Supplementary Data Sterner, Beckett* and Scott Lidgard. (Under Revision

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Data Sterner, Beckett* and Scott Lidgard. (Under Revision Supplementary Data Sterner, Beckett* and Scott Lidgard. (Under revision) “Moving Past the Systematics Wars.” Journal of the History of Biology. *Corresponding author E-mail: [email protected] Table S1 Examples of additive coding procedures used in conjuction with both phenetic & cladistic methodologies. Methods Taxa & Characters Use of additive Publication coding phenetic hyphomycetes fungi; phenetic Kendrick & Proctor morphology 1964 phenetic helminthosporium phenetic Ibrahim & Threlfall fungi; morphology, 1966 pathogenicity, physiology, biochemistry phenetic Listeria, Streptococci, phenetic Davis et al. 1969 related bacteria; morphology, biochemistry, sediment phenetic Agrobacterium; phenetic Kesters et al. 1973 morphology, biochemistry phenetic fossil nummulitid phenetic Barnett 1974 foraminifera; morphology phenetic anaerobic bacteria; phenetic Holmberg & Nord morphology, 1975 biochemistry phenetic actinomycete bacteria; phenetic Goodfellow et al. morphology, 1979 biochemistry phenetic freshwater sediment phenetic Mallory & Sayler bacteria; morphology, 1984 biochemistry phenetic nemerteans; phenetic Sundberg 1985 morphology, ecology, development phenetic rhodococci bacteria; phenetic Goodfellow et al. morphology, 1990 biochemistry phenetic actinomycete bacteria; phenetic O'Donnell et al. 1993 morphology, biochemistry phenetic Bacillus bacteria; phenetic Nielsen et al. 1995 biochemistry, DNA base composition phenetic fossil crinoids; skeletal phenetic Deline & Ausich 2011 morphology phenetic fossil crinoids; skeletal phenetic Deline et al. 2012 morphology phenetic & cladistic pygopodid lizards; cladistic Kluge 1976 morphology phenetic & cladistic silverside fishes; cladistic Mickevich & Johnson morphology, alleles 1976 phenetic & cladistic multiple taxonomic phenetic & Mickevich 1978 groups; morphology, cladistic amino acid sequences, cytochrome, globin phenetic & cladistic tenebrionid beetles; phenetic & Doyen & Tschinkel morphology cladistic 1982 phenetic & cladistic pomatiopsid gastropods; cladistic Davis et al. 1984 morphology phenetic & cladistic decapod crustaceans; phenetic & Abele & Felgenhauer morphology, cladistic 1986 development phenetic & cladistic amphipod crustaceans; cladistic (with gap Conlan 1988 morphology coding) phenetic & cladistic agglutinating phenetic & Hohenegger 1990 foraminifera; cladistic morphology phenetic & cladistic multiple taxonomic phenetic & Sokal et al. 1992 groups; morphology cladistic phenetic & cladistic beans, rust fungi cladistic Eckenwalder & Heath parasitism; infection 2001 traits, gene sequences cladistic (primarily) myrtacean angiosperms; cladistic Landrum 1981 morphology cladistic prarie dogs; antigens cladistic McCullough et al. 1987 cladistic chironomid midges; cladistic Cranston & morphology Humphries 1988 cladistic signiphorid wasps; cladistic James 1988 morphology cladistic plectonemetid cladistic Sundberg 1989 nemerteans; morphology cladistic Chorizema cladistic Taylor & Crisp 1992 angiosperms; morphology cladistic velloziacean cladistic Menenes et al. 1993 angiosperms; morphology cladistic hemerobiid lacewings; cladistic Oswald 1993 morphology cladistic salmonid fishes; cladistic Stearley & Smith morphology 1993 cladistic hymenopteran insects; cladistic Heraty et al. 1994 morphology cladistic fossil & living seed cladistic Nixon et al. 1994 plants; morphology, gene sequences cladistic geometrid moths; cladistic Scoble 1994 morphology cladistic myrmicinid ants; cladistic Schultz & Meier 1995 morphology cladistic surgeonfishes; cladistic Guiasu & morphology Winterbottom 1998 cladistic platyninid beetles; cladistic Liebherr & morphology Zimmerman 1998 cladistic Anolis lizards; cladistic Poe 1998 morphology, allozymes, chromosomes, gene sequences cladistic echeneoid fishes; cladistic O'Toole 2002 morphology cladistic fossil sauropod cladistic Wilson 2002 dinosaurs; skeletal morphology cladistic butterflyfishes; cladistic Smith et al. 2003 morphology cladistic flower weevils & palm cladistic Franz 2004 angiosperm coevolution: morphology cladistic fossil & recent bats: cladistic Gunnell & Simmons morphology 2005 cladistic flower weevils: cladistic Franz 2006 morphology cladistic (and Lotus angiosperms; cladistic Degtjareva et al. 2006 Bayesian) morphology & gene sequences cladistic dictyopteran insects; cladistic Klass & Meier 2006 morphology, life history traits cladistic cypress angiosperms; cladistic Little 2006 morphology, biochemistry, reproductive traits, gene sequences cladistic Polistes wasps; cladistic Pickett et al. 2006 morphology, gene sequences cladistic unionid bivalves; cladistic Zanatta et al. 2007 allozymes cladistic harvestmen arachnids; cladistic De Bivort et al. 2010 morphology cladistic Anulocaulis cladistic Hernández-Ledesma angiosperms; et al. 2010 morphology cladistic entiminid weevils; cladistic Rosas et al. 2011 morphology, gene sequences cladistic (also embiopteran insects; cladistic Miller et al. 2012 Bayesian and morphology maximum likelihood) Table S2 Examples of non-additive coding procedures used in conjuction with both phenetic and cladistic methodologies. Methods Taxa & Characters Use of non- Publication additive coding phenetic helminthosporium phenetic Ibrahim & Threlfall fungi; morphology, 1966 pathogenicity, physiology, biochemistry phenetic fossil nummulitid phenetic Barnett 1974 foraminifera; morphology phenetic Opheodrys snakes; phenetic Cundall 1981 morphology phenetic freshwater sediment phenetic Mallory & Sayler bacteria; morphology, 1984 biochemistry phenetic nemerteans; phenetic Sundberg 1985 morphology, ecology, development phenetic & cladistic pomatiopsid gastropods; cladistic Davis et al. 1984 morphology cladistic auchenipterid catfishes; cladistic Curran 1989 morphology cladistic fossil Amalda cladistic Michaux 1989 gastropods; morphology cladistic Chorizema cladistic Taylor & Crisp 1992 angiosperms; morphology cladistic velloziacean cladistic Menenzes et al. 1993 angiosperms; morphology cladistic hemerobiid lacewings; cladistic Oswald 1993 morphology cladistic hymenopteran insects; cladistic Heraty et al. 1994 morphology cladistic geometrid moths; cladistic Scoble 1994 morphology cladistic tetragnathid spiders; cladistic Hormiga et al. 1995 morphology, web construction behavior cladistic myrmicinid ants; cladistic Schultz & Meier 1995 morphology cladistic cockroaches; cladistic Grandcolas 1996 morphology cladistic fossil proetoid trilobites; cladistic Edgecombe et al. skeletal morphology 1997 cladistic cockroaches; cladistic Grandcolas 1997 morphology, social behaviors cladistic euphorbacean cladistic Simmons & Hayden angiosperms; 1997 morphology cladistic orb-web spiders; cladistic Grandcolas 1998 morphology, web architectures, behaviors cladistic fossil envrinurid cladistic Edgecombe et al. trilobites; morphology 1998 cladistic surgeonfishes; cladistic Guiasu & morphology Winterbottom 1998 cladistic platyninid beetles; cladistic Liebherr & morphology Zimmerman 1998 cladistic Anolis lizards; cladistic Poe 1998 morphology, allozymes, chromosomes, gene sequences cladistic butterflyfishes; cladistic Smith et al. 2003 morphology cladistic flower weevils & palm cladistic Franz 2004 angiosperm coevolution: morphology cladistic flower weevils: cladistic Franz 2006 morphology cladistic (and Lotus angiosperms; cladistic Degtjareva et al. 2006 Bayesian) morphology & gene sequences cladistic cypress angiosperms; cladistic Little 2006 morphology, biochemistry, reproductive traits, gene sequences cladistic unionid bivalves; cladistic Zanatta et al. 2007 allozymes cladistic asilid flies; cladistic Dikow 2009 morphology, gene sequences cladistic Anulocaulis cladistic Hernández-Ledesma angiosperms; et al. 2010 morphology cladistic entiminid weevils; cladistic Rosas et al. 2011 morphology, gene sequences cladistic (also embiopteran insects; cladistic Miller et al. 2012 Bayesian and morphology maximum likelihood) Table S3 Examples of gap coding procedures used in conjuction with both phenetic & cladistic methodologies. Once data clusters have been separated by gaps, they are typically transformed to binary state characters by additive coding. Methods Taxa & Characters Use of gap coding Publication phenetic eucalyptus phenetic Ladiges et al. 1984 angiosperms; mophology phenetic & cladistic silverside fishes; phenetic & cladistic Mickevich & Johnson morphology, alleles 1976 phenetic & cladistic ants; morphology, phenetic & cladistic Ward 1985 allozymes phenetic & cladistic eucalyptus phenetic & cladistic Ladiges & Humphries angiosperms; 1986 mophology phenetic & cladistic geckos; morphology, phenetic & cladistic Thorpe 1986 biochemistry phenetic & cladistic barley angiosperms; cladistic (generalized Baum & Bailey 1988 morphology gap coding) phenetic & cladistic amphipod crustaceans; cladistic Conlan 1988 morphology phenetic & cladistic chironomid midges; cladistic (generalized Cranston & morphology & life gap coding) Humphries 1988 history traits phenetic & cladistic chipmunks; cladistic (modified Sullivan & Petersen morphology, generalized gap 1988 allozymes coding) phenetic & cladistic Eucalyptus cladistic Ladiges et al. 1989 (ordination, not angiosperms; trees) morphology phenetic & cladistic caper angiosperms; cladistic Vezey & Skvarla pollen morphology 1990 phenetic & cladistic cyprinid fishes; cladistic Mayden et al. 1991 morphology phenetic & cladistic lophiiform fishes; cladistic (generalized Leslie & Grant 1994 morphology gap coding) phenetic & cladistic Daviesia angiosperms; cladistic (generalized Chandler & Crisp morphology
Recommended publications
  • History and Philosophy of Systematic Biology
    History and Philosophy of Systematic Biology Bock, W. J. (1973) Philosophical foundations of classical evolutionary classification Systematic Zoology 22: 375-392 Part of a general symposium on "Contemporary Systematic Philosophies," there are some other interesting papers here. Brower, A. V. Z. (2000) Evolution Is Not a Necessary Assumption of Cladistics Cladistics 16: 143- 154 Dayrat, Benoit (2005) Ancestor-descendant relationships and the reconstruction of the Tree of Lif Paleobiology 31: 347-353 Donoghue, M.J. and J.W. Kadereit (1992) Walter Zimmermann and the growth of phylogenetic theory Systematic Biology 41: 74-84 Faith, D. P. and J. W. H. Trueman (2001) Towards an inclusive philosophy for phylogenetic inference Systematic Biology 50: 331-350 Gaffney, E. S. (1979) An introduction to the logic of phylogeny reconstruction, pp. 79-111 in Cracraft, J. and N. Eldredge (eds.) Phylogenetic Analysis and Paleontology Columbia University Press, New York. Gilmour, J. S. L. (1940) Taxonomy and philosophy, pp. 461-474 in J. Huxley (ed.) The New Systematics Oxford Hull, D. L. (1978) A matter of individuality Phil. of Science 45: 335-360 Hull, D. L. (1978) The principles of biological classification: the use and abuse of philosophy Hull, D. L. (1984) Cladistic theory: hypotheses that blur and grow, pp. 5-23 in T. Duncan and T. F. Stuessy (eds.) Cladistics: Perspectives on the Reconstruction of Evolutionary History Columbia University Press, New York * Hull, D. L. (1988) Science as a process: an evolutionary account of the social and conceptual development of science University of Chicago Press. An already classic work on the recent, violent history of systematics; used as data for Hull's general theories about scientific change.
    [Show full text]
  • Homologies of Floral Structures in Velloziaceae with Particular Reference to the Corona Author(S): Maria Das Graças Sajo, Renato De Mello‐Silva, and Paula J
    Homologies of Floral Structures in Velloziaceae with Particular Reference to the Corona Author(s): Maria das Graças Sajo, Renato de Mello‐Silva, and Paula J. Rudall Source: International Journal of Plant Sciences, Vol. 171, No. 6 (July/August 2010), pp. 595- 606 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/653132 . Accessed: 07/02/2014 10:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 186.217.234.18 on Fri, 7 Feb 2014 10:53:04 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 171(6):595–606. 2010. Ó 2010 by The University of Chicago. All rights reserved. 1058-5893/2010/17106-0003$15.00 DOI: 10.1086/653132 HOMOLOGIES OF FLORAL STRUCTURES IN VELLOZIACEAE WITH PARTICULAR REFERENCE TO THE CORONA Maria das Grac¸as Sajo,* Renato de Mello-Silva,y and Paula J. Rudall1,z *Departamento de Botaˆnica, Instituto de Biocieˆncias, Universidade
    [Show full text]
  • Alcantarea (Bromeliaceae) Leaf Anatomical Characterization and Its Systematic Implications
    Nordic Journal of Botany 28: 385Á397, 2010 doi: 10.1111/j.1756-1051.2010.00727.x, # The Authors. Journal compilation # Nordic Journal of Botany 2010 Subject Editors: Guido Grimm and Thomas Denk. Accepted 26 April 2010 Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications Leonardo M. Versieux, Paula Maria Elbl, Maria das Grac¸as Lapa Wanderley and Nanuza Luiza de Menezes L. M. Versieux ([email protected]), Depto de Botaˆnica, Ecologia e Zoologia, Univ. Federal do Rio Grande do Norte, Natal, RN, 59072- 970, Brazil. Á P. M. Elbl and N. Luiza de Menezes, Depto de Botaˆnica, Inst. de Biocieˆncias, Univ. de Sa˜o Paulo, Rua do Mata˜o, trav. 14, n. 321, Sa˜o Paulo, SP, 05508-090, Brazil. Á M. das Grac¸as Lapa Wanderley, Inst. de Botaˆnica, Caixa Postal 3005, Sa˜o Paulo, SP, 01061- 970, Brazil. Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneissÁgranitic rock outcrops (‘inselbergs’). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members.
    [Show full text]
  • Historical Review of Systematic Biology and Nomenclature - Alessandro Minelli
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. II - Historical Review of Systematic Biology and Nomenclature - Alessandro Minelli HISTORICAL REVIEW OF SYSTEMATIC BIOLOGY AND NOMENCLATURE Alessandro Minelli Department of Biology, Via U. Bassi 58B, I-35131, Padova,Italy Keywords: Aristotle, Belon, Cesalpino, Ray, Linnaeus, Owen, Lamarck, Darwin, von Baer, Haeckel, Sokal, Sneath, Hennig, Mayr, Simpson, species, taxa, phylogeny, phenetic school, phylogenetic school, cladistics, evolutionary school, nomenclature, natural history museums. Contents 1. The Origins 2. From Classical Antiquity to the Renaissance Encyclopedias 3. From the First Monographers to Linnaeus 4. Concepts and Definitions: Species, Homology, Analogy 5. The Impact of Evolutionary Theory 6. The Last Few Decades 7. Nomenclature 8. Natural History Collections Glossary Bibliography Biographical Sketch Summary The oldest roots of biological systematics are found in folk taxonomies, which are nearly universally developed by humankind to cope with the diversity of the living world. The logical background to the first modern attempts to rationalize the classifications was provided by Aristotle's logic, as embodied in Cesalpino's 16th century classification of plants. Major advances were provided in the following century by Ray, who paved the way for the work of Linnaeus, the author of standard treatises still regarded as the starting point of modern classification and nomenclature. Important conceptual progress was due to the French comparative anatomists of the early 19th century UNESCO(Cuvier, Geoffroy Saint-Hilaire) – andEOLSS to the first work in comparative embryology of von Baer. Biological systematics, however, was still searching for a unifying principle that could provide the foundation for a natural, rather than conventional, classification.SAMPLE This principle wasCHAPTERS provided by evolutionary theory: its effects on classification are already present in Lamarck, but their full deployment only happened in the 20th century.
    [Show full text]
  • Index Xylariorum 4.1
    Index Xylariorum 4.1 Compiled by Anna H. Lynch and Peter E. Gasson (version March 2010), and updated by IAWA under supervision of Frederic Lens (March 2016). Argentina SUCURSAL: Museo Argentino de Ciencias Naturales "B. Rivadavia" (BA/BAw), Av. Ángel Gallardo 470, 1405 Buenos Aires, Argentina. (updated 01/02/2016). Curator: Dr. ROBERTO R. PUJANA (comparative anatomy of extant and fossil woods), [email protected]. Collection: about 1000 specimens, 250 genera. Specialisation: Argentina, Paraguay. Herbarium vouchers: Yes; about 100,000; 92% of wood specimens vouchered. Periodical or serial publications: Revista del Museo Argentino de Ciencias Naturales Samples for sectioning: Yes. Microscope slides: Yes. Exchange: Yes. Wanted: Woods from Argentina and Paraguay. Catalogue: A catalogue of the wood collection is available on request from the curator. LA PLATA: Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Argentina. (new wood collection since 01/02/2016). Curator: DRA. SILVIA MONTEOLIVA and PROF. STELLA MARIS RIVIERA (wood anatomy, identification), [email protected]. Collection: about 1000 specimens, 250 genera. Specialisation: Argentina Periodical or serial publications: Revista Facultad de Agronomía La Plata Samples for sectioning: Yes. Microscope slides: Yes. 1 Exchange: Yes. Wanted: woods from Argentina. Catalogue: A catalogue of the wood collection is available on request from the curator: www.maderasenargentina.com.ar TUCUMAN: Xiloteca of the Herbarium of the Fundation Miguel Lillo (LILw), Foundation Miguel Lillo - Institut Miguel Lillo, (LILw), Miguel Lillo 251, Tucuman, Argentina. (updated 05/08/2002). Foundation: 1910. Curator: MARIA EUGENIA GUANTAY, Lic. Ciencias Biologicas (anatomy of wood of Myrtaceae), [email protected]. Collection: 1,319 specimens, 224 genera.
    [Show full text]
  • Ontogenesis of Stomata in Velloziaceae: Paracytic Versus Tetracytic? MARINA MILANELLO DO AMARAL1 and RENATO DE MELLO-SILVA1,2
    Revista Brasil. Bot., V.31, n.3, p.529-536, jul.-set. 2008 Ontogenesis of stomata in Velloziaceae: paracytic versus tetracytic? MARINA MILANELLO DO AMARAL1 and RENATO DE MELLO-SILVA1,2 (received: August 02, 2007; accepted: July 10, 2008) ABSTRACT – (Ontogenesis of stomata in Velloziaceae: paracytic versus tetracytic?). In Velloziaceae, the number of subsidiary cells has been used to characterize species and support groups. Nevertheless, the homology of the stomatal types have not been scrutinized. Stomatal ontogenesis of Vellozia epidendroides and V. plicata, assigned to have tetracytic stomata, and of V. glauca and Barbacenia riparia, assigned to have paracytic stomata, were investigated. In the four species studied, stomata followed perigenic development. Subsidiary cells arise from oblique divisions of neighbouring cells of the guard mother cell (GMC). These cells are elongated and parallel to the longer axis of the stoma. Polar cells show wide variation, following the shape and size of the epidermal cells in the vicinity. Hence, these cells cannot be called subsidiary cells. This wide variation is due to a much higher density of stomata in some regions of the leaf blade. This distribution of stomata forces the development of short polar cells, leading to an apparently tetracytic stomata. In regions of low concentration of stomata, higher spatial availability between the GMCs allows the elongation of polar cells, leading to evident paracytic stomata. Therefore, the four studied species are considered braquiparacytic, questioning the classification of stomata into tetracytic and paracytic in Velloziaceae. Key words - ontogenesis, paracytic, stomata, tetracytic, Velloziaceae RESUMO – (A ontogênese dos estômatos em Velloziaceae: paracítico versus tetracítico?).
    [Show full text]
  • The University of British Columbia
    The University of British Columbia Department of Botany #3529 – 6270 University Boulevard Vancouver, B.C. Canada V6T 1Z4 Tel: (604) 822-2133 Fax: (604) 822-6089 March 14, 2019 BSA Council Dear Council Members, It is with great pleasure that I nominate Professor Richard Abbott to be a Corresponding Member of the Botanical Society of America. I view Professor Abbott as an international leader in the areas of plant hybridization and phylogeography. His work is notable for its high quality, thoroughness, and careful and nuanced interpretations of results. Also, included in this nomination package is a letter of support from Corresponding Member Dianne Edwards CBE FRS, who is a Distinguished Research Professor at Cardiff University, along with Richard’s CV. Below I highlight several of Prof. Abbott’s most important contributions, as well as the characteristics of his work that I particularly admire. Prof. Abbott is probably best known for his careful elucidation of the reticulate history of Senecio (ragworts and groundsels) of the British Isles. His studies of the Senecio system have combined careful analyses of historical plant distribution records in the UK, with data from ecological experiments, developmental genetics, and population genetic and genomic analyses. This multidisciplinary approach is powerful, and Prof. Abbot’s work has revealed several examples of plant speciation in real time (and there aren’t very many of these). Key findings include (1) the discovery and careful documentation of the homoploid hybrid origin of the Oxford
    [Show full text]
  • Inselbergs) As Centers of Diversity for Desiccation-Tolerant Vascular Plants
    Plant Ecology 151: 19–28, 2000. 19 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Dedicated to Prof. Dr Karl Eduard Linsenmair (Universität Würzburg) on the occasion of his 60th birthday. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants Stefan Porembski1 & Wilhelm Barthlott2 1Universität Rostock, Institut für Biodiversitätsforschung, Allgemeine und Spezielle Botanik, Rostock, Germany (E-mail: [email protected]); 2Botanisches Institut der Universität, Bonn, Germany (E-mail: [email protected]) Key words: Afrotrilepis, Borya, Desiccation tolerance, Granitic outcrops, Myrothamnus, Poikilohydry, Resurrection plants, Velloziaceae, Water stress Abstract Although desiccation tolerance is common in non-vascular plants, this adaptive trait is very rare in vascular plants. Desiccation-tolerant vascular plants occur particularly on rock outcrops in the tropics and to a lesser extent in temperate zones. They are found from sea level up to 2800 m. The diversity of desiccation-tolerant species as mea- sured by number of species is highest in East Africa, Madagascar and Brazil, where granitic and gneissic outcrops, or inselbergs, are their main habitat. Inselbergs frequently occur as isolated monoliths characterized by extreme environmental conditions (i.e., edaphic dryness, high degrees of insolation). On tropical inselbergs, desiccation- tolerant monocotyledons (i.e., Cyperaceae and Velloziaceae) dominate in mat-like communities which cover even steep slopes. Mat-forming desiccation-tolerant species may attain considerable age (hundreds of years) and size (several m in height, for pseudostemmed species). Both homoiochlorophyllous and poikilochlorophyllous species occur. In their natural habitats, both groups survive dry periods of several months and regain their photosynthetic activity within a few days after rainfall.
    [Show full text]
  • On the Probabilities of Branch Durations and Stratigraphic Gaps in Phylogenies of Fossil Taxa When Rates of Diversification Vary
    Peter J. Wagner Expected Divergences given Varying Diversification & Sampling 1 On the Probabilities of Branch Durations and Stratigraphic Gaps in 2 Phylogenies of Fossil Taxa when Rates of Diversification Vary over 3 Time 4 Peter J. Wagner 5 Dept. of Earth & Atmospheric Sciences, and School of Biological Sciences 6 316 Bessey Hall 7 University of Nebraska, Lincoln USA 8 [email protected] 9 10 Abstract 11 The time separating the first appearances of species from their divergences from related taxa 12 affects assessments of macroevolutionary hypotheses about rates of anatomical or ecological 13 change. Branch durations necessarily posit stratigraphic gaps in sampling within a clade over 14 which we have failed to sample predecessors (ancestors) and over which there are no 15 divergences leading to sampled relatives (sister-taxa). The former reflects only sampling rates 16 whereas the latter reflects sampling, origination and extinction rates. Because all three rates vary 17 over time, the probability of a branch duration of any particular length will differ depending on 18 when in the Phanerozoic that branch duration spans. Here, I present a birth-death-sampling 19 model allowing interval-to-interval variation in diversification and sampling rates. Increasing 20 either origination or sampling rates increases the probability of finding sister taxa that diverge 21 both during and before intervals of high sampling/origination. Conversely, elevated extinction 22 reduces the probability of divergences from sampled sister-taxa before and during intervals of 1 Peter J. Wagner Expected Divergences given Varying Diversification & Sampling 23 elevated extinction. In the case of total extinction, a Signor-Lipps will reduce expected sister- 24 taxa leading up to the extinction, with the possible effect stretching back many millions of years 25 when sampling is low.
    [Show full text]
  • Velloziaceae in Honorem Appellatae
    Phytotaxa 175 (2): 085–096 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.175.2.3 Velloziaceae in honorem appellatae RENATO MELLO-SILVA & NANUZA LUIZA DE MENEZES University of São Paulo, Department of Botany, Rua do Matão, 277, 05508-090 São Paulo, SP, Brazil; E-mail: [email protected] Abstract Four new species of Vellozia are described and named after people linked to Velloziaceae and Brazilian botany. Vellozia everaldoi, V. giuliettiae, V. semirii and V. strangii are endemic to the Diamantina Plateau in Minas Gerais, Brazil. Vellozia giuliettiae and V. semirii are small species that share characteristics that would assign them to Vellozia sect. Xerophytoides, which include an ericoid habit with no leaf furrows and six stamens. Vellozia everaldoi, although a small, ericoid species, could not be placed in that section because it has conspicuous furrows, although it is considered closely related to species of that section. The fourth species, V. strangii, is a relative large species closely related to V. hatschbachii. Descriptions and illustrations of the species are followed by a discussion of their characteristics and putative relationships. Key words: Brazil, campos rupestres, Espinhaço Range, Vellozia, Vellozia sect. Xerophytoides, Xerophyta Introduction Vellozia Vandelli (1788: 32) comprises a few more than 100 species endemic to the Neotropics, mostly in relatively dry, rocky or sandy habitats (Mello-Silva 2010, Mello-Silva et al. 2011). Following revision of Neotropical members of the family (Smith & Ayensu 1976), several new species have been described (Smith & Ayensu 1979, 1980, Smith 1985a,b, 1986, Menezes 1980a, Menezes & Semir 1991, Mello-Silva & Menezes 1988, 1999a,b, Mello-Silva 1991a, 1993, 1994, 1996, 1997, 2004a, in press, Alves 1992, 2002, Alves et al.
    [Show full text]
  • Redalyc.Flower Morphology, Nectar Features, and Hummingbird Visitation to Palicourea Crocea (Rubiaceae) in the Upper Paraná
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil B. Mendonça, Luciana; dos Anjos, Luiz Flower morphology, nectar features, and hummingbird visitation to Palicourea crocea (Rubiaceae) in the Upper Paraná River floodplain, Brazil Anais da Academia Brasileira de Ciências, vol. 78, núm. 1, março, 2006, pp. 45-57 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32778106 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2006) 78(1): 45-57 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Flower morphology, nectar features, and hummingbird visitation to Palicourea crocea (Rubiaceae) in the Upper Paraná River floodplain, Brazil LUCIANA B. MENDONÇA1 and LUIZ DOS ANJOS2 1Universidade Estadual de Maringá, Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Av. Colombo, 5790, Bloco G90, 87020-900 Maringá, PR, Brasil 2Universidade Estadual de Londrina, Depto de Biologia Animal e Vegetal, Laboratório de Ornitologia e Bioacústica, Cx. Postal 6001, 86051-970 Londrina, PR, Brasil Manuscript received on March 18, 2005; accepted for publication on July 25, 2005; presented by NANUZA L. DE MENEZES ABSTRACT We investigated flower morphology, nectar features, and hummingbird visitation to Palicourea crocea (Ru- biaceae), a common ornithophilous shrub found in the riparian forest understory in the Upper Paraná River floodplain, Brazil.
    [Show full text]
  • Equinodermos Del Caribe Colombiano II: Echinoidea Y Holothuroidea Holothuroidea
    Holothuroidea Echinoidea y Equinodermos del Caribe colombiano II: Echinoidea y Equinodermos del Caribe colombiano II: Holothuroidea Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea Autores Giomar Helena Borrero Pérez Milena Benavides Serrato Christian Michael Diaz Sanchez Revisores: Alejandra Martínez Melo Francisco Solís Marín Juan José Alvarado Figuras: Giomar Borrero, Christian Díaz y Milena Benavides. Fotografías: Andia Chaves-Fonnegra Angelica Rodriguez Rincón Francisco Armando Arias Isaza Christian Diaz Director General Erika Ortiz Gómez Giomar Borrero Javier Alarcón Jean Paul Zegarra Jesús Antonio Garay Tinoco Juan Felipe Lazarus Subdirector Coordinación de Luis Chasqui Investigaciones (SCI) Luis Mejía Milena Benavides Paul Tyler Southeastern Regional Taxonomic Center Sandra Rincón Cabal Sven Zea Subdirector Recursos y Apoyo a la Todd Haney Investigación (SRA) Valeria Pizarro Woods Hole Oceanographic Institution David A. Alonso Carvajal Fotografía de la portada: Christian Diaz. Coordinador Programa Biodiversidad y Fotografías contraportada: Christian Diaz, Luis Mejía, Juan Felipe Lazarus, Luis Chasqui. Ecosistemas Marinos (BEM) Mapas: Laboratorio de Sistemas de Información LabSIS-Invemar. Paula Cristina Sierra Correa Harold Mauricio Bejarano Coordinadora Programa Investigación para la Gestión Marina y Costera (GEZ) Cítese como: Borrero-Pérez G.H., M. Benavides-Serrato y C.M. Diaz-San- chez (2012) Equinodermos del Caribe colombiano II: Echi- noidea y Holothuroidea. Serie de Publicaciones Especiales Constanza Ricaurte Villota de Invemar No. 30. Santa Marta, 250 p. Coordinadora Programa Geociencias Marinas (GEO) ISBN 978-958-8448-52-7 Diseño y Diagramación: Franklin Restrepo Marín. Luisa Fernanda Espinosa Coordinadora Programa Calidad Ambiental Impresión: Marina (CAM) Marquillas S.A. Palabras clave: Equinodermos, Caribe, Colombia, Taxonomía, Biodiversidad, Mario Rueda Claves taxonómicas, Echinoidea, Holothuroidea.
    [Show full text]