Molecular Phylogeny of the Entomophthoromycota ⇑ Andrii P

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of the Entomophthoromycota ⇑ Andrii P Molecular Phylogenetics and Evolution 65 (2012) 682–694 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny of the Entomophthoromycota ⇑ Andrii P. Gryganskyi a,f, , Richard A. Humber b, Matthew E. Smith c, Jolanta Miadlikovska a, Steven Wu a, Kerstin Voigt d, Grit Walther d,e, Iryna M. Anishchenko f, Rytas Vilgalys a a Duke University, Department of Biology, Durham, NC 27708-90338, USA b USDA-ARS BioIPM Research, RW Holley Center for Agriculture & Health 538 Tower Road, Ithaca, NY 14853, USA c Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA d Friedrich-Schiller University of Jena, Institute of Microbiology, 25 Neugasse, Jena 07743, Germany e CBS-KNAW Fungal Biodiversity Centre, 8 Uppsalalaan, Utrecht 3584 CT, The Netherlands f M. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., Kyiv 01601, Ukraine article info abstract Article history: The Entomophthoromycota is a ubiquitous group of fungi best known as pathogens of a wide variety of Received 28 February 2012 economically important insect pests, and other soil invertebrates. This group of fungi also includes a Revised 3 July 2012 small number of parasites of reptiles, vertebrates (including humans), macromycetes, fern gametophytes, Accepted 23 July 2012 and desmid algae, as well as some saprobic species. Here we report on recent studies to resolve the phy- Available online 2 August 2012 logenetic relationships within the Entomophthoromycota and to reliably place this group among other basal fungal lineages. Bayesian Interference (BI) and Maximum Likelihood (ML) analyses of three genes Keywords: (nuclear 18S and 28S rDNA, mitochondrial 16S, and the protein-coding RPB2) as well as non-molecular Fungi data consistently and unambiguously identify 31 taxa of Entomophthoromycota as a monophyletic group Monophyly Divergence time distinct from other Zygomycota and flagellated fungi. Using the constraints of our multi-gene dataset we Ancestral state constructed the most comprehensive rDNA phylogeny yet available for Entomophthoromycota. The taxa Substitution rate studied here belong to five distinct, well-supported lineages. The Basidiobolus clade is the earliest diverg- ing lineage, comprised of saprobe species of Basidiobolus and the undescribed snake parasite Schizangiella serpentis nom. prov. The Conidiobolus lineage is represented by a paraphyletic grade of trophically diverse species that include saprobes, insect pathogens, and facultative human pathogens. Three well supported and exclusively entomopathogenic lineages in the Entomophthoraceae center around the genera Batkoa, Entomophthora and Zoophthora, although several genera within this crown clade are resolved as non- monophyletic. Ancestral state reconstruction suggests that the ancestor of all Entomophthoromycota was morphologically similar to species of Conidiobolus. Analyses using strict, relaxed, and local molecular clock models documented highly variable DNA substitution rates among lineages of Entomophthoromy- cota. Despite the complications caused by different rates of molecular evolution among lineages, our dat- ing analysis indicates that the Entomophthoromycota originated 405 ± 90 million years ago. We suggest that entomopathogenic lineages in Entomophthoraceae probably evolved from saprobic or facultatively pathogenic ancestors during or shortly after the evolutionary radiation of the arthropods. Ó 2012 Elsevier Inc. All rights reserved. 1. Introduction mans (Pfitzer, 1872; Humber, 1981, 1984; Sharma et al., 2003; Hibbett et al., 2007; Koval, 2007). The phylum Entomophthoromycota (Humber, in press) is an eco- The Entomophthoromycota display a variety of different growth logically important fungal lineage consisting of more than 180 spe- forms. These fungi can grow as a well-developed, multinucleate or cies that are primarily obligate arthropod parasites that are found septate mycelium that is either walled or protoplastic, depending in diverse habitats worldwide. This group also includes some sap- on the species and the stage of growth. Most of the entomopatho- rotrophic taxa as well as a handful of species that are parasites of genic species develop inside their arthropod hosts as multinucleate desmid algae, fern gametophytes, tardigrades, and nematodes as hyphal bodies. Asexual reproduction in species of Entomophthor- well as several facultative parasites of vertebrates including hu- omycota is characterized by the production of forcibly discharged conidia on distinctive conidiophores, and the routine formation of actively or passively dispersed secondary conidia. This repetitive production of forcibly discharged conidia is unique among basal ⇑ Corresponding author at: Duke University, Department of Biology, Durham, NC 27708-90338, USA. fungal lineages and appears to be a synapomorphy. The thick- E-mail address: [email protected] (A.P. Gryganskyi). walled resting spores form either as zygospores after the fusion 1055-7903/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ympev.2012.07.026 A.P. Gryganskyi et al. / Molecular Phylogenetics and Evolution 65 (2012) 682–694 683 of compatible hyphae (gametangia) or, most commonly in Entom- ophthoromycota and across all early diverging fungi (Nagahama ophthoraceae, as azygospores formed without a prior gametangial et al., 1995; Jensen et al., 1998). Traditional taxonomy had recog- conjugation. It is difficult to determine whether any of these rest- nized the large, diverse, and heterogeneous phylum Zygomycota ing spores is the result of sexual reproduction since it appears that for fungi with non-septate mycelium and sexual spores formed the morphological events of conjugation and genetic events of after hyphal fusion (Moreau, 1954). Molecular phylogenetic stud- karyogamy and meiosis may not be obligatorily linked in these ies have verified the heterogeneity of this phylum by recognizing fungi (Humber, 1981, in press; McCabe et al., 1984). It has been at least five apparently monophyletic groups within the fungi of suggested that all Entomophthoromycota species are homothallic Zygomycota s.l. Based on the results of a six-gene phylogenetic but the mating biology of this group has not been studied geneti- analysis of all major fungal groups (James et al., 2006), the phylum cally (Humber, in press). Intracellular characteristics such as nucle- Zygomycota was rejected as non-monophyletic and these five ar size and number, size and position of the nucleolus, and the molecularly distinct lineages were recognized as the phylum Glom- details of mitotic divisions have long been used to differentiate eromycota (arbuscular mycorrhizal fungi) and four subphyla of the taxa, particularly at the familial rank (Humber, 1981, 1984, uncertain position (incertae sedis): Mucoromycotina, Entomopht- 1989). horomycotina, Kickxellomycotina, and Zoopagomycotina (Hibbett The molecular systematics of the Entomophthoromycota was et al., 2007). Fifth subphyllum Mortierellomycotina was separated first addressed in the 1990s when a few taxa were included in from Mucoromycotina recently (Hoffmann et al., 2011). Nomencla- analyses to elucidate broad phylogenetic patterns in the evolution ture for the major groups of former Zygomycota has not yet been of basal fungi. The early phylogenetic studies repeatedly revealed a standardized (e.g., Kirk et al., 2001; O’Donnell et al., 2001; Hibbett striking lack of concordance between traditional morphological et al., 2007). While evolutionary relationships within the Entom- taxonomy and the newer molecular data, both within the Entom- ophthoromycotina have not been fully resolved, the morphology Fig. 1. Placement of Entomophthoromycota among the basal fungal lineages in 12 previously published studies. Thickened branches indicate lineages with statistically significant support as reported in the original publication. Filled ovals indicate Entomophthoromycota and small open circles with tails indicate flagellated fungi (Chytridiomycota and Blastocladiomycota). Phylogenies are modified for presentation here based on the following publications: 1 – Nagahama et al. (1995);2–Jensen et al. (1998);3–James et al. (2000);4–Tanabe et al. (2000);5–Keeling (2003);6–Einax and Voigt (2003);7–Tanabe et al. (2004);8–James et al. (2006);9–White et al. (2006); 10 – Liu and Voigt (2010);11–Ebersberger et al. (2011);12–Sekimoto et al. (2011). 684 A.P. Gryganskyi et al. / Molecular Phylogenetics and Evolution 65 (2012) 682–694 of this group and the results of James et al. (2006) suggst that it gle gene suggested a polyphyletic Entomophthoromycota, with may be a unique monophyletic lineage. Based on these criteria, Basidiobolus split from the rest of the group (Nagahama et al., Humber (in press) reasoned that this lineage was sufficiently dis- 1995; Jensen et al., 1998)(Fig. 1.1–7 and 1.10). In contrast, mul- tinct to be recognized at the phylum rank as Entomophthoromycota. ti-locus phylogenetic analyses have delimited a monophyletic Previous molecular studies suggest that the Entomophthoromy- Entomophthoromycota (Fig. 1.8: James et al., 2006; Fig. 1.9: White cota is a polyphyletic group with uncertain placement of its main et al., 2006). Another characteristic feature of most phylogenetic lineages (Nagahama et al., 1995; Jensen et al., 1998; James et al., studies is that most have reconstructed flagellated fungi as a ‘‘sister 2006; White et al., 2006; Liu
Recommended publications
  • Morphological and Molecular Characterization of Entomophthorales
    Acta Mycologica Article ID: 5522 DOI: 10.5586/am.5522 ORIGINAL RESEARCH PAPER in MICROSCOPIC FUNGI Publication History Received: 2020-02-27 Morphological and Molecular Accepted: 2020-06-26 Published: 2020-11-27 Characterization of Entomophthorales Handling Editor (Entomophthoromycota: Malgorzata Ruszkiewicz-Michalska; Institute Entomophthoromycotina) from Argentina for Agricultural and Forest Environment, Polish Academy of Sciences; University of Łódź; 1* 2 Romina G. Manfrino , Louela A. Castrillo , https://orcid.org/0000-0001- 1 3 8901-0552 Claudia C. López Lastra , Andrea V. Toledo , , 1 4 Authors Contributions Walter Ferrari , Annette B. Jensen RGM and WF conducted the DNA 1Centro de Estudios Parasitólogicos y de Vectores – CEPAVE (CONICET, Consejo Nacional de extraction and PCR assays; ABJ, Investigaciones Científcas y Tecnológicas; UNLP, Universidad Nacional de La Plata), La Plata, AVT, and LAC conducted the Buenos Aires, Argentina phylogenetic analyses; RGM, 2Robert W. Holley Center for Agriculture & Health, U.S. Department of Agriculture, CCLL, and LAC wrote the Agriculture Research Service, Ithaca, 14853, NY, USA manuscript; CCLL and ABJ 3Facultad de Ciencias Agrarias y Forestales, Centro de Investigacioness de Fitopatología – secured funding CIDEFI (CICPBA, Comisión de Investigaciones Científcas de la Provincia de Buenos Aires; UNLP, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina Funding 4Department of Agriculture and Ecology, University of Copenhagen, Thorvaldsensvej 40, This study was supported by the Frederiksberg C, 1871, Denmark National Research Council of Argentina (CONICET) and by *To whom correspondence should be addressed. Email: [email protected] University of La Plata (UNLP). Competing Interests Abstract No competing interests have been declared. We characterized 17 insect-pathogenic entomophthoralean fungal isolates (Entomophthoromycotina: Entomophthorales) using morphological and Copyright Notice molecular techniques.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984).
    [Show full text]
  • 1 Project Title: the Role of Entomopathogenic Fungi In
    Project title: The role of entomopathogenic fungi in regulating aphid populations in field Brassicas Project number: CP092 Project leader: Dr. Dave Chandler, Warwick Crop Centre, University of Warwick, CV35 9EF Report: [Final] report, October 2016 Previous report: [Annual] report, February 2015 Key staff: Liam Harvey, Warwick Crop Centre, University of Warwick, CV35 9EF Location of project: Warwick Crop Centre, University of Warwick, CV35 9EF Industry Representative: Andy Richardson, Allium & Brassica Centre, Wash Road, Kirton, Boston, Lincs., PE20 1QQ Date project commenced: 01/02/2013 Date project completed 30/04/2016 (or expected completion date): 1 DISCLAIMER AHDB, operating through its HDC division seeks to ensure that the information contained within this document is accurate at the time of printing. No warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. Copyright, Agriculture and Horticulture Development Board 2017. All rights reserved. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic means) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without the prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or HDC is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Diversity of Entomopathogens Fungi: Which Groups Conquered
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 4, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • A Computer Model of the Gypsy Moth and Its Fungal Pathogen 5
    Abstract A one-host generation computer model, with a time-step of 1 day, has been developed to simulate the interaction between the very effective fungal pathogen, Entomophaga maimaiga, and its host, the gypsy moth. This publication describes the structure of the validated model, the kinds of model inputs needed and the outputs produced, and gives examples of model results. The model can be used to construct scenarios of future gypsy moth-fungus interactions and to evaluate the effectiveness of the fungus as a biological control agent. A Computer Model of the Gyl--, Moth and its Fungal Pathogen By Ronald M. Weseloh The gypsy moth fungal pathogen, Entomophaga rroper weather conditions are very impoftant for the maimaiga, was first found to be established in North fungus to be effective. Moist soil during the gypsy moth America in 1989 (Andreadis and Weseloh 1990), and larval season and adequate rainfall at the times of conidial positively identified as a species from Japan (Hajek et al. sporulation must occur for the fungus to infect larvae. The 1990). Since 1989, the fungus has significantly suppressed number of resting spores in the soil (resting spore load) and the gypsy moth in the generally infested areas of North the number of gypsy moths available for infection probably America. Numerous scenarios have been proposed for how it also influence hngus activity. Using these inputs, colleagues became established (Hajek et at. 1995), but we probably will and I have developed a computer model that simulates the never know for sure. infection, growth, and death of the host and pathogen over a Fortunately, E.
    [Show full text]
  • New Opportunities for the Integration of Microorganisms Into Biological Pest Control Systems in Greenhouse Crops
    J Pest Sci DOI 10.1007/s10340-016-0751-x REVIEW New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops 1 2 3 4 Francisco Gonzalez • Cezary Tkaczuk • Mihaela Monica Dinu • Zaneta_ Fiedler • 5 6 7 Stefan Vidal • Einat Zchori-Fein • Gerben J. Messelink Received: 20 November 2015 / Revised: 16 February 2016 / Accepted: 7 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Biological pest control with mass-produced research on and the applied use of combinations of arthropod arthropod natural enemies is well developed in greenhouse natural enemies and microbials have remained relatively crops and has often resulted in the evolution of complex under explored. Here, we review current uses of ento- ecosystems with persistent populations of multiple arthro- mopathogenic fungi, bacteria and viruses, and their possible pod natural enemy species. However, there are cases where direct and indirect effects on arthropod natural enemies in arthropod natural enemies are either not effective enough, European greenhouses. We discuss how microbials might be not available, or their use is rather costly. For these rea- combined with arthropod natural enemies in the light of new sons, biological control based on microorganisms, also methodologies and technologies such as conservation bio- referred to as ‘microbials’, represents a complementary logical control, greenhouse climate management, and for- strategy for further development. Although commercially mulation and delivery. Furthermore, we explore the available microbials have been around for quite some time, possibilities of using other microorganisms for biological control, such as endophytes, and the need to understand the effect of insect-associated microorganisms, or symbionts, on Communicated by N.
    [Show full text]
  • Abiotic and Pathogen Factors of Entomophaga Grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus Differentialis (Thomas)
    Abiotic and Pathogen Factors of Entomophaga grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus differentialis (Thomas) by DWIGHT KEITH TILLOTSON B.S., Kansas State University, 1973 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology KANSAS STATE UNIVERSITY Manhattan, Kansas 1988 Approved: David C. Margolies Major Professor ^O ' AllSQfl 130711 FMTrT) 'X.V TABLE OF CONTENTS 75M List of Figures ii c, 2- Acknowledgements ^^^ Background and Literature Review 1- Part I Effects of temperature and photoperiod on percent mortality, time to mortality and mature resting spore production in Melanoplus differentialis infected by Entomophaga grvlli pathotype 2 Introduction o Materials and Methods 10 Results 15 Discussion i7 Part II Effect of cadaver age on cryptoconidia production in Melanoplus differentialis infected by Entomophaga grylli pathotype 2 Introduction 21 Materials and Methods 24 Results 27 Discussion 28 Summary and Conclusion 29 Figures 32 Literature Cited 50 LIST OF FIGURES Fig. 1 Graph of mortality data grouped by temperature 33 Fig. 2 Graph of mortality data grouped by photoperiod 33 Fig. 3 Graph of disease length data grouped by temperature 35 Fig. 4 Graph of disease length data grouped by photoperiod 35 Fig. 5 Graph of mature resting spore proportion data grouped by temperature 37 Fig. 6 Graph of mature resting spore proportion data grouped by photoperiod 37 Fig. 7 Hourly cryptoconidia production 39 Fig. 8 Number of mature resting spores 41 Fig. 9 Number of hyphal bodies + immature resting spores 43 Fig. 10 Number of cryptoconidia 45 Fig. 11 Cryptoconidia as percentage of number of hyphal bodies + immature resting spores on agar plate 47 Fig.
    [Show full text]
  • Discovery of Entomophaga Maimaiga in North American Gypsy Moth, Lymantria Dispar (Entomophthorales/Epizootic/Lymantriidae) THEODORE G
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 2461-2465, April 1990 Population Biology Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar (Entomophthorales/epizootic/Lymantriidae) THEODORE G. ANDREADIS AND RONALD M. WESELOH Department of Entomology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, CT 06504 Communicated by Paul E. Waggoner, January 9, 1990 ABSTRACT An entomopathogenic fungus, Entomophaga reported occurrence of this fungus in North American gypsy maimaiga, was found causing an extensive epizootic in outbreak moths. In this report we present a full description of the populations of the gypsy moth, Lymantia dispar, throughout fungus and its disease in native gypsy moths and further many forested and residential areas of the northeastern United recount its distribution, epizootiology, and impact on the States. This is the first recognized occurrence of this or any population. entomophthoralean fungus in North American gypsy moths, and its appearance was coincident with an abnormally wet MATERIALS AND METHODS spring. Most fungal-infected gypsy moth larvae were killed in mass during the fourth and fifth stadium and were character- Identification and Characterization of the Fungus. Charac- istically found clinging to the trunks of trees with their heads terization of the fungus was made from microscopic exami- pointed downward. The fungus produces thick-walled resistant nation of naturally infected L. dispar larvae collected from resting spores within dried gypsy moth cadavers and infectious several different locations in Connecticut during June and conidia when freshly killed larvae are held in a wet environ- July 1989. Observations were made from living host larvae ment.
    [Show full text]
  • 1 Naming Names: the Etymology of Fungal Entomopathogens
    Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Use of Entomopathogenic Fungi in Biological Pest Management, 2007: 1-11 ISBN: 978-81-308-0192-6 Editors: Sunday Ekesi and Nguya K. Maniania Naming names: The etymology 1 of fungal entomopathogens Fernando E. Vega Sustainable Perennial Crops Laboratory, USDA, ARS, Bldg. 011A, BARC-W Beltsville Maryland 20705, USA Abstract This chapter introduces the reader to the etymology of the generic names given to 26 fungal entomopathogens. Possessing some knowledge on how a name originates sometimes provides us with information on a fungal characteristic that might help us identify the organism, e.g., Conidiobolus, Cordyceps, Pandora, Regiocrella, Orthomyces, etc. In other cases, the name won’t tell us what the fungus looks like, but serves to honor those for whom the fungus was named, e.g., Aschersonia, Batkoa, Beauveria, Nomuraea, Strongwellsea, etc. Correspondence/Reprint request: Dr. Fernando E. Vega, Sustainable Perennial Crops Laboratory, USDA ARS, Bldg. 011A, BARC-W, Beltsville, Maryland 20705, USA. E-mail: [email protected] 2 Fernando E. Vega 1. Introduction One interesting aspect in the business of science is the naming of taxonomic species: the reasons why organisms are baptized with a certain name, which might or might not change as science progresses. Related to this topic, the scientific illustrator Louis C. C. Krieger (1873-1940) [1] self-published an eight- page long article in 1924, entitled “The millennium of systematic mycology: a phantasy” where the main character is a “... systematic mycologist, who, from too much “digging” in the mighty “scrapheap” of synonymy, fell into a deep coma.” As he lies in this state, he dreams about being in Heaven, and unable to leave behind his collecting habits, picks up an amanita and upon examining it finds a small capsule hidden within it.
    [Show full text]
  • And Mushroom-Associated Alkaloids from Two Behavior Modifying Cicada Pathogens*
    Fungal Ecology 41 (2019) 147e164 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens* Greg R. Boyce a, Emile Gluck-Thaler b, Jason C. Slot b, Jason E. Stajich c, William J. Davis d, Tim Y. James d, John R. Cooley e, Daniel G. Panaccione a, Jørgen Eilenberg f, Henrik H. De Fine Licht f, Angie M. Macias a, Matthew C. Berger a, Kristen L. Wickert a, Cameron M. Stauder a, Ellie J. Spahr a, Matthew D. Maust a, Amy M. Metheny a, Chris Simon g, Gene Kritsky h, Kathie T. Hodge i, Richard A. Humber i, j, Terry Gullion k, * Dylan P.G. Short l, Teiya Kijimoto a, Dan Mozgai m, Nidia Arguedas n, Matt T. Kasson a, a Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA b Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA c Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA d Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, 48109, USA e Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT, 06103, USA f Department of Plant and Environmental Science, University of Copenhagen, Denmark g Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA h Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA i Plant Pathology
    [Show full text]
  • V.Woolleythesisfinalversion Corrections VWJWSR
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129924 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Elucidating the natural function of cordycepin, a secondary metabolite of the fungus Cordyceps militaris, and its potential as a novel biopesticide in Integrated Pest Management By Victoria Clare Woolley A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Life Sciences University of Warwick, School of Life Sciences September 2018 Table of Contents List of Figures ......................................................................................................... 1 List of Tables ........................................................................................................... 3 Abbreviations .......................................................................................................... 4 Acknowledgements .................................................................................................. 6 Declarations ............................................................................................................ 7 Abstract ..................................................................................................................
    [Show full text]