Free by Cyclic Groups and Linear Groups with Restricted Unipotent Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Finite Abelian Groups
Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
The Frattini Module and P -Automorphisms of Free Pro-P Groups
Publ. RIMS, Kyoto Univ. (), The Frattini module and p!-automorphisms of free pro-p groups. By Darren Semmen ∗ Abstract If a non-trivial subgroup A of the group of continuous automorphisms of a non- cyclic free pro-p group F has finite order, not divisible by p, then the group of fixed points FixF (A) has infinite rank. The semi-direct product F >!A is the universal p-Frattini cover of a finite group G, and so is the projective limit of a sequence of finite groups starting with G, each a canonical group extension of its predecessor by the Frattini module. Examining appearances of the trivial simple module 1 in the Frattini module’s Jordan-H¨older series arose in investigations ([FK97], [BaFr02] and [Sem02]) of modular towers. The number of these appearances prevents FixF (A) from having finite rank. For any group A of automorphisms of a group Γ, the set of fixed points FixΓ(A) := {g ∈ Γ | α(g) = g, ∀α ∈ A} of Γ under the action of A is a subgroup of Γ. Nielsen [N21] and, for the infinite rank case, Schreier [Schr27] showed that any subgroup of a free discrete group will be free. Tate (cf. [Ser02, I.§4.2, Cor. 3a]) extended this to free pro-p groups. In light of this, it is natural to ask for a free group F , what is the rank of FixF (A)? When F is a free discrete group and A is finite, Dyer and Scott [DS75] demonstrated that FixF (A) is a free factor of F , i.e. -
1.6 Cyclic Subgroups
1.6. CYCLIC SUBGROUPS 19 1.6 Cyclic Subgroups Recall: cyclic subgroup, cyclic group, generator. Def 1.68. Let G be a group and a ∈ G. If the cyclic subgroup hai is finite, then the order of a is |hai|. Otherwise, a is of infinite order. 1.6.1 Elementary Properties Thm 1.69. Every cyclic group is abelian. Thm 1.70. If m ∈ Z+ and n ∈ Z, then there exist unique q, r ∈ Z such that n = mq + r and 0 ≤ r ≤ m. n In fact, q = b m c and r = n − mq. Here bxc denotes the maximal integer no more than x. Ex 1.71 (Ex 6.4, Ex 6.5, p60). 1. Find the quotient q and the remainder r when n = 38 is divided by m = 7. 2. Find the quotient q and the remainder r when n = −38 is divided by m = 7. Thm 1.72 (Important). A subgroup of a cyclic group is cyclic. Proof. (refer to the book) Ex 1.73. The subgroups of hZ, +i are precisely hnZ, +i for n ∈ Z. Def 1.74. Let r, s ∈ Z. The greatest common divisor (gcd) of r and s is the largest positive integer d that divides both r and s. Written as d = gcd(r, s). In fact, d is the positive generator of the following cyclic subgroup of Z: hdi = {nr + ms | n, m ∈ Z}. So d is the smallest positive integer that can be written as nr + ms for some n, m ∈ Z. Ex 1.75. gcd(36, 63) = 9, gcd(36, 49) = 1. -
A Splitting Theorem for Linear Polycyclic Groups
New York Journal of Mathematics New York J. Math. 15 (2009) 211–217. A splitting theorem for linear polycyclic groups Herbert Abels and Roger C. Alperin Abstract. We prove that an arbitrary polycyclic by finite subgroup of GL(n, Q) is up to conjugation virtually contained in a direct product of a triangular arithmetic group and a finitely generated diagonal group. Contents 1. Introduction 211 2. Restatement and proof 212 References 216 1. Introduction A linear algebraic group defined over a number field K is a subgroup G of GL(n, C),n ∈ N, which is also an affine algebraic set defined by polyno- mials with coefficients in K in the natural coordinates of GL(n, C). For a subring R of C put G(R)=GL(n, R) ∩ G.LetB(n, C)andT (n, C)bethe (Q-defined linear algebraic) subgroups of GL(n, C) of upper triangular or diagonal matrices in GL(n, C) respectively. Recall that a group Γ is called polycyclic if it has a composition series with cyclic factors. Let Q be the field of algebraic numbers in C.Every discrete solvable subgroup of GL(n, C) is polycyclic (see, e.g., [R]). 1.1. Let o denote the ring of integers in the number field K.IfH is a solvable K-defined algebraic group then H(o) is polycyclic (see [S]). Hence every subgroup of a group H(o)×Δ is polycyclic, if Δ is a finitely generated abelian group. Received November 15, 2007. Mathematics Subject Classification. 20H20, 20G20. Key words and phrases. Polycyclic group, arithmetic group, linear group. -
And Free Cyclic Group Actions on Homotopy Spheres
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 220, 1976 DECOMPOSABILITYOF HOMOTOPYLENS SPACES ANDFREE CYCLICGROUP ACTIONS ON HOMOTOPYSPHERES BY KAI WANG ABSTRACT. Let p be a linear Zn action on C and let p also denote the induced Z„ action on S2p~l x D2q, D2p x S2q~l and S2p~l x S2q~l " 1m_1 where p = [m/2] and q = m —p. A free differentiable Zn action (£ , ju) on a homotopy sphere is p-decomposable if there is an equivariant diffeomor- phism <t>of (S2p~l x S2q~l, p) such that (S2m_1, ju) is equivalent to (£(*), ¿(*)) where S(*) = S2p_1 x D2q U^, D2p x S2q~l and A(<P) is a uniquely determined action on S(*) such that i4(*)IS p~l XD q = p and A(Q)\D p X S = p. A homotopy lens space is p-decomposable if it is the orbit space of a p-decomposable free Zn action on a homotopy sphere. In this paper, we will study the decomposabilities of homotopy lens spaces. We will also prove that for each lens space L , there exist infinitely many inequivalent free Zn actions on S m such that the orbit spaces are simple homotopy equiva- lent to L 0. Introduction. Let A be the antipodal map and let $ be an equivariant diffeomorphism of (Sp x Sp, A) where A(x, y) = (-x, -y). Then there is a uniquely determined free involution A($) on 2(4>) where 2(4») = Sp x Dp+1 U<¡,Dp+l x Sp such that the inclusions S" x Dp+l —+ 2(d>), Dp+1 x Sp —*■2(4>) are equi- variant. -
The Tits Alternative
The Tits Alternative Matthew Tointon April 2009 0 Introduction In 1972 Jacques Tits published his paper Free Subgroups in Linear Groups [Tits] in the Journal of Algebra. Its key achievement was to prove a conjecture of H. Bass and J.-P. Serre, now known as the Tits Alternative for linear groups, namely that a finitely-generated linear group over an arbitrary field possesses either a solvable subgroup of finite index or a non-abelian free subgroup. The aim of this essay is to present this result in such a way that it will be clear to a general mathematical audience. The greatest challenge in reading Tits's original paper is perhaps that the range of mathematics required to understand the theorem's proof is far greater than that required to understand its statement. Whilst this essay is not intended as a platform in which to regurgitate theory it is very much intended to overcome this challenge by presenting sufficient background detail to allow the reader, without too much effort, to enjoy a proof that is pleasing in both its variety and its ingenuity. Large parts of the prime-characteristic proof follow basically the same lines as the characteristic-zero proof; however, certain elements of the proof, particularly where it is necessary to introduce field theory or number theory, can be made more concrete or intuitive by restricting to characteristic zero. Therefore, for the sake of clarity this exposition will present the proof over the complex numbers, although where clarity and brevity are not impaired by considering a step in the general case we will do so. -
A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle. -
Order (Group Theory) 1 Order (Group Theory)
Order (group theory) 1 Order (group theory) In group theory, a branch of mathematics, the term order is used in two closely-related senses: • The order of a group is its cardinality, i.e., the number of its elements. • The order, sometimes period, of an element a of a group is the smallest positive integer m such that am = e (where e denotes the identity element of the group, and am denotes the product of m copies of a). If no such m exists, a is said to have infinite order. All elements of finite groups have finite order. The order of a group G is denoted by ord(G) or |G| and the order of an element a by ord(a) or |a|. Example Example. The symmetric group S has the following multiplication table. 3 • e s t u v w e e s t u v w s s e v w t u t t u e s w v u u t w v e s v v w s e u t w w v u t s e This group has six elements, so ord(S ) = 6. By definition, the order of the identity, e, is 1. Each of s, t, and w 3 squares to e, so these group elements have order 2. Completing the enumeration, both u and v have order 3, for u2 = v and u3 = vu = e, and v2 = u and v3 = uv = e. Order and structure The order of a group and that of an element tend to speak about the structure of the group. -
Finite Abelian P-Primary Groups
CLASSIFICATION OF FINITE ABELIAN GROUPS 1. The main theorem Theorem 1.1. Let A be a finite abelian group. There is a sequence of prime numbers p p p 1 2 ··· n (not necessarily all distinct) and a sequence of positive integers a1,a2,...,an such that A is isomorphic to the direct product ⇠ a1 a2 an A Zp Zp Zpn . ! 1 ⇥ 2 ⇥···⇥ In particular n A = pai . | | i iY=n Example 1.2. We can classify abelian groups of order 144 = 24 32. Here are the possibilities, with the partitions of the powers of 2 and 3 on⇥ the right: Z2 Z2 Z2 Z2 Z3 Z3;(4, 2) = (1 + 1 + 1 + 1, 1 + 1) ⇥ ⇥ ⇥ ⇥ ⇥ Z2 Z2 Z4 Z3 Z3;(4, 2) = (1 + 1 + 2, 1 + 1) ⇥ ⇥ ⇥ ⇥ Z4 Z4 Z3 Z3;(4, 2) = (2 + 2, 1 + 1) ⇥ ⇥ ⇥ Z2 Z8 Z3 Z3;(4, 2) = (1 + 3, 1 + 1) ⇥ ⇥ ⇥ Z16 Z3 Z3;(4, 2) = (4, 1 + 1) ⇥ ⇥ Z2 Z2 Z2 Z2 Z9;(4, 2) = (1 + 1 + 1 + 1, 2) ⇥ ⇥ ⇥ ⇥ Z2 Z2 Z4 Z9;(4, 2) = (1 + 1 + 2, 2) ⇥ ⇥ ⇥ Z4 Z4 Z9;(4, 2) = (2 + 2, 2) ⇥ ⇥ Z2 Z8 Z9;(4, 2) = (1 + 3, 2) ⇥ ⇥ Z16 Z9 cyclic, isomorphic to Z144;(4, 2) = (4, 2). ⇥ There are 10 non-isomorphic abelian groups of order 144. Theorem 1.1 can be broken down into two theorems. 1 2CLASSIFICATIONOFFINITEABELIANGROUPS Theorem 1.3. Let A be a finite abelian group. Let q1,...,qr be the distinct primes dividing A ,andsay | | A = qbj . | | j Yj Then there are subgroups A A, j =1,...,r,with A = qbj ,andan j ✓ | j| j isomorphism A ⇠ A A A . -
MATH 433 Applied Algebra Lecture 19: Subgroups (Continued). Error-Detecting and Error-Correcting Codes. Subgroups Definition
MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes. Subgroups Definition. A group H is a called a subgroup of a group G if H is a subset of G and the group operation on H is obtained by restricting the group operation on G. Let S be a nonempty subset of a group G. The group generated by S, denoted hSi, is the smallest subgroup of G that contains the set S. The elements of the set S are called generators of the group hSi. Theorem (i) The group hSi is the intersection of all subgroups of G that contain the set S. (ii) The group hSi consists of all elements of the form g1g2 . gk , where each gi is either a generator s ∈ S or the inverse s−1 of a generator. A cyclic group is a subgroup generated by a single element: hgi = {g n : n ∈ Z}. Lagrange’s theorem The number of elements in a group G is called the order of G and denoted o(G). Given a subgroup H of G, the number of cosets of H in G is called the index of H in G and denoted [G : H]. Theorem (Lagrange) If H is a subgroup of a finite group G, then o(G) = [G : H] · o(H). In particular, the order of H divides the order of G. Corollary (i) If G is a finite group, then the order of any element g ∈ G divides the order of G. (ii) If G is a finite group, then g o(G) = 1 for all g ∈ G. -
Section I.9. Free Groups, Free Products, and Generators and Relations
I.9. Free Groups, Free Products, and Generators and Relations 1 Section I.9. Free Groups, Free Products, and Generators and Relations Note. This section includes material covered in Fraleigh’s Sections VII.39 and VII.40. We define a free group on a set and show (in Theorem I.9.2) that this idea of “free” is consistent with the idea of “free on a set” in the setting of a concrete category (see Definition I.7.7). We also define generators and relations in a group presentation. Note. To define a free group F on a set X, we will first define “words” on the set, have a way to reduce these words, define a method of combining words (this com- bination will be the binary operation in the free group), and then give a reduction of the combined words. The free group will have the reduced words as its elements and the combination as the binary operation. If set X = ∅ then the free group on X is F = hei. Definition. Let X be a nonempty set. Define set X−1 to be disjoint from X such that |X| = |X−1|. Choose a bijection from X to X−1 and denote the image of x ∈ X as x−1. Introduce the symbol “1” (with X and X−1 not containing 1). A −1 word on X is a sequence (a1, a2,...) with ai ∈ X ∪ X ∪ {1} for i ∈ N such that for some n ∈ N we have ak = 1 for all k ≥ n. The sequence (1, 1,...) is the empty word which we will also sometimes denote as 1.