Lecture Notes on Many-Body Theory

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes on Many-Body Theory Lecture notes on many-body theory Michele Fabrizio updated to 2013, but still work in progress!! All comments are most welcome! Contents 1 Landau-Fermi-liquid theory: Phenomenology 5 1.1 The Landau energy functional and the concept of quasiparticles . .5 1.2 Quasiparticle thermodynamics . .9 1.2.1 Specific heat . 13 1.2.2 Compressibility and magnetic susceptibility . 13 1.3 Quasiparticle transport equation . 15 1.3.1 Quasiparticle current density . 18 1.4 Collective excitations in the collisionless regime . 20 1.4.1 Zero sound . 22 1.5 Collective excitations in the collision regime: first sound . 25 1.6 Linear response functions . 27 1.6.1 Formal solution . 28 1.6.2 Low frequency limit of the response functions . 31 1.6.3 High frequency limit of the response functions . 32 1.7 Charged Fermi-liquids: the Landau-Silin theory . 34 1.7.1 Formal solution of the transport equation . 37 1.8 Dirty quasiparticle gas . 39 1.8.1 Conductivity . 41 1.8.2 Diffusive behavior . 43 2 Second Quantization 48 2.1 Fock states and space . 48 2.2 Fermionic operators . 50 2.2.1 Second quantization of multifermion-operators . 52 2.2.2 Fermi fields . 55 2.3 Bosonic operators . 57 2.3.1 Bose fields and multiparticle operators . 57 2.4 Canonical transformations . 59 2.4.1 More general canonical transformations . 60 1 2.5 Examples and Exercises . 62 2.6 Application: fermionic lattice models and the emergence of magnetism . 65 2.6.1 Hubbard models . 69 2.6.2 The Mott insulator within the Hubbard model . 71 2.7 Spin wave theory in the Heisenberg model . 73 2.7.1 More rigorous derivation: the Holstein-Primakoff transformation . 81 3 Linear Response Theory 83 3.1 Linear Response Functions . 83 3.2 Kramers-Kronig relations . 86 3.2.1 Symmetries . 87 3.3 Fluctuation-Dissipation Theorem . 88 3.4 Spectral Representation . 90 3.5 Power dissipation . 91 3.5.1 Absorption/Emission Processes . 93 3.5.2 Thermodynamic Susceptibilities . 94 4 Hartree-Fock Approximation 98 4.1 Hartree-Fock Approximation for Fermions at Zero Temperature . 98 4.1.1 Alternative approach . 102 4.2 Hartree-Fock approximation for fermions at finite temperature . 106 4.2.1 Preliminaries . 106 4.2.2 Variational approach at T 6=0 ........................ 110 4.3 Mean-Field approximation for bosons and superfluidity . 114 4.3.1 Superfluid properties of the gauge symmetry breaking wavefunction . 119 4.4 Time-dependent Hartree-Fock approximation for fermions . 124 4.4.1 Bosonic representation of the low-energy excitations . 126 4.5 Application: antiferromagnetism in the half-filled Hubbard model . 130 4.5.1 Spin-wave spectrum by time dependent Hartree-Fock . 134 4.6 Linear response of an electron gas . 139 4.6.1 Response to an external charge . 142 4.6.2 Response to a transverse field . 147 4.6.3 Limiting values of the response functions . 148 4.6.4 Power dissipated by the electromagnetic field . 156 4.6.5 Reflectivity . 158 4.7 Random Phase Approximation for the electron gas . 160 5 Feynman diagram technique 163 5.1 Preliminaries . 163 5.1.1 Imaginary-time ordered products . 163 2 5.1.2 Matsubara frequencies . 164 5.1.3 Single-particle Green's functions . 168 5.2 Perturbation expansion in imaginary time . 172 5.2.1 Wick's theorem . 173 5.3 Perturbation theory for the single-particle Green's function and Feynman diagrams174 5.3.1 Diagram technique in momentum and frequency space . 177 5.3.2 The Dyson equation . 180 5.4 Other kinds of perturbations . 185 5.4.1 Scalar potential . 185 5.4.2 Coupling to bosonic modes . 186 5.5 Two-particle Green's functions and correlation functions . 189 5.5.1 Diagrammatic representation of the two-particle Green's function . 190 5.5.2 Correlation functions . 191 5.6 Coulomb interaction and proper and improper response functions . 194 5.6.1 Screened interaction and corresponding Dyson equation . 195 5.7 Irreducible vertices and the Bethe-Salpeter equations . 197 5.7.1 Bethe-Salpeter equation for the vertex functions . 198 5.8 The Ward identities . 200 5.9 Consistent approximation schemes . 204 5.9.1 Example: the Hartree-Fock approximation . 206 5.10 Some additional properties and useful results . 208 5.10.1 The occupation number and the Luttinger-Ward functional . 208 5.10.2 The thermodynamic potential . 211 5.10.3 The Luttinger theorem . 214 6 Landau-Fermi liquid theory: a microscopic justification 217 6.1 Preliminaries . 217 6.1.1 Vertex and Ward identities . 220 6.2 Correlation functions . 223 6.2.1 Conserved quantities . 225 6.3 Coulomb interaction . 226 7 Kondo effect and the physics of the Anderson impurity model 228 7.1 Brief introduction to scattering theory . 229 7.1.1 General analysis of the phase-shifts . 234 7.2 The Anderson Impurity Model . 235 7.2.1 Variation of the electron number . 239 7.2.2 Energy variation . 240 7.2.3 Mean-field analysis of the interaction . 242 7.3 From the Anderson to the Kondo model . 244 3 7.3.1 The emergence of logarithmic singularities and the Kondo temperature . 245 7.3.2 Anderson's scaling theory . 248 8 Introduction to abelian Bosonization 252 8.1 Interacting spinless fermions . 252 8.1.1 Spin wave theory . 255 8.1.2 Construction of the effective Hamiltonian . 256 8.2 Interactions . 263 8.2.1 Umklapp processes . 266 8.3 Bosonization of the Heisenberg model . 268 8.4 The Hubbard model . 272 4 Chapter 1 Landau-Fermi-liquid theory: Phenomenology One of the first thing that one learns in a Solid State Physics course is that the thermodynamic and transport properties of metals are well described in terms of non-interacting electrons; the Drude-Sommerfeld-Boltzmann theory of metals. Yet, this evidence is somehow surprising in view of the fact that actual electrons interact mutually via Coulomb repulsion, which is not weak at all. This puzzle was solved brilliantly in the end of the 50's by Landau, as we are going to discuss in what follows. We will start by analyzing the case of a neutral Fermi system, like 3He. Later we shall discuss charged Fermi systems, relevant to metals. 1.1 The Landau energy functional and the concept of quasipar- ticles Let us start from a non-interacting Fermi gas at very low temperature T . Right at T = 0 we know that the ground state is the Fermi sea that is obtained by filling with two opposite-spin electrons all momentum states with energy smaller than the chemical potential µ (the Fermi energy). In other words, if nkσ is the occupation number of each momentum state { nkσ being zero or one because of Pauli principle { then the Fermi-sea occupation numbers are ( (0) (0) 1 if k ≤ µ nkσ = (0) : 0 if k > µ At finite temperature, the equilibrium values of the occupation numbers are given by the Fermi- Dirac distribution −1 (0) (0) (0) β (k −µ) nkσ = f k − µ = 1 + e ; 5 with β = 1=KBT the inverse temperature. Any excited state can be uniquely identified by the variation of the occupation numbers with respect to equilibrium, namely through (0) δnkσ = nkσ − nkσ ; (1.1) and costs an energy (0) X (0) δE [fδnpαg] = k − µ δnkσ; (1.2) kσ that is a simple functional of the δnkσ's. Now suppose that we switch on smoothly the interaction. Each non-interacting excited state will evolve smoothly into a fully-interacting one. The Landau hypothesis was that the non-interacting and the fully interacting states are adiabatically connected; in other words they are in one-to-one correspondence. This implies in particular that each fully-interacting excited state can be uniquely identified, like its non-interacting partner, by the deviation with respect to equilibrium of the occupation numbers δnkσ. Consequently, its excitation energy δE must be a functional of the δnkσ's, i.e. δE [fδnpαg] : (1.3) ||| Remark This hypothesis may look simple but it is actually deeply counter-intuitive. Suppose we have a \non-interacting".
Recommended publications
  • The Electronic Properties of the Graphene and Carbon Nanotubes: Ab Initio Density Functional Theory Investigation
    International Scholarly Research Network ISRN Nanotechnology Volume 2012, Article ID 416417, 7 pages doi:10.5402/2012/416417 Research Article The Electronic Properties of the Graphene and Carbon Nanotubes: Ab Initio Density Functional Theory Investigation Erkan Tetik,1 Faruk Karadag,˘ 1 Muharrem Karaaslan,2 and Ibrahim˙ C¸ omez¨ 1 1 Physics Department, Faculty of Sciences and Letters, C¸ukurova University, 01330 Adana, Turkey 2 Electrical and Electronic Engineering Department, Faculty of Engineering, Mustafa Kemal University, 31040 Hatay, Turkey Correspondence should be addressed to Erkan Tetik, [email protected] Received 20 December 2011; Accepted 13 February 2012 AcademicEditors:A.Hu,C.Y.Park,andD.K.Sarker Copyright © 2012 Erkan Tetik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We examined the graphene and carbon nanotubes in 5 groups according to their structural and electronic properties by using ab initio density functional theory: zigzag (metallic and semiconducting), chiral (metallic and semiconducting), and armchair (metallic). We studied the structural and electronic properties of the 3D supercell graphene and isolated SWCNTs. So, we reported comprehensively the graphene and SWCNTs that consist of zigzag (6, 0) and (7, 0), chiral (6, 2) and (6, 3), and armchair (7, 7). We obtained the energy band graphics, band gaps, charge density, and density of state for these structures. We compared the band structure and density of state of graphene and SWCNTs and examined the effect of rolling for nanotubes. Finally, we investigated the charge density that consists of the 2D contour lines and 3D surface in the XY plane.
    [Show full text]
  • Nanotubes Electronics
    They are stronger than steel, but the most important uses for these threadlike macromolecules may be in faster, more efficient and more durable electronic devices by Philip G. Collins and Phaedon Avouris Nanotubes ElectronicsFOR early 10 years ago Sumio Iijima, sitting at an electron microscope at the NEC Fundamental Research Laboratory in Tsukuba, Japan, first noticed odd nano- scopic threads lying in a smear of soot. NMade of pure carbon, as regular and symmetric as crystals, these exquisitely thin, impressively long macromolecules soon became known as nanotubes, and they have been the object of intense scientific study ever since. Just recently, they have become a subject for engineering as well. Many of the extraordinary properties attributed to nanotubes—among them, superlative resilience, tensile strength and thermal stability—have fed fantastic predictions of microscopic robots, dent-resistant car bodies and earth- quake-resistant buildings. The first products to use nanotubes, however, exploit none of these. Instead the earliest applica- tions are electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. And two nanotube-based lighting and display prod- ucts are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes’ unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. Although the electronics industry is already pushing the critical dimensions of transistors in commercial chips be- low 200 nanometers (billionths of a meter)—about 400 atoms wide—engineers face large obstacles in continuing this miniaturization.
    [Show full text]
  • Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model
    Instituto de Física Teórica IFT Universidade Estadual Paulista October/92 IFT-R043/92 Stochastic Quantization of Fermionic Theories: Renormalization of the Massive Thirring Model J.C.Brunelli Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - São Paulo, S.P. Brazil 'This work was supported by CNPq. Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 145 01405 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 288-5643 Telefax: 55(11)36-3449 Telex: 55 (11) 31870 UJMFBR Electronic Address: [email protected] 47553::LIBRARY Stochastic Quantization of Fermionic Theories: 1. Introduction Renormalization of the Massive Thimng Model' The stochastic quantization method of Parisi-Wu1 (for a review see Ref. 2) when applied to fermionic theories usually requires the use of a Langevin system modified by the introduction of a kernel3 J. C. Brunelli (1.1a) InBtituto de Física Teórica (1.16) Universidade Estadual Paulista Rua Pamplona, 145 01405 - São Paulo - SP where BRAZIL l = 2Kah(x,x )8(t - ?). (1.2) Here tj)1 tp and the Gaussian noises rj, rj are independent Grassmann variables. K(xty) is the aforementioned kernel which ensures the proper equilibrium limit configuration for Accepted for publication in the International Journal of Modern Physics A. mas si ess theories. The specific form of the kernel is quite arbitrary but in what follows, we use K(x,y) = Sn(x-y)(-iX + ™)- Abstract In a number of cases, it has been verified that the stochastic quantization procedure does not bring new anomalies and that the equilibrium limit correctly reproduces the basic (jJsfsini g the Langevin approach for stochastic processes we study the renormalizability properties of the models considered4.
    [Show full text]
  • Lecture 5 6.Pdf
    Lecture 6. Quantum operators and quantum states Physical meaning of operators, states, uncertainty relations, mean values. States: Fock, coherent, mixed states. Examples of such states. In quantum mechanics, physical observables (coordinate, momentum, angular momentum, energy,…) are described using operators, their eigenvalues and eigenstates. A physical system can be in one of possible quantum states. A state can be pure or mixed. We will start from the operators, but before we will introduce the so-called Dirac’s notation. 1. Dirac’s notation. A pure state is described by a state vector: . This is so-called Dirac’s notation (a ‘ket’ vector; there is also a ‘bra’ vector, the Hermitian conjugated one, ( ) ( * )T .) Originally, in quantum mechanics they spoke of wavefunctions, or probability amplitudes to have a certain observable x , (x) . But any function (x) can be viewed as a vector (Fig.1): (x) {(x1 );(x2 );....(xn )} This was a very smart idea by Paul Dirac, to represent x wavefunctions by vectors and to use operator algebra. Then, an operator acts on a state vector and a new vector emerges: Aˆ . Fig.1 An operator can be represented as a matrix if some basis of vectors is used. Two vectors can be multiplied in two different ways; inner product (scalar product) gives a number, K, 1 (state vectors are normalized), but outer product gives a matrix, or an operator: Oˆ, ˆ (a projector): ˆ K , ˆ 2 ˆ . The mean value of an operator is in quantum optics calculated by ‘sandwiching’ this operator between a state (ket) and its conjugate: A Aˆ .
    [Show full text]
  • Transport, Criticality, and Chaos in Fermionic Quantum Matter at Nonzero Density
    Transport, criticality, and chaos in fermionic quantum matter at nonzero density a dissertation presented by Aavishkar Apoorva Patel to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts May 2019 ©2019 – Aavishkar Apoorva Patel all rights reserved. Dissertation advisor: Professor Subir Sachdev Aavishkar Apoorva Patel Transport, criticality, and chaos in fermionic quantum matter at nonzero density Abstract This dissertation is a study of various aspects of metals with strong interactions between electrons, with a particular emphasis on the problem of charge transport through them. We consider the physics of clean or weakly-disordered metals near some quantum critical points, and highlight novel transport regimes that could be relevant to experiments. We then develop a variety of exactly-solvable lattice models of strongly interacting non-Fermi liquid metals using novel non-perturbative techniques based on the Sachdev-Ye-Kitaev models, and relate their physics to that of the ubiquitous “strange metal” normal state of most correlated- electron superconductors, providing controlled theoretical insight into the possible mechanisms behind it. Finally, we use ideas from the field of quantum chaos to study mathematical quantities that can provide evidence for the existence of quasiparticles (or the lack thereof) in quantum many-body systems, in the context of metals with correlated electrons. iii Contents 0 Introduction 1 0.1 The quantum mechanics of metals ............................... 1 0.2 “Strange” metals ........................................ 4 0.3 Metals beyond Fermi liquids .................................. 6 0.4 Many-body quantum chaos .................................. 14 1 Hyperscaling at the spin density wave quantum critical point in two dimensional metals 18 1.1 Introduction .........................................
    [Show full text]
  • Cavity State Manipulation Using Photon-Number Selective Phase Gates
    week ending PRL 115, 137002 (2015) PHYSICAL REVIEW LETTERS 25 SEPTEMBER 2015 Cavity State Manipulation Using Photon-Number Selective Phase Gates Reinier W. Heeres, Brian Vlastakis, Eric Holland, Stefan Krastanov, Victor V. Albert, Luigi Frunzio, Liang Jiang, and Robert J. Schoelkopf Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA (Received 27 February 2015; published 22 September 2015) The large available Hilbert space and high coherence of cavity resonators make these systems an interesting resource for storing encoded quantum bits. To perform a quantum gate on this encoded information, however, complex nonlinear operations must be applied to the many levels of the oscillator simultaneously. In this work, we introduce the selective number-dependent arbitrary phase (SNAP) gate, which imparts a different phase to each Fock-state component using an off-resonantly coupled qubit. We show that the SNAP gate allows control over the quantum phases by correcting the unwanted phase evolution due to the Kerr effect. Furthermore, by combining the SNAP gate with oscillator displacements, we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator- encoded qubits. DOI: 10.1103/PhysRevLett.115.137002 PACS numbers: 85.25.Hv, 03.67.Ac, 85.25.Cp Traditional quantum information processing schemes It has been shown that universal control is possible using rely on coupling a large number of two-level systems a single nonlinear term in addition to linear controls [11], (qubits) to solve quantum problems [1].
    [Show full text]
  • Chapter 3 Bose-Einstein Condensation of an Ideal
    Chapter 3 Bose-Einstein Condensation of An Ideal Gas An ideal gas consisting of non-interacting Bose particles is a ¯ctitious system since every realistic Bose gas shows some level of particle-particle interaction. Nevertheless, such a mathematical model provides the simplest example for the realization of Bose-Einstein condensation. This simple model, ¯rst studied by A. Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas. In particular, such basic concepts as BEC critical temperature Tc (or critical particle density nc), condensate fraction N0=N and the dimensionality issue will be obtained. 3.1 The ideal Bose gas in the canonical and grand canonical ensemble Suppose an ideal gas of non-interacting particles with ¯xed particle number N is trapped in a box with a volume V and at equilibrium temperature T . We assume a particle system somehow establishes an equilibrium temperature in spite of the absence of interaction. Such a system can be characterized by the thermodynamic partition function of canonical ensemble X Z = e¡¯ER ; (3.1) R where R stands for a macroscopic state of the gas and is uniquely speci¯ed by the occupa- tion number ni of each single particle state i: fn0; n1; ¢ ¢ ¢ ¢ ¢ ¢g. ¯ = 1=kBT is a temperature parameter. Then, the total energy of a macroscopic state R is given by only the kinetic energy: X ER = "ini; (3.2) i where "i is the eigen-energy of the single particle state i and the occupation number ni satis¯es the normalization condition X N = ni: (3.3) i 1 The probability
    [Show full text]
  • 4 Representations of the Electromagnetic Field
    4 Representations of the Electromagnetic Field 4.1 Basics A quantum mechanical state is completely described by its density matrix ½. The density matrix ½ can be expanded in di®erent basises fjÃig: X ­ ¯ ¯ ½ = Dij jÃii Ãj for a discrete set of basis states (158) i;j ¯ ® ¯ The c-number matrix Dij = hÃij ½ Ãj is a representation of the density operator. One example is the number state or Fock state representation of the density ma- trix. X ½nm = Pnm jni hmj (159) n;m The diagonal elements in the Fock representation give the probability to ¯nd exactly n photons in the ¯eld! A trivial example is the density matrix of a Fock State jki: ½ = jki hkj and ½nm = ±nk±km (160) Another example is the density matrix of a thermal state of a free single mode ¯eld: + exp[¡~!a a=kbT ] ½ = + (161) T rfexp[¡~!a a=kbT ]g In the Fock representation the matrix is: X ½ = exp[¡~!n=kbT ][1 ¡ exp(¡~!=kbT )] jni hnj (162) n X hnin = jni hnj (163) (1 + hni)n+1 n with + ¡1 hni = T r(a a½) = [exp(~!=kbT ) ¡ 1] (164) 37 This leads to the well-known Bose-Einstein distribution: hnin ½ = hnj ½ jni = P = (165) nn n (1 + hni)n+1 4.2 Glauber-Sudarshan or P-representation The P-representation is an expansion in a coherent state basis jf®gi: Z ½ = P (®; ®¤) j®i h®j d2® (166) A trivial example is again the P-representation of a coherent state j®i, which is simply the delta function ±(® ¡ a0). The P-representation of a thermal state is a Gaussian: 1 2 P (®) = e¡j®j =n (167) ¼n Again it follows: Z ¤ 2 2 Pn = hnj ½ jni = P (®; ® ) jhnj®ij d ® (168) Z 2n 1 2 j®j 2 = e¡j®j =n e¡j®j d2® (169) ¼n n! The last integral can be evaluated and gives again the thermal distribution: hnin P = (170) n (1 + hni)n+1 4.3 Optical Equivalence Theorem Why is the P-representation useful? ² j®i corresponds to a classical state.
    [Show full text]
  • Arxiv:2102.13616V2 [Cond-Mat.Quant-Gas] 30 Jul 2021 That Preserve Stability of the Underlying Problem1
    Self-stabilized Bose polarons Richard Schmidt1, 2 and Tilman Enss3 1Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 Munich, Germany 3Institut f¨urTheoretische Physik, Universit¨atHeidelberg, 69120 Heidelberg, Germany (Dated: August 2, 2021) The mobile impurity in a Bose-Einstein condensate (BEC) is a paradigmatic many-body problem. For weak interaction between the impurity and the BEC, the impurity deforms the BEC only slightly and it is well described within the Fr¨ohlich model and the Bogoliubov approximation. For strong local attraction this standard approach, however, fails to balance the local attraction with the weak repulsion between the BEC particles and predicts an instability where an infinite number of bosons is attracted toward the impurity. Here we present a solution of the Bose polaron problem beyond the Bogoliubov approximation which includes the local repulsion between bosons and thereby stabilizes the Bose polaron even near and beyond the scattering resonance. We show that the Bose polaron energy remains bounded from below across the resonance and the size of the polaron dressing cloud stays finite. Our results demonstrate how the dressing cloud replaces the attractive impurity potential with an effective many-body potential that excludes binding. We find that at resonance, including the effects of boson repulsion, the polaron energy depends universally on the effective range. Moreover, while the impurity contact is strongly peaked at positive scattering length, it remains always finite. Our solution highlights how Bose polarons are self-stabilized by repulsion, providing a mechanism to understand quench dynamics and nonequilibrium time evolution at strong coupling.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Generation and Detection of Fock-States of the Radiation Field
    Generation and Detection of Fock-States of the Radiation Field Herbert Walther Max-Planck-Institut für Quantenoptik and Sektion Physik der Universität München, 85748 Garching, Germany Reprint requests to Prof. H. W.; Fax: +49/89-32905-710; E-mail: [email protected] Z. Naturforsch. 56 a, 117-123 (2001); received January 12, 2001 Presented at the 3rd Workshop on Mysteries, Puzzles and Paradoxes in Quantum Mechanics, Gargnano, Italy, September 1 7 -2 3 , 2000. In this paper we give a survey of our experiments performed with the micromaser on the generation of Fock states. Three methods can be used for this purpose: the trapping states leading to Fock states in a continuous wave operation, state reduction of a pulsed pumping beam, and finally using a pulsed pumping beam to produce Fock states on demand where trapping states stabilize the photon number. Key words: Quantum Optics; Cavity Quantum Electrodynamics; Nonclassical States; Fock States; One-Atom-Maser. I. Introduction highly excited Rydberg atoms interact with a single mode of a superconducting cavity which can have a The quantum treatment of the radiation field uses quality factor as high as 4 x 1010, leading to a photon the number of photons in a particular mode to char­ lifetime in the cavity of 0.3 s. The steady-state field acterize the quantum states. In the ideal case the generated in the cavity has already been the object modes are defined by the boundary conditions of a of detailed studies of the sub-Poissonian statistical cavity giving a discrete set of eigen-frequencies.
    [Show full text]
  • General Quantization
    General quantization David Ritz Finkelstein∗ October 29, 2018 Abstract Segal’s hypothesis that physical theories drift toward simple groups follows from a general quantum principle and suggests a general quantization process. I general- quantize the scalar meson field in Minkowski space-time to illustrate the process. The result is a finite quantum field theory over a quantum space-time with higher symmetry than the singular theory. Multiple quantification connects the levels of the theory. 1 Quantization as regularization Quantum theory began with ad hoc regularization prescriptions of Planck and Bohr to fit the weird behavior of the electromagnetic field and the nuclear atom and to handle infinities that blocked earlier theories. In 1924 Heisenberg discovered that one small change in algebra did both naturally. In the early 1930’s he suggested extending his algebraic method to space-time, to regularize field theory, inspiring the pioneering quantum space-time of Snyder [43]. Dirac’s historic quantization program for gravity also eliminated absolute space-time points from the quantum theory of gravity, leading Bergmann too to say that the world point itself possesses no physical reality [5, 6]. arXiv:quant-ph/0601002v2 22 Jan 2006 For many the infinities that still haunt physics cry for further and deeper quanti- zation, but there has been little agreement on exactly what and how far to quantize. According to Segal canonical quantization continued a drift of physical theory toward simple groups that special relativization began. He proposed on Darwinian grounds that further quantization should lead to simple groups [32]. Vilela Mendes initiated the work in that direction [37].
    [Show full text]