PR Harrigan,12 L Morris,13 M Obermeier,14 C-F Perno,15 P Phanuphak,16 D Pillay,17 RW Shafer,18 A-M Vandamme,19 K van Laethem,19 AMJ Wensing,20 T Lengauer5 and F Incardona21 1Department of Molecular Biology, University of Siena, Siena, Italy, 2Institute of Virology, University of Cologne, Cologne, Germany, 3Department of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden, 4CRP-Sante´, Laboratory of Retrovirology, Luxembourg, Luxembourg, 5Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbru¨cken, Germany, 6Clinic of Infectious Diseases, Catholic University of Rome, Rome, Italy, 7Machine Learning and Data Mining group, IBM Research Labs, Haifa, Israel, 8School of Life Sciences, Kingston University, Kingston upon Thames, UK, 9Knowledge Management Group, IBM Research Labs, Haifa, Israel, 10Department of Virology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands, 11Laboratoire de Virologie, Hoˆpital Bichat Claude Bernard, Paris, France, 12BC Centre for Excellence in HIV/AIDS, University of British Columbia, Vancouver, Canada, 13AIDS Virus Research Unit, National Institute for Communicable
    [Show full text]
  • AI in HEALTHCARE WHITEPAPER BDVA Task Force 7 - Sub-Group Healthcare November 2020
    AI IN HEALTHCARE WHITEPAPER BDVA Task Force 7 - Sub-group Healthcare November 2020 1 TABLE OF CONTENTS Foreword ........................................................................................................................................... 4 Abstract ............................................................................................................................................ 5 Introduction .............................................................................................................................. 6 Importance of AI In Healthcare ............................................................................................... 8 2.1 Literature review ................................................................................................................ 8 2.2 Survey and workshop results ............................................................................................. 8 Key areas for AI in healthcare .............................................................................................. 10 3.1 Overview of key areas in health ....................................................................................... 10 3.2 Survey and Workshop results .......................................................................................... 12 Technical and research challenges ..................................................................................... 16 Non-technical challenges ....................................................................................................
    [Show full text]
  • Machine Learning Techniques for Predicting Complications And
    Machine learning techniques for predicting complications and evaluating drugs efficacy Three examples of real world evidence studies: combating AIDS, predicting diabetes complications and the epilepsy trial and error challenge Dr. Michal Rosen-Zvi Senior manager Analytics department IBM Research lab - Haifa, Israel Outline Data and needs in the medical world Machine Learning in a nutshell Three concrete examples – combating AIDS – predicting diabetes complications – the epilepsy trial and error challenge Wrap up 2 The Medical domain The first known medical record was developed by Hippocrates, in the fifth century B.C. He prescribed two goals: –A medical record should accurately reflect the course of disease –A medical record should indicate the probable cause of disease Hippocrates of Cos (460 BC – 370 BC) Father of western medicine “Medicine is a science of uncertainty and an art of probability.” “The greater the ignorance the greater the dogmatism. The truth of one age become the absurdities of the next, and the foolishness of yesterday become the wisdom of tomorrow.” Sir William Osler, (1849 – 1919), Father of modern medicine 3 Chronic diseases – prevalence and cost Diabetes 16 M $44-98B Cancer 15 M $37-107B $1.6T All other Congestive heart 5 M $20-40B $1.2T care failure $0.8T Respiratory 30 M $24-36B Treating disease chronic Hypertension 50 M $23-3B $0.4T disease HIV 0.7 M $20.5B* US healthcare spending 2002 Personalized healthcare requires Machine Learning capabilities for improving the care in various ways, including: Matching
    [Show full text]
  • A Vision for Predictive Health in Canada
    A Vision for Predictive Health in Canada Canada’s Big Data Consortium May 2018 We would like to thank the following organizations for their leadership and in-kind contributions to Canada’s Big Data Consortium, Canada’s Big Data Talent Gap Study, and to this paper, “A Vision for Predictive Health in Canada.” A Vision for Predictive Health_Print_v8.indd 1 2018-05-24 2:35 PM A Vision for Predictive Health_Print_v8.indd 2 2018-05-24 2:35 PM A Vision for Predictive Health in Canada Canada’s Big Data Consortium May 2018 A Vision for Predictive Health_Print_v8.indd 3 2018-05-24 2:35 PM Contents List of Figures 2.1.2 Factors for Quality, Physical, Mental, and 20 Emotional Health Executive Summary 04 2.2 Understanding Data Diversity 22 1 Introduction 05 2.2.1 Present and Emerging Data 22 1.1 Objectives and Organization of Paper 05 2.2.2 Standard Medical Terminology 23 1.2 Target Audience 06 2.2.3 Types of Data 24 1.3 Vision 08 2.2.4 Managing Data Flow and Use: Cloud 29 1.4 Evolving Healthcare System 10 Technology 1.4.1 Strengths in Technology, Big Data, Analytics, 12 2.2.5 Computational and Analytical Capabilities 31 Innovation 2.3 Basic Use of Electronic Health Records 32 1.5 Stakeholders in the Canadian Health System 13 2.3.1 Background: Electronic Medical Records and 32 1.5.1 Government 13 Electronic Health Records 1.5.2 Clinical Sphere 13 2.3.2 Data Integration 32 1.5.3 Academic Community 14 2.3.3 Long-term Preservation and Storage of Records 33 1.5.4 Research Community 15 2.3.4 Synchronization of Records: Access and Analytics 34 1.5.5 Health
    [Show full text]
  • Croi2020-Program-And-Information
    General Information CONTENTS Information General CROI FOUNDATION . 2 IAS–USA . 3 CONTINUING MEDICAL EDUCATION . 3 CROI 2020 PROGRAM COMMITTEE . 6 Scientific Program Committee . 6 Community Liaison Subcommittee . 8 EXTERNAL REVIEWERS . 9 SCHOLARSHIP AWARDEES . 11 Activities for New Investigator Awardees . 11 New Investigator Awardees . 11 International Investigator Awardees . 16 Community Educator Awardees . 16 CONFERENCE INFORMATION . 18 Overview . 18 Conference Support . 18 Conference Resources . .19. WiFi Access at the Conference . 19 Mobile App . 19 Poster Videos . 19 Website . 19 Webcasts . 19 USB Flashdrive . 20 Affiliated and Proximate Activities Policy . 20 Conference Badges . 20 Conference Etiquette . 20 VENUE Conference Services . 21 Meals . 22 Emergency Services . .22 Overflow Accommodations . 22 Americans With Disabilities Act . 22 Child Care . 22 CROI HOTELS . 23 ABSTRACT PROCESS . 25 Abstracts Related to Study Populations . 27 PRECONFERENCE SESSIONS . 28 SYMPOSIA, ORAL SESSIONS, AND THEMED DISCUSSIONS BY DAY . 34 POSTER SESSIONS BY DAY . 66 POSTER SESSIONS BY CATEGORY . 173. INDEX OF PRESENTING AUTHORS . .178 . CONFERENCE SCHEDULE . INSIDE BACK COVER CONVENTION CENTER FLOOR PLANS . BACK COVER Printed in the United States of America . © Copyright 2020 CROI Foundation/IAS–USA . All rights reserved . ISBN #978-1-7320053-2-7 CROI 2020 1 General Information CROI FOUNDATION The CROI Foundation is a 501(c)(3) not-for-profit professional organization that operates exclusively for the charitable and educational purpose of organizing,
    [Show full text]
  • European Recommendations for the Clinical Use of HIV Drug Resistance Testing: 2011 Update
    AIDS Rev. 2011;13:77-108 Anne-Mieke Vandamme, et al.: European HIV Drug Resistance Guidelines European Recommendations for the Clinical Use of HIV Drug Resistance Testing: 2011 Update Anne-Mieke Vandamme1,2, Ricardo J. Camacho2,3, Francesca Ceccherini-Silberstein4, Andrea de Luca5, Lucia Palmisano6, Dimitrios Paraskevis7, Roger Paredes8, Mario Poljak9, Jean-Claude Schmit10, Vincent Soriano11, Hauke Walter12, Anders Sönnerborg13 and the European HIV Drug Resistance Guidelines Panel 1Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium; 2Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal; 3Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal; 4Department 5 of Experimental Medicine,University of Rome Tor Vergata, Rome, Italy; Istituto di Clinica delle Malattie Infettive, Università Cattolica del Sacro © Permanyer Publications 2011 Cuore, Roma, and Second Division of Infectious Diseases, Siena University Hospital, Siena, Italy; 6Istituto Superiore di Sanità, Rome, Italy; 7National Retrovirus Reference Center, Department of Hygiene Epidemiology and Medical Statistics, Medical School University of Athens, Athens, Greece; 8 HIV Unit & IrsiCaixa AIDS Research Institute, Hospital Universitàri Germans Trias i Pujol, Badalona, Spain; 9Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 10National Service of Infectious Diseases, Retrovirology Laboratory Luxembourg, Centre Hospitalier de
    [Show full text]
  • View Molecular Biology Department, Siena, Italy
    Pironti et al. Journal of the International AIDS Society 2010, 13(Suppl 4):O6 http://www.jiasociety.org/content/13/S4/O6 ORAL PRESENTATION Open Access O116. The EuResist expert model for customised HAART optimisation: 2010 update and extension to newest compounds A Pironti1*, A Sönnerborg2, M Zazzi3, R Kaiser4, D Struck5, B Clotet6, ÀM Vandamme7, F Incardona8, T Lengauer1, M Rosen-Zvi9, M Prosperi10 From Tenth International Congress on Drug Therapy in HIV Infection Glasgow, UK. 7-11 November 2010 Background a free web-service for customised HAART optimisation, The design of an optimal highly active antiretroviral and was proven to be superior to all existing genotypic therapy (HAART) customised on patient’sbackground interpretation systems (GIS) since it takes into account and viral genotyping, is still a challenge. EuResist has not only genotype but multiple other variables. been the first data-driven system to be implemented as Figure 1 1Max-Planck-Institut für Informatik, Computational Biology and Applied Algorithmics, Saarbrücken, Germany Full list of author information is available at the end of the article © 2010 Pironti et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pironti et al. Journal of the International AIDS Society 2010, 13(Suppl 4):O6 Page 2 of 2 http://www.jiasociety.org/content/13/S4/O6 Data and methods Published: 8 November 2010 The EuResist database stores and updates periodically demographic, clinical, and genomic information of HIV + patients from several countries in Western Europe.
    [Show full text]