Health and Healthcare: Assessing the Real World Data Policy Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Health and Healthcare: Assessing the Real World Data Policy Landscape CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that helps improve policy and EDUCATION AND THE ARTS decisionmaking through research and analysis. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE This electronic document was made available from www.rand.org as a public INFRASTRUCTURE AND service of the RAND Corporation. TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND TERRORISM AND Browse Reports & Bookstore HOMELAND SECURITY Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Europe View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND Web site is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This report is part of the RAND Corporation research report series. RAND reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND reports undergo rigorous peer review to ensure high standards for research quality and objectivity. Health and Healthcare: Assessing the Real-World Data Policy Landscape in Europe Céline Miani, Enora Robin, Veronika Horvath, Catriona Manville, Jonathan Cave and Joanna Chataway, with contributions from IBM EUROPE Health and Healthcare: Assessing the Real-World Data Policy Landscape in Europe Céline Miani, Enora Robin, Veronika Horvath, Catriona Manville, Jonathan Cave, Joanna Chataway, with contributions from IBM Prepared for Pfizer Pharmaceuticals Ltd. The research described in this report was prepared for Pfizer Pharmaceuticals Ltd. RAND Europe is an independent, not-for-profit policy research organisation that aims to improve policy and decisionmaking for the public interest though research and analysis. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. R® is a registered trademark © Copyright 2014 RAND Corporation Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Copies may not be duplicated for commercial pur- poses. Unauthorized posting of RAND documents to a non-RAND website is prohibited. RAND documents are protected under copyright law. For informa- tion on reprint and linking permissions, please visit the RAND permissions page (www.rand.org/publications/permissions.html). RAND OFFICES SANTA MONICA, CA • WASHINGTON, DC PITTSBURGH, PA • NEW ORLEANS, LA • JACKSON, MS • BOSTON, MA DOHA, QA • CAMBRIDGE, UK • BRUSSELS, BE www.rand.org • www.rand.org/randeurope Preface In October 2013 RAND Europe and IBM were invited to support Pfizer to assess the real-world data policy landscape in Europe and this report documents the results of a short study conducted over six weeks. Real-world data (RWD) is an umbrella term for different types of data that are not collected in conventional randomised controlled trials. RWD comes from various sources and includes patient data, data from clinicians, hospital data, data from payers and social data. Through its use alongside traditional data sources such as clinical trials, RWD has the potential to provide new insights into medicines and their effects in the context of different patient groups. There are already examples of ways in which research has contributed to the provision, construction and capture of RWD to improve health outcomes. However, to maximise the potential of these new pools of data in the healthcare sector, stakeholders need to identify pathways and processes which will allow them to efficiently access and use RWD in order to achieve better research outcomes and improved healthcare delivery. Current efforts to improve access to RWD and facilitate its use take place in a context of resource scarcity. This provides incentives for the healthcare industry, care providers, policymakers and other stakeholders to align and coordinate their respective activities and carve out viable and productive regulation and practice. RAND Europe and IBM have worked together through a multi-method approach to assess different RWD pathways that the health and healthcare sector has explored and the options going forwards. Based on a literature review, case studies and a small set of interviews of experts from public and private organisations, the study outlines possible strategies to illustrate how RWD standards development could facilitate RWD-based research. For more information about RAND Europe or this document, please contact: Prof Joanna Chataway Tel. +44 1223 353329 [email protected] RAND Europe Westbrook Centre, Milton Road Cambridge, CB4 1YG. iii Table of Contents Preface ......................................................................................................................................................iii Table of Contents ...................................................................................................................................... v Tables ....................................................................................................................................................... vi Executive Summary ................................................................................................................................... 7 Acknowledgements .................................................................................................................................. 13 Abbreviations .......................................................................................................................................... 15 1. Introduction: The rise of RWD in health and healthcare research .......................................... 17 1.1. Origins and aims of the report .................................................................................................... 17 1.2. What is real-world data? ............................................................................................................. 20 2. Moving from data to evidence: the state of RWD in Europe .................................................. 27 2.1. RWD is useful for building the evidence base for drug development and post-market studies in the pharmaceutical and medical sectors ....................................................................... 27 2.2. RWD is increasingly used to improve healthcare service delivery ................................................ 29 2.3. Factors that influence access to and use of RWD ........................................................................ 35 3. Overcoming existing barriers through the development of standards to improve access to and use of RWD ............................................................................................................... 41 3.1. Overcoming content and quality issues ....................................................................................... 41 3.2. Overcoming methodological issues ............................................................................................. 49 3.3. Improving governance ................................................................................................................ 57 3.4. Developing privacy best practices ................................................................................................ 60 3.5. Summary of findings: main barriers to access to and use of RWD and strategies to overcome them ........................................................................................................................... 63 4. Conclusion ........................................................................................................................... 65 4.1. Summary of findings .................................................................................................................. 65 4.2. Understanding the role of RWD in the current political, societal and economic context ............. 66 References ............................................................................................................................................... 75 v Tables Table 1 Examples of RWD ..................................................................................................................... 21 Table 2 Examples of responsibility for data management ........................................................................ 23 Table 3 Areas for RWD use in health and healthcare .............................................................................. 24 Table 4 The EuResist initiative ............................................................................................................... 30 Table 5 National Cancer Institute of Milan: analytics and big data to improve cancer treatment ............ 31 Table 6 The Shared Care platform: using RWD to improve the efficiency of homecare delivery in Southern Denmark ........................................................................................................................ 32 Table 7 Partnership to reduce
Recommended publications
  • Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
    Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions.
    [Show full text]
  • CAPITULO 01.Indd
    DRUG RESISTANCE: 1. DEFINITIONS AND CONCEPTS • José Ramón Santos • Marc Noguera-Julian • Maria Casadellà • Josep Maria Llibre • Bonaventura Clotet • Roger Paredes 1.1. INTRODUCTION Definition Antiretroviral drug resistance is the ability of HIV to replicate in the presence of antiretroviral drug concentrations that suppress viral replication of non-resistant virus. Most antiretroviral drugs are competitive inhibitors, i.e. they inhibit a viral enzyme (protease, PR; reverse transcriptase, RT; integrase, IN) by competing with its natural substrate for attachment to the enzyme’s catalytic site. Resistance to competitive inhibitors is a function of viral susceptibility and the drug levels achieved in the target cells. Higher drug levels can suppress partially resistant viruses, with resistance occurring in a continuum. Viral susceptibility to competitive inhibitors is expressed as the drug concentration able to inhibit virus growth in vitro to 50% (50% inhibitory concentration, 1 IC50) or 90% (IC90), relative to a wildtype reference virus. The small-molecule CCR5 antagonists, are allosteric inhibitors of the human CCR5 transmembrane protein, one of the two co-receptors required for HIV entry into target cells. Due to their allosteric inhibition, decrease in viral susceptibility to CCR5 antagonists is reflected by progressive decreases in the percent of maximal inhibition rather than by shifts in IC50. Further increases in drug concentrations once drug resistance is established do not achieve further virological suppression. Pathogenesis HIV has a quasispecies distribution.1 Soon after infection with a relatively homogeneous viral population, viral replication ensues at an extraordinary rate: 109-12 new virions are generated every day. Because HIV’s RT lacks proofreading ability, 10-3 to 10-4 mutations (one or two per genome) are spontaneously generated per replication cycle.2, 3 Given HIV’s high replication rate, any single mutant and some dual mutants could be generated per day.
    [Show full text]
  • Artificial Intelligence: the Key to Unlocking Novel Real-World Data?
    Artificial Intelligence: The Key to Unlocking Novel Real-World Data? While Artificial intelligence stands to make significant contributions to clinical research due to its unparalleled ability to translate unstructured data into real-world evidence (RWE), significant challenges remain in achieving regulatory-grade evidence. By Michele Cleary 16 | March/April 2019 Value & Outcomes Spotlight Artificial intelligence (AI) is revolutionizing healthcare services. From improving disease detection to supporting treatment decision making, AI has become ubiquitous in care delivery. Now AI is poised to transform the drug and device development process, helping researchers refine the approval process and significantly cutting both the time and the expense needed to bring products to market. While AI has long been used to facilitate recruitment of study subjects, optimize study design, and support patient adherence to study protocols, AI’s greatest contribution to clinical research may still be on the horizon— unlocking the data richness that lies within the mountains of novel real- world data (RWD) sources. This article explores how AI may improve clinical research through its ability to better translate RWD into real-world evidence (RWE), thus providing more valid evidence of clinical benefits and risks. Dan Riskin, MD, of Verantos, Rich Glinklich, MD of OM1, and Sebastian Schneeweiss, MD of Aetion all shared their valuable insights into how AI is transforming clinical research. THE SEARCH FOR REGULATORY-GRADE DATA With innovations in digital data, HEOR researchers are facing explosive growth in novel RWD sources. But as researchers move from traditional RWD sources (eg, registries and claims data) to these novel data sources, unstructured data present a significant opportunity and challenge.
    [Show full text]
  • Using Real World Data in Pharmacoeconomic Evaluations
    Using Real World Data in Pharmacoeconomic Evaluations: Challenges, Opportunities, and Approaches Andreas M. Pleil, PhD Senior Director Worldwide Medical and Outcomes Research Pfizer, Inc., La Jolla, CA Slide:2 Disclaimer and Acknowledgements The opinions expressed by the presenter are his and may not reflect the opinions or position of Pfizer, Inc., it’s Board or Management Many thanks to Lou Garrison for allowing me to steal many of these slides shamelessly Slide:3 Today’s Agenda Overview of the Landscape Where do data come from Report from the Task Force What was their charge Who did the charging What did they conclude Discussion points Is the RWTF sufficient Are there gaps in our knowledge What should we do next Applications from your world Group Project Slide:4 Where do “Data” Come From? Pre-clinical studies Provides a first assessment of the expected safety and efficacy of a compound using proven animal models Early Phase Clinical trials IND Safety focus and the beginnings of efficacy, dose ranging, and tolerability Pivotal Clinical trials Demonstrate safety and efficacy in well controlled (generally masked) randomized studies sufficient for market authorization NDA Filed Phase IIIB Expanded trials in different use situations NDA Approved or populations Phase IV Post marketing safety or “new” indications Real World Data Evaluations of safety, effectiveness and outcomes in “routine” clinical practice Slide:5 Who uses “Data”? Companies making internal decision regarding drug development Regulators responsible
    [Show full text]
  • Generating Real-World Evidence by Strengthening Real-World Data Sources
    Generating Real-World Evidence by Strengthening Real-World Data Sources Using “real-world evidence” to bring new “Every day, health care professionals are updating patients’ treatments to patients as part of the 21st electronic health records with data on clinical outcomes Century Cures Act (the “Cures Act”) is a key resulting from medical interventions used in routine clinical priority for the Department of Health and practice. As our experience with new medical products Human Services (HHS). Specifically, the Cures expands, our knowledge about how to best maximize their Act places focus on the use of real-world data benefits and minimize potential risks sharpens with each data to support regulatory decision-making, including point we gather. Every clinical use of a product produces data the approval of new indications for existing that can help better inform us about its safety and efficacy.” drugs in order to make drug development faster jacqueline corrigan-curay, md, jd and more efficient. As such, the Cures Act director of the office of medical policy in fda’s center for drug evaluation and research has tasked the Food and Drug Administration (FDA) to develop a framework and guidance for evaluating real-world evidence in the context of drug regulation.1 Under the FDA’s framework, real-world evidence (RWE) is generated by different study designs or analyses, including but not limited to, randomized trials like large simple trials, pragmatic trials, and observational studies. RWE is the clinical evidence about the use, potential benefits, and potential risks of a medical product based on an analysis of real-world data (RWD).
    [Show full text]
  • Using Real-World Evidence to Accelerate Safe and Effective Cures Advancing Medical Innovation for a Healthier America June 2016 Leadership Senator William H
    Using Real-World Evidence to Accelerate Safe and Effective Cures Advancing Medical Innovation for a Healthier America June 2016 Leadership Senator William H. Frist, MD Former U.S. Senate Majority Leader Chair, FDA: Advancing Medical Innovation Bipartisan Policy Center Representative Bart Gordon Former Member, U.S. House of Representatives Chair, FDA: Advancing Medical Innovation Bipartisan Policy Center Advisory Committee Marc M. Boutin, JD Chief Executive Officer National Health Council Mark McClellan, MD, PhD Director, Robert J. Margolis Center for Health Policy Duke University Patrick Soon-Shiong, MD Chairman and Chief Executive Officer Institute for Advanced Health Andrew von Eschenbach, MD President Samaritan Health Initiatives 1 Sta G. William Hoagland Ann Gordon Senior Vice President Writer Bipartisan Policy Center Michael Ibara, PharmD Janet M. Marchibroda Independent Consultant Director, Health Innovation Initiative and Executive Director, CEO Council on Health and Innovation Bipartisan Policy Center Tim Swope Senior Policy Analyst Bipartisan Policy Center Sam Watters Administrative Assistant Bipartisan Policy Center 2 FDA: ADVANCING MEDICAL INNOVATION EFFORT The Bipartisan Policy Center’s initiative, FDA: Advancing Medical Innovation, is developing viable policy options to advance medical innovation and reduce the time and cost associated with the discovery, development, and delivery of safe and effective drugs and devices for patients in the United States. Key areas of focus include the following: Improving the medical product development process; Increasing regulatory clarity; Strengthening the Food and Drug Administration’s (FDA) ability to carry out its mission; Using information technology to improve health and health care; and Increasing investment in medical products to address unmet and public health needs.
    [Show full text]
  • Korea Sukyeong Kim, Phd Senior Research Fellow, International Cooperation Advisor Evidence-Based Healthcare Research Division
    Real World Evidence and Local Evidence Generation: How Should it Be Approached in Asia Pacific? - Korea Sukyeong Kim, PhD Senior Research Fellow, International Cooperation Advisor Evidence-based Healthcare Research Division Real World Data & Real World Evidence • Real World Data o The data relating to patient health status and/ or the delivery of health care routinely collected from a variety of sources • Electronic health records (EHRs) • Claims and billing activities • Product and disease registries • Patient-related activities in out-patient or in-home use settings • Health-monitoring devices • Real World Evidence o The clinical evidence regarding the usage and potential benefits or risks of medical product derived from analysis of Real World Data FDA. Real World Evidence. https://www.fda.gov/ScienceResearch/SpecialTopics/RealWorldEvidence/default.htm 2 1 NHI system and Real World Data • National Health Insurance System o Operating based on Electronic Data Interchange and web-base claims submission 3 Real World Data • Medical Record o Electronic Medical Record in Hospitals and Clinics • Facilitated by electronic National Health Insurance Claims Review and Assessment system building • Tertiary hospitals have been leading Electronic Medical Record and hospital Information and Communication System • Medium and small hospitals and clinics adopted EMR system around 97% in 2014 4 2 Real World Data • National Health Insurance Information System o Electronic NHI Claims Review and Assessment System • Based on web-based claims submission 5 Real
    [Show full text]
  • The Euresist Approach for Predicting Response to Anti HIV-1 Therapy!
    97! www.geno2pheno.org www.euresist.org The EuResist approach for predicting response to anti HIV-1 therapy! Andre Altmann1, Michal Rosen-Zvi2, Mattia Prosperi3, Ehud Aharoni2, Hani Neuvirth2, Eugen Schülter4, Joachim Büch1, Yardena Peres2, Francesca Incardona5, Anders Sönnerborg6, Rolf Kaiser4, Maurizio Zazzi7, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 IBM Research Laboratory in Haifa, Haifa, Israel; 3 University of Roma TRE, Rome, Italy; 4 University of Cologne, Cologne, Germany; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 University of Siena, Siena, Italy _____________________________________________________________ Background ____________________________________________________________ The aims of the EuResist project are integration of clinical and virologic data from a large cohort of patients and training of a data-driven therapy response prediction system for guiding treatment selection using these data. The EuResist Integrated Database (EIDB) currently comprises 18,467 patients, 22,006 sequences, 64,864 therapies, and 240,795 viral load (VL) measurements collected from Italy, Sweden, Germany, and Luxembourg. _______________________________________________________________ Methods______________________________________________________________ Therapy success (failure) is defined as a VL measurement below (above) 500 cp/ml at 8 [4-12] weeks after therapy start. Baseline VL and genotype must be obtained at most three months before therapy start to allow for inclusion in the training set. Using this Standard Datum definition we extracted 3,023 samples for training three different prediction engines. The engines were designed to work with viral genotype and intended regimen as the only information (minimal feature set) as well as with additional measurements (e.g. baseline VL) and information derived from previous treatments and genotypes (maximal feature set) to enhance prediction performance.
    [Show full text]
  • Fusion of Pure Data-Driven Approaches with Rules-Based Methods
    92! www.geno2pheno.org www.euresist.org Keeping models that predict response to antiretroviral therapy up-to- date: fusion of pure data-driven approaches with rules-based methods Andre Altmann1, Alexander Thielen1, Dineke Frentz2, Kristel Van Laethem3, Laura Bracciale4, Francesca Incardorna5, Anders Sönnerborg6, Maurizio Zazzi7, Rolf Kaiser8, Thomas Lengauer1 1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 Erasmus Medical Centre Rotterdam, Rotterdam, the Netherlands; 3 Katholieke Universiteit Leuven, Leuven, Belgium; 4 Catholic University of Rome, Rome, Italy; 5 Informa srl, Rome, Italy; 6 Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 7 Department of Molecular Biology, University of Siena, Siena, Italy; 8 Institute of Virology, University of Cologne, Cologne, Germany ______________________________________________________________ Background ___________________________________________________________ Purely data-driven approaches predicting response to antiretroviral combination therapy (ART) are frequently criticized for not being easily applicable to novel compounds. This drawback originates from lack of treatments containing novel compounds in clinical databases that constitute the source of training data for statistical-learning methods. Here we present a method that integrates rules-based methods into data-driven approaches to overcome this limitation. __________________________________________________________ Material & Methods _______________________________________________________ Treatment Data Novel drug GSS (ndGSS) 4,538 treatment change episodes (TCEs) were extracted from the EuResist The 4,538 training TCEs did not contain novel drugs according to today's and Violab databases as training data for the approach. Response to ART was definition. However, for training of the new approach all drugs in a treatment dichotomized to success and failure based on the 8 (4-12) week follow-up viral that were approved by FDA at most 4 years prior to treatment start were treated load (VL), i.e.
    [Show full text]
  • Premier Healthcare Database
    WHITE PAPER: PREMIER HOSPITAL DATABASE (PHD) – March 2, 2020 Premier Healthcare Database: Data That Informs and Performs Premier Applied Sciences®, the Research Division of Premier Inc. March 2, 2020 This white paper provides a detailed description of the attributes and capabilities of the Premier Healthcare Database (PHD), which has been utilized by the pharmaceutical and device industries, academia, healthcare insurers and healthcare policy makers For clinical, financial and outcomes analyses. Since the year 2000, more than 600 publications in peer- reviewed journals – the gold standard for publishing research – have included more than 110 articles written by Premier stafF in multiple therapeutic and quality improvement/patient safety areas (Premier Applied Sciences® website). Details on data source, type and scope are outlined. Premier Applied Sciences® is the Research Division of Premier Inc. and is responsible For leveraging the HIPAA-compliant PHD through its highly proFessional and experienced team. SUGGESTED CITATION: Premier Healthcare Database White Paper: Data that informs and performs, March 2, 2020. Premier Applied Sciences®, Premier Inc. https://learn.premierinc.com/white-papers/premier-healthcare- database-whitepaper. 1 WHITE PAPER: PREMIER HOSPITAL DATABASE (PHD) – March 2, 2020 INTRODUCTION Electronic healthcare databases house “big data” and offer several advantages as a robust research tool1-3. A comprehensive hospital-based healthcare history of each patient in the healthcare system may be available. Patients and physicians are not involved in data collection, thus eliminating potential bias that may come with being observed. Since data accrues from a large diverse population, rare outcomes and long-term effects can be studied. The data reflects the state of clinical practice in the general population.
    [Show full text]
  • Optimizing Rwe Generation Fda's
    appliedclinicaltrialsonline.com Volume 28 Number 4 April 2019 YOUR PEER-REVIEWED GUIDE TO GLOBAL CLINICAL TRIALS MANAGEMENT 1992–2019 ACTAACCT 2727 e Year c of Servi STUDY DESIGN OPTIMIZING RWE GENERATION REGULATORY For personal, non-commercial use FDA’S ‘REAL-WORLD’ FRAMEWORK DATA SHARING ADOPTING GLOBAL DATA STANDARDS WASHINGTON REPORT EU REPORT CLOSING THOUGHT The Push to Broaden Clinical Translational Research Message Rise of the ‘Citizen Trial Eligibility Criteria Lost in Transmission Data Scientist’ FROM THE EDITOR Emerging Biopharma Deserve TLC from CROs arly this month, I presented on the topic was 26%, compared to 60% that went to firms that had never before E“Why Aren’t Lessons Learned from Big received an approval. Pharma/Big CROs Translating to Smaller The days of quickly selling a promising compound early on to a large Biopharma Relationships?” For years, Applied pharma company or launching a full-fledged IPO are dwindling. An Ernst Clinical Trials has been the operational re- & Young report showed 75 biotech IPOs in 2014 compared to nine in the source for clinical trials for sponsors, CROs, second half of 2016. These days, innovation hubs in major regions of the and academia. The transition of the contract country are home to a vast number of companies looking to enter clini- research industry from a small cottage to a cal trials, take their compound at least through Phase II, and some are LISA HENDERSON fully-matured one has seen numerous out- fully intending to stick it through Phase III and even make it to a com- Editor-in-Chief sourcing models from the low-touch, very fo- mercial stage company.
    [Show full text]
  • Real World Data Analysis Shows That Persistent Hypertriglyceridemia Despite Statin Therapy Is Associated with Cardiovascular Risk
    November 14, 2017 Real World Data Analysis Shows That Persistent Hypertriglyceridemia Despite Statin Therapy is Associated With Cardiovascular Risk High Triglyceride Levels Associated with 30% Increased Risk of Myocardial Infarction & Coronary Revascularization and 13% Overall Increase in Major Adverse Cardiovascular Events BEDMINSTER, N.J. and DUBLIN, Ireland, Nov. 14, 2017 (GLOBE NEWSWIRE) -- Amarin Corporation plc (NASDAQ:AMRN), a biopharmaceutical company focused on the commercialization and development of therapeutics to improve cardiovascular health, announced data analysis orally presented today at the American Heart Association (AHA) 2017 Scientific Sessions in Anaheim, California. The oral presentation used real world evidence (RWE) as a basis for the analysis. This analysis of RWE is separate from and independent of the RWE analysis referenced in Amarin's press release on November 12, 2017. The oral presentation, "Increased Cardiovascular Risk in Patients with Statin-Controlled LDL Cholesterol and Residual Hypertriglyceridemia," was done in collaboration with Gregory A. Nichols, PhD, from Kaiser Permanente Center for Health Research, and Sergio Fazio, MD, PhD, Director, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR. The study analyzed data from the Southern California and Northwest regions of Kaiser Permanente, one of America's leading health care providers and not-for-profit health plans. The patients selected had a diagnosis of atherosclerotic cardiovascular disease (ASCVD: myocardial infarction [MI], ischemic stroke, and peripheral artery disease) and had statin-controlled LDL cholesterol (LDL-C). The study concluded that during the study period, despite statin-controlled LDL-C levels, ASCVD events were greater among patients with ASCVD and high (200-499 mg/dL, n=2,361) vs.
    [Show full text]