Significant Biological Role of Sp1 Transactivation in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Significant Biological Role of Sp1 Transactivation in Multiple Myeloma Published OnlineFirst August 19, 2011; DOI: 10.1158/1078-0432.CCR-11-1036 Clinical Cancer Cancer Therapy: Preclinical Research Significant Biological Role of Sp1 Transactivation in Multiple Myeloma Mariateresa Fulciniti1,2, Samir Amin1, Puru Nanjappa1, Scott Rodig1, Rao Prabhala2, Cheng Li1, Stephane Minvielle3, Yu-tzu Tai1, Pierfrancesco Tassone4, Herve Avet-Loiseau3, Teru Hideshima1, Kenneth C. Anderson1, and Nikhil C. Munshi1,2 Abstract Purpose: The transcription factor specificity protein 1 (Sp1) controls number of cellular processes by regulating the expression of critical cell cycle, differentiation, and apoptosis-related genes containing proximal GC/GT-rich promoter elements. We here provide experimental and clinical evidence that Sp1 plays an important regulatory role in multiple myeloma (MM) cell growth and survival. Experimental Design: We have investigated the functional Sp1 activity in MM cells using a plasmid with Firefly luciferase reporter gene driven by Sp1-responsive promoter. We have also used both siRNA- and short hairpin RNA–mediated Sp1 knockdown to investigate the growth and survival effects of Sp1 on MM cells and further investigated the anti-MM activity of terameprocol (TMP), a small molecule that specifically competes with Sp1-DNA binding in vitro and in vivo. Results: We have confirmed high Sp1 activity in MM cells that is further induced by adhesion to bone marrow stromal cells (BMSC). Sp1 knockdown decreases MM cell proliferation and induces apoptosis. Sp1-DNA binding inhibition by TMP inhibits MM cell growth both in vitro and in vivo, inducing caspase- 9–dependent apoptosis and overcoming the protective effects of BMSCs. Conclusions: Our results show Sp1 as an important transcription factor in myeloma that can be therapeutically targeted for clinical application by TMP. Clin Cancer Res; 17(20); 6500–9. Ó2011 AACR. Introduction chromatin-modifying factors such as p300 (3) and histone deacetylases (HDAC; ref. 4). Specificity protein 1 (Sp1) and other Sp and Kruppel-like Although Sp1 has been considered as a ubiquitous factor proteins are members of a family of transcription transcription factor, increasing evidence suggests that it factors that bind GC/GT-rich promoter elements through 3 plays a major role in regulating expression of cell differ- C2H2-type zinc fingers that are present at their C-terminal entiation, cell cycle, and apoptosis-related genes affecting domains (1). cellular growth (5). Sp1 levels and/or activity are increased Sp1 regulates gene expression both by direct interaction in multiple cancers including breast (6), colon (7), gastric with promoter elements and via protein–protein interac- (8), pancreatic (9–12), and thyroid cancer (13) as com- tions or interplay with other transcription factors, such as pared with normal tissues. Elevated Sp1 expression is Ets-1, c-myc, c-Jun, Stat1, and Egr-1, and/or components of inversely correlated with the survival of patients with gastric the basal transcriptional machinery (2). Sp1 has also been cancer (14) and identifies advanced stage tumors and linked to chromatin remodeling through interactions with predicts a poor clinical outcome in primary pancreatic adenocarcinoma (12). On the other hand, interference of Sp1 activity has been shown to suppress tumor cell growth (15, 16) as well as tumor formation in athymic Authors' Affiliations: 1Jerome Lipper Multiple Myeloma Center, Dana- mice (6, 17), suggesting that Sp1 plays a central regulatory Farber Cancer Institute; 2VA Boston Healthcare System, Harvard Medical role in controlling the number of pathways of tumor School, Boston, Massachusetts; 3Centre Hospitalier Universitaire de development and progression and thus may be an attrac- Nantes, IRCNA, Laboratoire d’Hematologie, Nantes, France; and 4University of "Magna Græcia," Catanzaro, Italy tive therapeutic target. Sp1 could contribute to transformation via regulation of Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). the expression of Sp1-responsive genes including those c-jun Raf cyclins E2F1 TGF-b Corresponding Author: Nikhil C. Munshi, Dana-Farber Cancer Institute, supporting cell growth ( , , , , , 450 Brookline Ave, Boston, MA 02115. Phone: 617-632-4166; Fax: 617- IEX-1, and TCL1; refs. 18, 19) and apoptosis (Bcl-2, survivin; 632-5829; E-mail: [email protected] refs. 5, 20). Sp1 also regulates genes involved in angiogen- doi: 10.1158/1078-0432.CCR-11-1036 esis and metastasis, including VEGF, uPA (21), PSA, and Ó2011 American Association for Cancer Research. MT1-MMP (22). Enhanced Sp1 activity is related to both 6500 Clin Cancer Res; 17(20) October 15, 2011 Downloaded from clincancerres.aacrjournals.org on October 5, 2021. © 2011 American Association for Cancer Research. Published OnlineFirst August 19, 2011; DOI: 10.1158/1078-0432.CCR-11-1036 Sp1 Activity Inhibition as MM Therapeutic Target Translational Relevance Reagents Terameprocol (TMP), kindly provided by Erimos Phar- The transcription factor specificity protein 1 (Sp1) maceuticals, was synthesized and dissolved in 30 hydro- affects growth and metastatic potential of tumor cells. xypropyl CPE B-cyclodextrin and 25 polyethylene glycol In MM, key genes such as NF-kB p65, IGF-IR, VEGF, and 300 as previously described (30). IL-6 contain proximal GC-rich promoter sequences, and their interactions with Sp proteins are critical for Cell proliferation assay 3 their expression. Here, we show that Sp1 plays an MM cell proliferation was measured by [ H]thymidine important role in myeloma cell growth and survival. (Perkin-Elmer) incorporation assay as previously described Importantly, Sp1-specific inhibitor can induce tumor (29). apoptosis in murine models of MM. Thus, inhibition of Sp1 may be an attractive therapeutic modality in Bromodeoxyuridine staining MM, alone or in combination with other agents. The proportion of myeloma cells in S-phase was deter- mined by incorporation of bromodeoxyuridine (BrdUrd). A total of 1 Â 106 MM cells were exposed to 10 mg/mL of BrdUrd for 30 minutes. The cells were then harvested and stained with FITC anti-BrdUrd antibody and 7-aminoacti- increased Sp1 gene expression and its posttranslational nomycin D (7-AAD) using a BrdU Flow kit (BD Bioscience modification; for example, Sp1 phosphorylation regulates Pharmingen) according to the manufacturer’s directions. target genes in both positive and negative directions Cells were analyzed by flow cytometric analysis with a (23, 24). Becton-Dickinson FACScan flow cytometer. Although Sp1 has been described to modulate autocrine interleukin (IL)-6 secretion by multiple myeloma (MM) Apoptosis assay cells affecting its growth (25), its role in MM pathobiology Apoptosis was evaluated by flow cytometric analysis remains unexplored. The promoter of several genes such as following Annexin-V and propidium iodide (PI) staining. NF-kB p65, IGF-IR, VEGF, hTERT, and IL-6 that regulate MM cell growth, cell-cycle progression, survival, and apo- Sp1 binding activity ptosis contains proximal GC-rich promoter sequences that The Sp1 binding activity was analyzed using the Tran- interact with Sp1 protein for their optimal expression (25– scription Factor ELISA Kit, a DNA-binding ELISA-based 28). In addition, the same kinase pathways that have been assay (Panomics). Sp1 transcription factor binding to its shown to increase Sp1 phosphorylation and the transacti- consensus sequence on the plate-bound oligonucleotide vation of target genes (21, 22) are also known to mediate was studied from nuclear extracts, following the man- proliferation, survival, drug resistance, and migration ufacturer’s procedure. Briefly, nuclear proteins were (ERK, Jak/STAT, PI3K/Akt, and PKC signaling cascades, extracted with a Nuclear Extraction kit (Panomics) and respectively) in MM. quantified using the Bio-Rad Protein Assay Kit (Bio-Rad). A Here, we report significant role of Sp1 in myeloma cell total of 15 mg of nuclear protein from each treatment was growth and survival. Our results suggest that Sp1 activity analyzed. Sp1 antibody was used as the primary antibody, can be therapeutically targeted for clinical application in and anti-rabbit IgG horseradish peroxidase was used as the MM. secondary antibody. The absorbance was measured at a wavelength of 450 nm on a spectrophotometer. Materials and Methods Promoter activity assay Cells The Sp1 promoter reporter constructs were purchased Bone marrow mononuclear cells and primary MM cells from Sabiosciences. To examine transcriptional regulation from bone marrow aspirates from MM patients following of the Sp1 promoter by TMP, MM cells were transiently informed consent and Dana-Farber Cancer Institute Insti- transfected with 1 mg of Sp1 reporter plasmid or empty tutional Review Board (IRB) approval were isolated by vector control by electroporation using AMAXA technology Ficoll–Hypaque density gradient sedimentation. MM according to the manufacturer’s instructions. Luciferase patient cells were separated from bone marrow samples assays were done with a Luminoskan Ascent 2.4 lumin- by antibody-mediated positive selection using anti-CD138 ometer and the Dual-Luciferase Reporter Assay System magnetic-activated cell separation microbeads (Miltenyi (Promega). Firefly luciferase values were normalized to Biotech). Bone marrow stromal cells (BMSC) were estab- Renilla luciferase activity and were either expressed as lished as previously described (29). MM cell lines were relative luciferase units (RLU) or as mean
Recommended publications
  • TF Activation Profiling Plate Array II Signosis, Inc
    Signosis, Inc. Innovative Plate Assay Solutions TF Activation Profiling Plate Array II Catalog Number: FA-1002 (For Research Use Only) Introduction Materials Provided with the Kit Transcription factors (TFs) are a group of cellular proteins that play essential roles in regulating gene Component Qty Store at expression. They act as sensors to monitor cellular 96-Well Plates (with 2 RT changes and convert signals into gene expression. aluminum adhesive seal) Often, a specific cellular signal pathway can activate Isolation Columns 2 RT multiple TFs. The expression of a specific gene can Elution Buffer 400µL RT also be under the control of multiple TFs. Thus, TF Plate Hybridization Buffer 20mL RT monitoring the activation of multiple TFs 5X Plate Hybridization Wash 60mL RT simultaneously is critical to understanding the Buffer molecular mechanism of cellular regulation underlying 5X Detection Wash Buffer 60mL RT cell signaling and gene expression. Signosis, Inc.’s TF Blocking Buffer 60mL RT Activation Profiling Plate Array II is used for Filter Wash Buffer 5mL 4°C monitoring 96 different TFs simultaneously from one Filter Binding Buffer 1mL 4°C sample. Substrate A 2mL 4°C Substrate B 2mL 4°C Principle of the assay Streptavidin-HRP Conjugate 40µL 4°C Substrate Dilution Buffer 16mL 4°C Signosis, Inc.’s TF Activation Profiling Plate Array II TF Binding Buffer Mix 60µL -20°C is used for monitoring the activation of multiple TFs TF Probe Mix II 20µL -20°C simultaneously. With this technology a series of biotin-labeled probes are made based on the consensus sequences of TF DNA-binding sites.
    [Show full text]
  • Interindividual Regulation of the BCRP/ABCG2 Transporter in Term Human Placentas
    DMD Fast Forward. Published on January 31, 2018 as DOI: 10.1124/dmd.117.079228 This article has not been copyedited and formatted. The final version may differ from this version. DMD #79228 Title Page Interindividual Regulation of the BCRP/ABCG2 Transporter in Term Human Placentas Kristin M Bircsak, Jamie E Moscovitz, Xia Wen, Faith Archer, Poi Yu Sofia Yuen, Moiz Mohammed, Naureen Memon, Barry I Weinberger, Laura M Saba, Anna M Vetrano, Lauren M Aleksunes Downloaded from Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ, USA (K.M.B., J.E.M., X.W., L.M.A.), dmd.aspetjournals.org Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ, USA (F.A., P.Y.S.Y, M.M., N.M., A.M.V.), Hofstra Northwell School of Medicine, Cohen Children’s Medical Center of New York, New Hyde Park, NY, USA (B.I.W.), at ASPET Journals on October 2, 2021 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA (L.S.), Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA (L.M.A.), Lipid Center, Rutgers, The State University of New Jersey, Piscataway, NJ, USA (L.M.A.) 1 DMD Fast Forward. Published on January 31, 2018 as DOI: 10.1124/dmd.117.079228 This article has not been copyedited and formatted. The final version may differ from this version. DMD #79228 Running Title Page Running title: Interindividual
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • Supplemental Table 1. Primers and Probes for RT-Pcrs
    Supplemental Table 1. Primers and probes for RT-PCRs Gene Direction Sequence Quantitative RT-PCR E2F1 Forward Primer 5’-GGA TTT CAC ACC TTT TCC TGG AT-3’ Reverse Primer 5’-CCT GGA AAC TGA CCA TCA GTA CCT-3’ Probe 5’-FAM-CGA GCT GGC CCA CTG CTC TCG-TAMRA-3' E2F2 Forward Primer 5'-TCC CAA TCC CCT CCA GAT C-3' Reverse Primer 5'-CAA GTT GTG CGA TGC CTG C-3' Probe 5' -FAM-TCC TTT TGG CCG GCA GCC G-TAMRA-3' E2F3a Forward Primer 5’-TTT AAA CCA TCT GAG AGG TAC TGA TGA-3’ Reverse Primer 5’-CGG CCC TCC GGC AA-3’ Probe 5’-FAM-CGC TTT CTC CTA GCT CCA GCC TTC G-TAMRA-3’ E2F3b Forward Primer 5’-TTT AAA CCA TCT GAG AGG TAC TGA TGA-3’ Reverse Primer 5’-CCC TTA CAG CAG CAG GCA A-3’ Probe 5’-FAM-CGC TTT CTC CTA GCT CCA GCC TTC G-TAMRA-3’ IRF-1 Forward Primer 5’-TTT GTA TCG GCC TGT GTG AAT G-3’ Reverse Primer 5’-AAG CAT GGC TGG GAC ATC A-3’ Probe 5’-FAM-CAG CTC CGG AAC AAA CAG GCA TCC TT-TAMRA-3' IRF-2 Forward Primer 5'-CGC CCC TCG GCA CTC T-3' Reverse Primer 5'-TCT TCC TAT GCA GAA AGC GAA AC-3' Probe 5'-FAM-TTC ATC GCT GGG CAC ACT ATC AGT-TAMRA-3' TBP Forward Primer 5’-CAC GAA CCA CGG CAC TGA TT-3’ Reverse Primer 5’-TTT TCT TGC TGC CAG TCT GGA C-3’ Probe 5’-FAM-TGT GCA CAG GAG CCA AGA GTG AAG A-BHQ1-3’ Primers and Probes for quantitative RT-PCRs were designed using the computer program “Primer Express” (Applied Biosystems, Foster City, CA, USA).
    [Show full text]
  • Mouse VDR / NR1I1 Protein (His Tag)
    Mouse VDR / NR1I1 Protein (His Tag) Catalog Number: 51106-M08B General Information SDS-PAGE: Gene Name Synonym: Nr1i1 Protein Construction: A DNA sequence encoding the mouse VDR (P48281) (Met1-Ser422) was fused with a polyhistidine tag at the C-terminus. Source: Mouse Expression Host: Baculovirus-Insect Cells QC Testing Purity: > 80 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method VDR (vitamin D(1,25- dihydroxyvitamin D3)receptor), also known as NR1I1, Stability: belongs to the NR1I family, NR1 subfamily. It is composed of three domains: a modulating N-terminal domain, a DNA-binding domain and a C-terminal ℃ Samples are stable for up to twelve months from date of receipt at -70 ligand-binding domain. Vitamin D receptors (VDRs) are members of the NR1I family, which also includes pregnane X (PXR) and constitutive Met Predicted N terminal: androstane (CAR) receptors, that form heterodimers with members of the Molecular Mass: retinoid X receptor family. VDRs repress expression of 1alpha-hydroxylase (the proximal activator of 1,25(OH)2D3) and induce expression of the The recombinant mouse VDR consists of 432 amino acids and has a 1,25(OH)2D3 inactivating enzyme CYP24. Also, it has recently been calculated molecular mass of 49.2 kDa. The recombinant protein migrates identified as an additional bile acid receptor alongside FXR and may as an approximately 55 kDa band in SDS-PAGE under reducing conditions. function to protect gut against the toxic and carcinogenic effects of these endobiotics. VDR is expressed in the intestine, thyroid and kidney and has Formulation: a vital role in calcium homeostasis.
    [Show full text]
  • Review Vitamin D in Neurological Diseases: a Rationale for a Pathogenic Impact
    Review Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact Rita Moretti, Maria Elisa Morelli and Paola Caruso * Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy; [email protected] (R.M.); [email protected] (M.E.M.) * Correspondence: [email protected] Received: 27 June 2018; Accepted: 26 July 2018; Published: 31 July 2018 Abstract: It is widely known that vitamin D receptors have been found in neurons and glial cells, and their highest expression is in the hippocampus, hypothalamus, thalamus and subcortical grey nuclei, and substantia nigra. Vitamin D helps the regulation of neurotrophin, neural differentiation, and maturation, through the control operation of growing factors synthesis (i.e., neural growth factor [NGF] and glial cell line-derived growth factor (GDNF), the trafficking of the septohippocampal pathway, and the control of the synthesis process of different neuromodulators (such as acetylcholine [Ach], dopamine [DA], and gamma-aminobutyric [GABA]). Based on these assumptions, we have written this review to summarize the potential role of vitamin D in neurological pathologies. This work could be titanic and the results might have been very fuzzy and even incoherent had we not conjectured to taper our first intentions and devoted our interests towards three mainstreams, demyelinating pathologies, vascular syndromes, and neurodegeneration. As a result of the lack of useful therapeutic options, apart from the disease- modifying strategies, the role of different risk factors should be investigated in neurology, as their correction may lead to the improvement of the cerebral conditions. We have explored the relationships between the gene-environmental influence and long-term vitamin D deficiency, as a risk factor for the development of different types of neurological disorders, along with the role and the rationale of therapeutic trials with vitamin D implementation.
    [Show full text]
  • Sp1 Transcription Factor: a Long-Standing Target in Cancer Chemotherapy
    Sp1 transcription factor: A long-standing target in cancer chemotherapy Carolina Vizcaíno, Sylvia Mansilla and José Portugal* Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain *to whom correspondence should be addressed: Dr. José Portugal, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 10; E-08028 Barcelona, Spain. Phone: +34 93 403 4959, FAX: +34 93 403 4979, E-mail: [email protected] 1 ABSTRACT Sp1 (Specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG- rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors.
    [Show full text]
  • The Expression of Cystathionine Gamma-Lyase Is Regulated by Estrogen Receptor Alpha in Human Osteoblasts
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 60), pp: 101686-101696 Research Paper The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts Elisabetta Lambertini1, Letizia Penolazzi1, Marco Angelozzi1, Francesco Grassi2, Laura Gambari2, Gina Lisignoli3, Pasquale De Bonis4, Michele Cavallo4 and Roberta Piva1 1Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy 2Ramses Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy 3Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy 4Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy Correspondence to: Roberta Piva, email: [email protected] Keywords: cystathionine gamma-lyase; H2S; osteoblasts; bone; estrogen receptor alpha Received: July 12, 2017 Accepted: September 04, 2017 Published: October 04, 2017 Copyright: Lambertini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Hydrogen sulfide (H2S), generated in the osteoblasts predominantly via cystathionine-γ-lyase (CSE), is bone protective. Previous studies suggested that the onset of bone loss due to estrogen deficiency is associated to decreased levels of H2S and blunted gene expression of CSE. However, there are still a lot of unknowns on how H2S levels influence bone cells function. The present study aims to explore the mechanisms by which estrogen may regulate CSE expression, in particular the role of estrogen receptor alpha (ERα) in human osteoblasts (hOBs). Vertebral lamina derived hOBs were characterized and then assessed for CSE expression by western blot analysis in the presence or absence of ERα overexpression.
    [Show full text]
  • The Puzzling Interplay Between P53 and Sp1 - Full Text
    7/20/2021 Aging | The puzzling interplay between p53 and Sp1 - Full Text Editorial Volume 9, Issue 5 pp 1355—1356 The puzzling interplay between p53 and Sp1 Ariella Oppenheim1 , Galit Lahav2 1 Department of Hematology, Hebrew University Faculty of Medicine, Jerusalem 91120, Israel 2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA Received: May 4, 2017 Published: May 9, 2017 https://doi.org/10.18632/aging.101238 How to Cite Copyright: Oppenheim and Lahav. This is an open‐access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited The paradigm tumor suppressor protein p53 was initially discovered in the Seventies by a number of investigators as a protein that was tightly bound to SV40 large T-antigen, a “contaminant” during T-antigen purification [1]. Its role as a tumor suppressor was realized only a few years later, when it was found that it is absent or mutated in many tumors. Since then p53 has been described as the “guardian of the genome”, due to its central role in keeping genome integrity in response to genotoxic stress as well as many other insults [2]. Specificity Factor 1, Sp1, was the first mammalian transcription factor to be purified and characterized by Dynan and Tjian in the early Eighties. Sp1 is overexpressed in many types of cancer, including those carrying wild-type p53. Sp1 therefore is considered as a ‘hallmark of cancer’ and a candidate target for cancer therapy [3].
    [Show full text]
  • Mechanisms of P53-Mediated Intrinsic and Extrinsic Tumor Suppression
    Department of Microbiology, Tumor and Cell Biology (MTC) Mechanisms of p53-mediated Intrinsic and Extrinsic Tumor Suppression AKADEMISK AVHANDLING som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i Hörsal Atrium, Nobels väg 12B Fredagen den 25 April, 2014, kl 13.30 av Hai Li Huvudhandledare: Fakultetsopponent: Professor Galina Selivanova Professor Giulia Piaggio Karolinska Institutet Regina Elena National Cancer Institute Department of Microbiology, Tumor Department of Experimental Oncology and Cell Biology Bihandledare: Betygsnämnd: Professor Petter Höglund Associate Professor Teresa Pereira Karolinska Institutet Karolinska Institutet Department of Medicine, Huddinge Department of Molecular Medicine and Surgery (MMK) Professor Anthony Wright Karolinska Institutet Department of Laboratory Medicine Professor Claes Wadelius Uppusala Universitit Department of Immunology, Genetics and Pathology Stockholm 2014 From the Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden MECHANISMS OF P53-MEDIATED INTRINSIC AND EXTRINSIC TUMOR SUPPRESSION Hai Li Stockholm 2014 1 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Universitetsservice US-AB. © Hai Li, 2014 ISBN 978-91-7549-418-0 2 To My Family! 3 ABSTRACT p53 is a promising target for cancer therapy. However, the molecular basis of the p53 tumor suppression function remains incompletely understood. Thus, in this thesis, we focused on studies of the molecular mechanisms of p53-mediated tumor suppression. Since p53 mainly functions as a transcription factor, we addressed whether it is the promoter binding pattern of p53 or its cooperation with different other transcription cofactors that determinates the transcription profile and the subsequent biological outcomes. We explored the genome-wide binding sites of p53 with ChIP-seq.
    [Show full text]
  • List of Genes Associated with Nasopharyngeal Carcinoma Gene Symbol Gene Name Reference
    List of genes associated with nasopharyngeal carcinoma Gene symbol Gene name Reference LOC344967 Acyl-CoA thioesterase 7 pseudogene 16423998 ITGA9 Integrin subunit alpha 9 19478819, 26372814 EBNA1 Nuclear antigen EBNA-1 22815911, 24190575, 24460960, 24753359, 28810605 LMP1 Latent membrane protein LMP-1 22815911, 14678988, 23868181, 27049918, 23939952 LMP2 Membrane protein LMP-2A 17980397, 24630965, 26292668, 22815911 BARF1 BARF1 protein BARF1 22815911, 15778977, 29562599, 23996634, 22406129 FHIT Fragile histidine triad 22815911, 23534718 EGFR Epidermal growth factor receptor 23416081, 26339373, 28129778, 18367518, 27203742 COX2 Cytochrome c oxidase subunit II 23416081, 25553117, 26261650, 28435473, 28732079 CCNE1 Cyclin E1 23416081 hTERT Telomerase reverse transcriptase 23416081, 24648937, 21233856, 24615621, 25153197 MMP2 Matrix metallopeptidase 2 23416081, 28129778, 17607721, 25066400, 26546460 MMP9 Matrix metallopeptidase 9 23416081, 23409137, 22957092, 24243817, 28380444 NF-κB Nuclear factor kappa B subunit 1 23416081, 28380444, 23868181, 28969015, 26172457 VEGF Vascular endothelial growth factor A 23416081, 28243126, 26275421, 21233856, 26717040 WNT3 Wnt family member 3 23416081 URG4/URGCP Upregulator of cell proliferation 29775749, 28315691 TNFAIP2 TNF alpha induced protein 2 21057457, 23975427 FAS Fas cell surface death receptor 16473667, 26275421 TRIM26 Tripartite motif containing 26 29956500 PTEN Phosphatase and tensin homolog 24604064, 25365510, 24632578, 20053927, 27840403 CDK5 Cyclin dependent kinase 5 26339373 P53 Tumor protein
    [Show full text]
  • Roles of Krüppel Like Factors Klf1, Klf2, and Klf4 in Embryonic Beta-Globin Gene Expression
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2009 ROLES OF KRÜPPEL LIKE FACTORS KLF1, KLF2, AND KLF4 IN EMBRYONIC BETA-GLOBIN GENE EXPRESSION Yousef Alhashem Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Genetics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1880 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Virginia Commonwealth University School of Medicine This is to certify that the thesis prepared by Yousef N. Alhashem entitled “Roles Of Krüppel Like Factors KLF1, KLF2, And KLF4 In Embryonic Beta-Globin Gene Expression” has been approved by the student advisory committee as a satisfactory for the completion of the thesis reqirement for the degree of Master of Science. _____________________________________________ Joyce A. Lloyd, Ph.D., Director of Thesis, School of Medicine _____________________________________________ Rita Shiang, Ph.D., School of Medicine _____________________________________________ David C. Williams Jr., Ph.D., School of Medicine _____________________________________________ Paul B. Fisher, Ph.D., Chair, Department of Human and Molecular Genetics _____________________________________________ Jerome F. Strauss, III, M.D., Ph.D., Dean, School of Medicine _____________________________________________ F. Douglas Boudinot, Ph.D., Dean, Graduate School _____________________________________________ Date © Yousef Nassir Alhashem 2009 ROLES OF KRÜPPEL LIKE FACTORS KLF1, KLF2, AND KLF4 IN EMBRYONIC BETA-GLOBIN GENE EXPRESSION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Yousef Nassir Alhashem, B.Sc.
    [Show full text]