Standardized Representation, Visualization and Searchable

Total Page:16

File Type:pdf, Size:1020Kb

Standardized Representation, Visualization and Searchable Rhee et al. AIDS Research and Therapy 2012, 9:13 http://www.aidsrestherapy.com/content/9/1/13 METHODOLOGY Open Access Standardized representation, visualization and searchable repository of antiretroviral treatment-change episodes Soo-Yon Rhee1,10*, Jose Luis Blanco2, Tommy F Liu1, Iñaki Pere2, Rolf Kaiser3, Maurizio Zazzi4, Francesca Incardona5, William Towner6, Josep Maria Gatell2, Andrea De Luca7,8, W Jeffrey Fessel9 and Robert W Shafer1 Abstract Background: To identify the determinants of successful antiretroviral (ARV) therapy, researchers study the virological responses to treatment-change episodes (TCEs) accompanied by baseline plasma HIV-1 RNA levels, CD4+ T lymphocyte counts, and genotypic resistance data. Such studies, however, often differ in their inclusion and virological response criteria making direct comparisons of study results problematic. Moreover, the absence of a standard method for representing the data comprising a TCE makes it difficult to apply uniform criteria in the analysis of published studies of TCEs. Results: To facilitate data sharing for TCE analyses, we developed an XML (Extensible Markup Language) Schema that represents the temporal relationship between plasma HIV-1 RNA levels, CD4 counts and genotypic drug resistance data surrounding an ARV treatment change. To demonstrate the adaptability of the TCE XML Schema to different clinical environments, we collaborate with four clinics to create a public repository of about 1,500 TCEs. Despite the nascent state of this TCE XML Repository, we were able to perform an analysis that generated a novel hypothesis pertaining to the optimal use of second-line therapies in resource-limited settings. We also developed an online program (TCE Finder) for searching the TCE XML Repository and another program (TCE Viewer) for generating a graphical depiction of a TCE from a TCE XML Schema document. Conclusions: The TCE Suite of applications – the XML Schema, Viewer, Finder, and Repository – addresses several major needs in the analysis of the predictors of virological response to ARV therapy. The TCE XML Schema and Viewer facilitate sharing data comprising a TCE. The TCE Repository, the only publicly available collection of TCEs, and the TCE Finder can be used for testing the predictive value of genotypic resistance interpretation systems and potentially for generating and testing novel hypotheses pertaining to the optimal use of salvage ARV therapy. Keywords: Human immunodeficiency virus, Antiretroviral treatment, Drug resistance, Clinical outcomes, XML schema, Database Background resistance genotype results, and the subsequent virological To identify determinants of successful antiretroviral (ARV) response to a salvage therapy regimen [2-8]. Such studies, therapy in HIV-1-infected patients for whom a previous however, often differ in their inclusion criteria, salvage ther- ARV treatment regimen has failed, researchers study clin- apy requirements, and definition of virological response. ical data associated with treatment-change episodes (TCEs) To facilitate data sharing and analyses of combined [1]. These studies characterize the relationship between past data, we have developed a TCE XML Schema to repre- ARV treatments, plasma HIV-1 RNA levels, HIV-1 drug sent treatment-change episodes. XML (Extensible Markup Language) is a markup language for encoding * Correspondence: [email protected] human and computer readable documents. An XML 1Department of Medicine, Stanford University, Stanford, CA, USA Schema defines constrained elements and attributes that 10Division of Infectious Diseases, Room S-169, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA can ensure a consistent representation of complex data. Full list of author information is available at the end of the article The TCE XML Schema is a richer representation of data © 2012 Rhee et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhee et al. AIDS Research and Therapy 2012, 9:13 Page 2 of 8 http://www.aidsrestherapy.com/content/9/1/13 than the flat files or spreadsheets, which form the basis The TCE Viewer accepts an XML file, validates the file for most analyses [9]. Here we collaborate with four clinics against the TCE Schema, and generates a graphical de- to create a public repository of 1,500 TCE XML documents piction of the TCE containing three sections: (i) a figure represented using the TCE XML Schema (TCE Repository). with the ARV regimens, plasma HIV-1 RNA levels, and To demonstrate the utility of such a repository for hypoth- CD4 counts preceding and following the treatment esis generation and knowledge discovery, we analyzed a sub- change; (ii) a table with one or more genotypic resistance set of the repository to obtain insights into the optimal use test results preceding the treatment change; and (iii) a of second-line therapy in resource-limited settings. compressed summary of the virological and immuno- We also describe two online programs that complement logical responses to past ARV regimens. The TCE the TCE XML Schema: a TCE Viewer and a TCE Finder. Viewer provides an additional mechanism of validation The TCE Viewer accepts a valid TCE XML Schema docu- because many clinicians are adept at visually recognizing ment and creates a graphical depiction of the temporal re- anomalous clinical patterns that may have resulted from lationship between ARV regimens, plasma HIV-1 RNA data entry errors. levels, peripheral blood CD4+ T lymphocyte counts (CD4 counts), and genotypic resistance data. The TCE Finder TCE finder searches the TCE Repository according to user-defined cri- The TCE Finder enables users to identify TCEs meeting teria and retrieves those that meet the search criteria. user-defined search criteria (http://hivdb.stanford.edu/ TCEs/cgi-bin/TCE_finder.cgi). The TCE Finder accepts in- Methods put parameters pertaining to the ARVs used prior to the TCE XML schema change in therapy and/or to the ARVs used for salvage The TCE XML Schema elements and constraints were therapy. A summary of the TCEs matching the input cri- developed to represent the temporal relationship among teria are then presented to the user in a table that contains ARVs, plasma HIV-1 RNA levels, CD4 counts and geno- the following fields: ARVs received and genotypic resistance typic drug resistance data surrounding a treatment test results obtained prior to baseline, the salvage ARV regi- change. Each valid TCE XML Schema document must men, and plasma HIV-1 RNA levels obtained while taking have a treatment change time point (baseline or time the salvage ARV regimen. The table also contains a thumb- zero). The TCE baseline must be assigned a date or, at nail image of each TCE that links to the graphical depiction the very minimum, a calendar year. The preceding and of the TCE created by the TCE Viewer. subsequent data are demarcated by the number of weeks from baseline. The complete treatment history received Results before baseline is represented as a list of regimens, their TCE repository durations, and associated plasma HIV-1 RNA levels and To demonstrate the ability of the TCE Schema to represent CD4 counts. However, if these data are not available, the data from different clinics, we collaborated with four clinics XML Schema can represent the past treatment history as to create a publicly available TCE repository. For the pur- a list of one or more ARVs or ARV classes. Genotypic poses of our collaboration we selected TCEs sharing each drug resistance test results are represented as nucleotide of the following criteria: (i) evidence for virological failure sequences or lists of amino acid mutations obtained prior to a change in therapy defined a plasma HIV-1 RNA prior to the treatment change. Optional elements include level of >1,000 copies/ml obtained within 8 weeks before the nadir CD4 count, gender, age, ethnicity, and a meta- the change; (ii) a complete list of ARVs received prior to data element for either annotating or just naming the baseline; (iii) a change in ARVs occurring within 24 weeks TCE. The TCE XML Schema can be found at http:// of a baseline genotypic resistance test; (iv) a new salvage hivdb.stanford.edu/TCEs/schema/TCE.xsd. regimen administered for at least four weeks; (v) one or To demonstrate the adaptability of the TCE XML more CD4 counts within 24 weeks prior to the ARV Schema to different clinical environments, we collabo- change; and (vi) two or more plasma HIV-1 RNA levels rated with four clinics from Kaiser-Permanente Medical within the first 36 weeks while taking the salvage regimen. Care Program-Northern/Southern California, University Overall, 1,527 TCEs met the above inclusion criteria in- of Barcelona and EuResist Network Database. The study cluding 1,217 from Northern California, 162 from the Uni- was approved by the Stanford University Institutional versity of Barcelona, 90 from Southern California and 58 Review Board (“Clinical Significance of HIV-1 Drug Re- from the EuResist Network Database. The TCEs occurred sistance: A Clinic Based Approach”, Protocol ID: 13900). between 1998 and 2010: 555 between 1998 and 2000; 550 between 2001 and 2003; 228 between 2004 and 2006; 195 TCE viewer between 2007 and 2010. The median CD4 nadir was 108 The TCE Viewer creates a graphical depiction of a TCE (IQR:34to213).ThemedianplasmaHIV-1RNAlevels (http://hivdb.stanford.edu/TCEs/cgi-bin/TCE_viewer.cgi). and CD4 counts were 4.2 log copies/ml (IQR: 3.7 to 4.7) Rhee et al. AIDS Research and Therapy 2012, 9:13 Page 3 of 8 http://www.aidsrestherapy.com/content/9/1/13 and 257 (IQR: 139 to 402), respectively. Patients had Table 2 Summary of the ARV Class Combinations received a median six years (IQR: 3 to 8) of ARV therapy Comprising the Salvage ARV Regimens prior to the TCE.
Recommended publications
  • CAPITULO 01.Indd
    DRUG RESISTANCE: 1. DEFINITIONS AND CONCEPTS • José Ramón Santos • Marc Noguera-Julian • Maria Casadellà • Josep Maria Llibre • Bonaventura Clotet • Roger Paredes 1.1. INTRODUCTION Definition Antiretroviral drug resistance is the ability of HIV to replicate in the presence of antiretroviral drug concentrations that suppress viral replication of non-resistant virus. Most antiretroviral drugs are competitive inhibitors, i.e. they inhibit a viral enzyme (protease, PR; reverse transcriptase, RT; integrase, IN) by competing with its natural substrate for attachment to the enzyme’s catalytic site. Resistance to competitive inhibitors is a function of viral susceptibility and the drug levels achieved in the target cells. Higher drug levels can suppress partially resistant viruses, with resistance occurring in a continuum. Viral susceptibility to competitive inhibitors is expressed as the drug concentration able to inhibit virus growth in vitro to 50% (50% inhibitory concentration, 1 IC50) or 90% (IC90), relative to a wildtype reference virus. The small-molecule CCR5 antagonists, are allosteric inhibitors of the human CCR5 transmembrane protein, one of the two co-receptors required for HIV entry into target cells. Due to their allosteric inhibition, decrease in viral susceptibility to CCR5 antagonists is reflected by progressive decreases in the percent of maximal inhibition rather than by shifts in IC50. Further increases in drug concentrations once drug resistance is established do not achieve further virological suppression. Pathogenesis HIV has a quasispecies distribution.1 Soon after infection with a relatively homogeneous viral population, viral replication ensues at an extraordinary rate: 109-12 new virions are generated every day. Because HIV’s RT lacks proofreading ability, 10-3 to 10-4 mutations (one or two per genome) are spontaneously generated per replication cycle.2, 3 Given HIV’s high replication rate, any single mutant and some dual mutants could be generated per day.
    [Show full text]
  • The Euresist Approach for Predicting Response to Anti HIV-1 Therapy!
    97! www.geno2pheno.org www.euresist.org The EuResist approach for predicting response to anti HIV-1 therapy! Andre Altmann1, Michal Rosen-Zvi2, Mattia Prosperi3, Ehud Aharoni2, Hani Neuvirth2, Eugen Schülter4, Joachim Büch1, Yardena Peres2, Francesca Incardona5, Anders Sönnerborg6, Rolf Kaiser4, Maurizio Zazzi7, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 IBM Research Laboratory in Haifa, Haifa, Israel; 3 University of Roma TRE, Rome, Italy; 4 University of Cologne, Cologne, Germany; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 University of Siena, Siena, Italy _____________________________________________________________ Background ____________________________________________________________ The aims of the EuResist project are integration of clinical and virologic data from a large cohort of patients and training of a data-driven therapy response prediction system for guiding treatment selection using these data. The EuResist Integrated Database (EIDB) currently comprises 18,467 patients, 22,006 sequences, 64,864 therapies, and 240,795 viral load (VL) measurements collected from Italy, Sweden, Germany, and Luxembourg. _______________________________________________________________ Methods______________________________________________________________ Therapy success (failure) is defined as a VL measurement below (above) 500 cp/ml at 8 [4-12] weeks after therapy start. Baseline VL and genotype must be obtained at most three months before therapy start to allow for inclusion in the training set. Using this Standard Datum definition we extracted 3,023 samples for training three different prediction engines. The engines were designed to work with viral genotype and intended regimen as the only information (minimal feature set) as well as with additional measurements (e.g. baseline VL) and information derived from previous treatments and genotypes (maximal feature set) to enhance prediction performance.
    [Show full text]
  • Fusion of Pure Data-Driven Approaches with Rules-Based Methods
    92! www.geno2pheno.org www.euresist.org Keeping models that predict response to antiretroviral therapy up-to- date: fusion of pure data-driven approaches with rules-based methods Andre Altmann1, Alexander Thielen1, Dineke Frentz2, Kristel Van Laethem3, Laura Bracciale4, Francesca Incardorna5, Anders Sönnerborg6, Maurizio Zazzi7, Rolf Kaiser8, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 Erasmus Medical Centre Rotterdam, Rotterdam, the Netherlands; 3 Katholieke Universiteit Leuven, Leuven, Belgium; 4 Catholic University of Rome, Rome, Italy; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 Department of Molecular Biology, University of Siena, Siena, Italy; 8 Institute of Virology, University of Cologne, Cologne, Germany ______________________________________________________________ Background ___________________________________________________________ Purely data-driven approaches predicting response to antiretroviral combination therapy (ART) are frequently criticized for not being easily applicable to novel compounds. This drawback originates from lack of treatments containing novel compounds in clinical databases that constitute the source of training data for statistical-learning methods. Here we present a method that integrates rules-based methods into data-driven approaches to overcome this limitation. __________________________________________________________ Material & Methods _______________________________________________________ Treatment Data Novel drug GSS (ndGSS) 4,538 treatment change episodes (TCEs) were extracted from the EuResist The 4,538 training TCEs did not contain novel drugs according to today's and Violab databases as training data for the approach. Response to ART was definition. However, for training of the new approach all drugs in a treatment dichotomized to success and failure based on the 8 (4-12) week follow-up viral that were approved by FDA at most 4 years prior to treatment start were treated load (VL), i.e.
    [Show full text]
  • Particularities of Visualisation of Medical and Wellness Data Through a Digital Patient Avatar
    ___________________________________________________PROCEEDING OF THE 14TH CONFERENCE OF FRUCT ASSOCIATION Particularities of Visualisation of Medical and Wellness Data through a Digital Patient Avatar Vadym Kramar, Markku Korhonen, Yury Sergeev Oulu University of Applied Sciences, School of Engineering Raahe, Finland {vadym.kramar, markku.korhonen, yury.sergeev}@oamk.fi Abstract—In this work particularities of visualisation of Descriptive – as providing access to any medical and medical and wellness data through a digital patient avatar are wellness data, including relevant to life-style; given from a standpoint of a proposed approach, under which Interpretive – as helping to be interpreted in order to data for a visualisation may be obtained from a variety of sources through defined interfaces, while end-user interfaces gain knowledge out of data; of distinct complexity and level of immersion into the model Integrative – as combining any possible data for may be exposed to different categories of users. A short retrieving decision-support required information; introduction of important medical data exchange standards, Predictive – as evaluating, anticipating, and predicting specifications and models is offered. A brief overview of the development of health aspects. projects relevant to a subject of this work is given. The proposed approach is presented along with examples of use- Taking into account a maturity of modern human to cases. computer interaction and user interface technologies, the key enablers for maturity of digital
    [Show full text]
  • EU-Funded FP6 Research Projects on Antimicrobial Drug Resistance
    EU-funded FP6 Research projects on Antimicrobial Drug Resistance Project information Interested in European research? Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and Spanish. A free sample copy or free subscription can be obtained from: European Commission Directorate-General for Research Communication Unit B-1049 Brussels Fax (32-2) 29-58220 E-mail: [email protected] Internet: http://ec.europa.eu/research/research-eu EUROPEAN COMMISSION Directorate-General for Research Directorate Health Unit Infectious Diseases http://ec.europa.eu/research/health/infectious-diseases/poverty-diseases/contact_en.html Contact: Rachida GHALOUCI European Commission Office CDMA 02/155 B-1049 Brussels Tel. (32-2) 29-64826 Fax (32-2) 29-94561 E-mail: [email protected] EUROPEAN COMMISSION EU-funded FP6 Research projects on Antimicrobial Drug Resistance Directorate-General for Research 2010 Cooperation/Health EN Europe Direct is a service to help you find answers to your questions about the European Union Freephone number(*): 00 800 6 7 8 9 10 11 (*)Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commis- sion is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the au- thor and do not necessarily reflect the views of the European Commission. More information on the European Union is available on the Internet (http://europa.eu).
    [Show full text]
  • Abstracts Presented at the International Workshop on Antiviral Drug Resistance: Meeting the Global Challenge June 3–7 2014, Berlin, Germany
    Abstracts presented at the International Workshop on Antiviral Drug Resistance: Meeting the Global Challenge June 3–7 2014, Berlin, Germany cover page.indd 1 09/06/2014 15:52:38 cover page.indd 2 09/06/2014 15:52:38 ORGANIZING COMMITTEE Carlo-Federico Perno, Guest Co-Chair University of Rome Tor Vergata, Italy Deenan Pillay, Guest Co-Chair University College London, UK Brendan Larder RDI, UK Stephen Locarnini Victorian Infectious Diseases Reference Laboratory (VIDRL), Doherty Institute, Australia John Mellors University of Pittsburgh, USA Douglas Richman, Course Director VA San Diego Healthcare System and University of California San Diego, USA Christoph Sarrazin J.W. Goethe-University Hospital, Germany SCIENTIFIC COMMITTEE Silvia Bertagnolio World Health Organization, Switzerland Bonaventura Clotet Fundacio IRSI Caixa, Spain John Coffin Tufts University, USA Abel De La Rosa Emory Institute for Drug Development & Drug Innovation Ventures at Emory University, USA Jim Demarest ViiV Healthcare LLC, USA Matthias Götte McGill University, Canada Robert Grant Gladstone/UCSF, USA Huldrych Günthard University Hospital Zurich, Switzerland David Hall Boehringer Ingelheim Pharmaceuticals, USA George Hanna Bristol-Myers Squibb, USA Richard Harrigan BC Centre for Excellence in HIV/AIDS, Canada Daria Hazuda Merck Research Labs, USA Walid Heneine Centers for Disease Control and Prevention, USA Gillian Hunt National Institute for Communicable Diseases (NICD), South Africa Rolf Kaiser University of Cologne, Germany Tara Kieffer Vertex Pharmaceuticals,
    [Show full text]
  • Prediction of Response to Antiretroviral Therapy by Human Experts and by the Euresist Data-Driven Expert System (The EVE Study)
    DOI: 10.1111/j.1468-1293.2010.00871.x r 2010 British HIV Association HIV Medicine (2010) ORIGINAL RESEARCH Prediction of response to antiretroviral therapy by human experts and by the EuResist data-driven expert system (the EVE study) M Zazzi,1 R Kaiser,2 ASo¨nnerborg,3 D Struck,4 A Altmann,5 M Prosperi,6 M Rosen-Zvi,7 A Petroczi,8 Y Peres,9 E Schu¨lter,2 CA Boucher,10 F Brun-Vezinet,11 PR Harrigan,12 L Morris,13 M Obermeier,14 C-F Perno,15 P Phanuphak,16 D Pillay,17 RW Shafer,18 A-M Vandamme,19 K van Laethem,19 AMJ Wensing,20 T Lengauer5 and F Incardona21 1Department of Molecular Biology, University of Siena, Siena, Italy, 2Institute of Virology, University of Cologne, Cologne, Germany, 3Department of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden, 4CRP-Sante´, Laboratory of Retrovirology, Luxembourg, Luxembourg, 5Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbru¨cken, Germany, 6Clinic of Infectious Diseases, Catholic University of Rome, Rome, Italy, 7Machine Learning and Data Mining group, IBM Research Labs, Haifa, Israel, 8School of Life Sciences, Kingston University, Kingston upon Thames, UK, 9Knowledge Management Group, IBM Research Labs, Haifa, Israel, 10Department of Virology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands, 11Laboratoire de Virologie, Hoˆpital Bichat Claude Bernard, Paris, France, 12BC Centre for Excellence in HIV/AIDS, University of British Columbia, Vancouver, Canada, 13AIDS Virus Research Unit, National Institute for Communicable
    [Show full text]
  • AI in HEALTHCARE WHITEPAPER BDVA Task Force 7 - Sub-Group Healthcare November 2020
    AI IN HEALTHCARE WHITEPAPER BDVA Task Force 7 - Sub-group Healthcare November 2020 1 TABLE OF CONTENTS Foreword ........................................................................................................................................... 4 Abstract ............................................................................................................................................ 5 Introduction .............................................................................................................................. 6 Importance of AI In Healthcare ............................................................................................... 8 2.1 Literature review ................................................................................................................ 8 2.2 Survey and workshop results ............................................................................................. 8 Key areas for AI in healthcare .............................................................................................. 10 3.1 Overview of key areas in health ....................................................................................... 10 3.2 Survey and Workshop results .......................................................................................... 12 Technical and research challenges ..................................................................................... 16 Non-technical challenges ....................................................................................................
    [Show full text]
  • Machine Learning Techniques for Predicting Complications And
    Machine learning techniques for predicting complications and evaluating drugs efficacy Three examples of real world evidence studies: combating AIDS, predicting diabetes complications and the epilepsy trial and error challenge Dr. Michal Rosen-Zvi Senior manager Analytics department IBM Research lab - Haifa, Israel Outline Data and needs in the medical world Machine Learning in a nutshell Three concrete examples – combating AIDS – predicting diabetes complications – the epilepsy trial and error challenge Wrap up 2 The Medical domain The first known medical record was developed by Hippocrates, in the fifth century B.C. He prescribed two goals: –A medical record should accurately reflect the course of disease –A medical record should indicate the probable cause of disease Hippocrates of Cos (460 BC – 370 BC) Father of western medicine “Medicine is a science of uncertainty and an art of probability.” “The greater the ignorance the greater the dogmatism. The truth of one age become the absurdities of the next, and the foolishness of yesterday become the wisdom of tomorrow.” Sir William Osler, (1849 – 1919), Father of modern medicine 3 Chronic diseases – prevalence and cost Diabetes 16 M $44-98B Cancer 15 M $37-107B $1.6T All other Congestive heart 5 M $20-40B $1.2T care failure $0.8T Respiratory 30 M $24-36B Treating disease chronic Hypertension 50 M $23-3B $0.4T disease HIV 0.7 M $20.5B* US healthcare spending 2002 Personalized healthcare requires Machine Learning capabilities for improving the care in various ways, including: Matching
    [Show full text]
  • A Vision for Predictive Health in Canada
    A Vision for Predictive Health in Canada Canada’s Big Data Consortium May 2018 We would like to thank the following organizations for their leadership and in-kind contributions to Canada’s Big Data Consortium, Canada’s Big Data Talent Gap Study, and to this paper, “A Vision for Predictive Health in Canada.” A Vision for Predictive Health_Print_v8.indd 1 2018-05-24 2:35 PM A Vision for Predictive Health_Print_v8.indd 2 2018-05-24 2:35 PM A Vision for Predictive Health in Canada Canada’s Big Data Consortium May 2018 A Vision for Predictive Health_Print_v8.indd 3 2018-05-24 2:35 PM Contents List of Figures 2.1.2 Factors for Quality, Physical, Mental, and 20 Emotional Health Executive Summary 04 2.2 Understanding Data Diversity 22 1 Introduction 05 2.2.1 Present and Emerging Data 22 1.1 Objectives and Organization of Paper 05 2.2.2 Standard Medical Terminology 23 1.2 Target Audience 06 2.2.3 Types of Data 24 1.3 Vision 08 2.2.4 Managing Data Flow and Use: Cloud 29 1.4 Evolving Healthcare System 10 Technology 1.4.1 Strengths in Technology, Big Data, Analytics, 12 2.2.5 Computational and Analytical Capabilities 31 Innovation 2.3 Basic Use of Electronic Health Records 32 1.5 Stakeholders in the Canadian Health System 13 2.3.1 Background: Electronic Medical Records and 32 1.5.1 Government 13 Electronic Health Records 1.5.2 Clinical Sphere 13 2.3.2 Data Integration 32 1.5.3 Academic Community 14 2.3.3 Long-term Preservation and Storage of Records 33 1.5.4 Research Community 15 2.3.4 Synchronization of Records: Access and Analytics 34 1.5.5 Health
    [Show full text]
  • Croi2020-Program-And-Information
    General Information CONTENTS Information General CROI FOUNDATION . 2 IAS–USA . 3 CONTINUING MEDICAL EDUCATION . 3 CROI 2020 PROGRAM COMMITTEE . 6 Scientific Program Committee . 6 Community Liaison Subcommittee . 8 EXTERNAL REVIEWERS . 9 SCHOLARSHIP AWARDEES . 11 Activities for New Investigator Awardees . 11 New Investigator Awardees . 11 International Investigator Awardees . 16 Community Educator Awardees . 16 CONFERENCE INFORMATION . 18 Overview . 18 Conference Support . 18 Conference Resources . .19. WiFi Access at the Conference . 19 Mobile App . 19 Poster Videos . 19 Website . 19 Webcasts . 19 USB Flashdrive . 20 Affiliated and Proximate Activities Policy . 20 Conference Badges . 20 Conference Etiquette . 20 VENUE Conference Services . 21 Meals . 22 Emergency Services . .22 Overflow Accommodations . 22 Americans With Disabilities Act . 22 Child Care . 22 CROI HOTELS . 23 ABSTRACT PROCESS . 25 Abstracts Related to Study Populations . 27 PRECONFERENCE SESSIONS . 28 SYMPOSIA, ORAL SESSIONS, AND THEMED DISCUSSIONS BY DAY . 34 POSTER SESSIONS BY DAY . 66 POSTER SESSIONS BY CATEGORY . 173. INDEX OF PRESENTING AUTHORS . .178 . CONFERENCE SCHEDULE . INSIDE BACK COVER CONVENTION CENTER FLOOR PLANS . BACK COVER Printed in the United States of America . © Copyright 2020 CROI Foundation/IAS–USA . All rights reserved . ISBN #978-1-7320053-2-7 CROI 2020 1 General Information CROI FOUNDATION The CROI Foundation is a 501(c)(3) not-for-profit professional organization that operates exclusively for the charitable and educational purpose of organizing,
    [Show full text]
  • European Recommendations for the Clinical Use of HIV Drug Resistance Testing: 2011 Update
    AIDS Rev. 2011;13:77-108 Anne-Mieke Vandamme, et al.: European HIV Drug Resistance Guidelines European Recommendations for the Clinical Use of HIV Drug Resistance Testing: 2011 Update Anne-Mieke Vandamme1,2, Ricardo J. Camacho2,3, Francesca Ceccherini-Silberstein4, Andrea de Luca5, Lucia Palmisano6, Dimitrios Paraskevis7, Roger Paredes8, Mario Poljak9, Jean-Claude Schmit10, Vincent Soriano11, Hauke Walter12, Anders Sönnerborg13 and the European HIV Drug Resistance Guidelines Panel 1Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium; 2Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal; 3Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal; 4Department 5 of Experimental Medicine,University of Rome Tor Vergata, Rome, Italy; Istituto di Clinica delle Malattie Infettive, Università Cattolica del Sacro © Permanyer Publications 2011 Cuore, Roma, and Second Division of Infectious Diseases, Siena University Hospital, Siena, Italy; 6Istituto Superiore di Sanità, Rome, Italy; 7National Retrovirus Reference Center, Department of Hygiene Epidemiology and Medical Statistics, Medical School University of Athens, Athens, Greece; 8 HIV Unit & IrsiCaixa AIDS Research Institute, Hospital Universitàri Germans Trias i Pujol, Badalona, Spain; 9Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 10National Service of Infectious Diseases, Retrovirology Laboratory Luxembourg, Centre Hospitalier de
    [Show full text]