Molecular Ecology (2009) 18, 3885–3902 doi: 10.1111/j.1365-294X.2009.04319.x

Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water

P. ABELLA´ N,*† A. MILLA´ N‡ and I. RIBERA*† *Departamento de Biodiversidad y Biologı´a Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain, †Instituto de Biologı´a Evolutiva (UPF-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain, ‡Departamento de Ecologı´a e Hidrologı´a, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

Abstract It has been hypothesized that species living in small lentic water bodies, because of the short-term geological persistence of their habitat, should show higher dispersal ability, with increased gene flow among populations and a less pronounced phylogeographical structure. Conversely, lotic species, living in more geologically stable habitats, should show reduced dispersal and an increased phylogeographical structure at the same geographical scales. In this work we tested the influence of habitat type in two groups of aquatic Coleoptera (Nebrioporus ceresyi and Ochthebius notabilis groups, families and Hydraenidae respectively), each of them with closely related species typical of lotic and lentic saline Western Mediterranean water bodies. We used mitochondrial cox1 sequence data of 453 specimens of 77 populations through the range of nine species to compare a lotic vs. a lentic lineage in each of the two groups. Despite the differences in biology (predators vs. detritivorous) and evolutionary history, in both lotic lineages there was a higher proportion of nucleotide diversity among than within groups of populations, and a faster rate of accumulation of haplotype diversity (as measured by rarefaction curves) than in the lentic lineages. Similarly, lotic lineages had a higher absolute phylogenetic diversity, more remarkable considering their smaller absolute geographical ranges. By comparing closely related species, we were able to show the effect of contrasting habitat preferences in two different groups, in agreement with predictions derived from habitat stability.

Keywords: aquatic Coleoptera, habitat constraints, habitat stability, nucleotide diversity, phylo- geographical structure Received 25 February 2009; revision received 1 July 2009; accepted 7 July 2009

these two types of water bodies. Most species inhabit- Introduction ing aquatic environments are specialized to one of The habitat determines the spatial matrix in which these habitat types, and these differences in habitat species persist, constraining many aspects of species’ preference occur at all phylogenetic levels, often ecology and affecting biogeography and population among sister species, or groups of closely related spe- structure (Southwood 1977, 1988; Korfiatis & Stamou cies (Illies 1978). Both habitat types differ in their 1999). In freshwater habitats, a particularly important long-term persistence: small lentic water bodies, typi- ecological difference is whether they are standing (len- cal of many macroinvertebrates, tend to fill with sedi- tic) or running (lotic), with a wide range of physical ment over a time period of decades or centuries, and biological characteristics associated to each of whereas rivers and streams persist over geologically defined periods, even if their exact location may Correspondence: Pedro Abella´n, Fax: +34 932309555; change or if they dry up seasonally (Hutchinson E-mail: [email protected] 1957).

2009 Blackwell Publishing Ltd 3886 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

The contrasting habitat permanence of lotic and small saline water bodies in the Western Mediterranean, the lentic water bodies is predicted to have a cascade of Ochthebius notabilis and Nebrioporus ceresyi groups (fami- ecological and evolutionary implications ranging from lies Hydraenidae and Dytiscidae respectively, Ja¨ch 1992; the individual to the lineage (see Ribera 2008 for a Fery et al. 1996), each of them including closely related review). Critically, species living in geologically long- species exclusive of either lotic or lentic saline habitats. lived lotic habitats will be expected to have reduced Both species groups have independently colonized dispersal ability compared with closely related species inland saline or hyper-saline waters and they are often living in geologically more ephemeral lentic habitats. It found together, although only very rarely more than must be stressed that ‘dispersal’ is understood here as one species of each group is found in the same place. the ability of a species to establish a new population in More specifically, we ask whether (i) lotic species show a non-contiguous habitat patch (i.e. emigration plus more geographical structuring than closely related lentic inter-patch movement plus immigration, in the termi- species over comparable geographical scales, and (ii) in nology of Bowler & Benton 2005), not the ability of an lotic species, genetic variability is preferentially distrib- individual to move in space. Usual correlates of ‘dis- uted among populations, whereas in lentic species, it is persal’ only measure the ability to move, which is not more evenly distributed among and within populations. necessarily equivalent to dispersal in the sense used It is important to note that we do not claim that habitat here (Stenseth & Lidicker 1992). The higher mobility persistence is the only factor determining genetic struc- and colonization ability of populations of lentic species ture, nor even the most influential one: when compar- is expected to lead to more dynamic and larger geo- ing species with large differences in ecology, biology or graphical ranges, increased gene flow between popula- evolutionary background, the expectation is to find tions and reduced inter-population genetic variability, wide differences in population structure, even if all of leading to a greater evolutionary cohesion of species. them occupy the same physical space (as shown by e.g. Over comparable geographical scales, lotic species Short & Caterino 2009 with three species of three differ- would have a more pronounced phylogeographical ent families of water beetles). By comparing closely structure, with a higher inter-population diversity, related species, we try to homogenize confounding fac- stronger geographical association and an increased tors other than exclusively the habitat difference (the probability of peripatric or allopatric speciation than principle behind the sister group comparison, Harvey & lentic species (Marten et al. 2006; Ribera 2008). Pagel 1991; Barraclough et al. 1998). The generality of Previous results have established the relationship the results is tested through the study of two different between habitat type, size of the geographical range lineages of closely related species: if both show parallel and the shape of latitudinal gradients in a number of differences associated to the same habitat type, despite freshwater invertebrates (Ribera & Vogler 2000; Ribera large differences in evolutionary history, biology and et al. 2003; Hof et al. 2006, 2008; Ribera 2008). The rela- ecology, this will add strong evidence to support the tionship between habitat type and phylogeographical role of habitat type as a constraint of phylogeographical structure has received less attention. Using allozyme structure. data on more than 150 species of freshwater molluscs, Saline inland waters seem suitable systems for testing and crustaceans Marten et al. (2006) found that the effect of differences in habitat permanence on lentic invertebrates exhibit on average lower genetic phylogeographical patterns, as the spatial matrix of population differentiation than lotic species, in a consis- habitat patches represent clearly circumscribed localities tent way across the three studied groups. More in an otherwise diffusely structured landscape. The recently, Papadopoulou et al. (2008) explored with sim- phylogeographical information of organisms living in ulations how the migration rate might affect variation saline environments is scarce and limited to a few spe- in the coalescence of mitochondrial DNA (mtDNA) in cies. Prior molecular analyses have reported deep taxa occupying habitat types that differ in their stability. phylogeographical structure in both planktonic Rotifer Using one aquatic and one terrestrial genus of beetles, and brine shrimp species from Iberian salt lakes and they show that lineages in more stable habitats had salt-pans (Go´mez et al. 2000; Mun˜oz et al. 2008), as well greater levels of population sub-division and geographi- as in one of the species of the O. notabilis group, Ochthe- cal structure, a result confirmed for the terrestrial bius glaber, in SE Spain (Abella´n et al. 2007). Phylogeo- beetles in a subsequent, more detailed study (Papado- graphical analyses revealed a surprisingly high degree poulou et al. 2009). of geographical structure in these species, detectable Here we aim to test more thoroughly the effect of among populations separated by relatively short geo- contrasting habitat preferences on the genetic diversity graphical distances. Our paper will also contribute to and phylogeographical structure of populations. We use the knowledge of the origin of the saline inland water two phylogenetically distant lineages of beetles living in biota in the west Mediterranean, a largely neglected

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3887 environment despite its widely acknowledged conserva- The Nebrioporus ceresyi group includes six species, tion value (Bamber et al. 1992; Foster 2000; Milla´n et al. three of them in the western Mediterranean: Nebrioporus 2006) and the fact that they are, in many cases, threa- beticus (Schaum, 1864) (Iberian Peninsula), Nebrioporus tened environments. nemethi (Guignot, 1950) (northern Morocco) and N. cer- esyi (Aube´, 1838) (circum-Mediterranean, Fery et al. 1996; Toledo 2009). Nebrioporus baeticus and N. nemethi Methods are typically found in saline and hyper-saline streams, whereas N. ceresyi inhabits lentic environments, spe- Background on the studied organisms cially brackish ponds and coastal salt-pans. The other Water beetles represent one of the most diverse and species of the group, not included here, are found in species rich groups inhabiting saline inland waters (Mo- east Algeria, Tunisia and in central Asia (Fery et al. reno et al. 1997; Velasco et al. 2006). Among them, the 1996; Toledo 2009). genera Ochthebius and Nebrioporus have several species highly habitat-specific to saline and hyper-saline aquatic Sampling and DNA sequencing environments in the Mediterranean region. These two genera belong to unrelated families of Coleoptera (Hy- A total of 435 specimens of Ocththebius and Nebrioporus draenidae and Dytiscidae respectively) within two dif- were collected from 77 localities (Fig. 1 and Table 1; ferent sub-orders (Polyphaga and ) (Beutel & see also Tables S1 and S2, Supporting information, for Leschen 2005; Hunt et al. 2007). They occupy different details of the specimens and voucher numbers). We trophic levels in the food chain (species of Ochthebius sampled up to seven individuals (mode = 5) from pop- are detritivorous or herbivorous whereas Nebrioporus ulations of all species across most of their known are predators or scavengers) and have different body ranges. sizes (around 2 mm and 4–5 mm respectively). Within We sampled all known populations of O. glaber, those each group, we can find species inhabiting lotic and included in a previous study (Abella´n et al. 2007) plus lentic environments, as well as widely distributed and 19 specimens from four recently discovered popula- geographically restricted species (Ja¨ch 1992; Toledo tions. Sampling localities of O. notabilis extended from 2009). All species are winged and able to fly, although northern Morocco to northern Spain. We sampled three little is known regarding their flying capability. localities of the Sicilian endemic O. gereckei, whereas The Ochthebius notabilis group includes eight species sampling for O. lanarotis and O. normandi included exclusive to saline or hyper-saline waters, seven of respectively, two localities in northern Morocco and a them occurring in the western and central Mediterra- single population in northern Algeria. Finally, sampling nean (Ja¨ch 1992, 2004). For the detailed phylogeographi- for O. salinator included four localities from southern cal study, we focus on Ochthebius glaber Montes & Soler Morocco and one from Tunisia. There is an isolated old 1988, endemic to the southeast of the Iberian Peninsula, record of O. salinator from southern Spain (Ja¨ch 1992), and O. notabilis Rosenhauer, 1856, found across the Ibe- likely to be a mislabelled specimen, as we did not find rian Peninsula and northern Africa (Ja¨ch 1992). Ochthe- this species in the extensive sampling of the saline habi- bius glaber is restricted to running waters such as hyper- tats in this region. As outgroup taxa, we used two saline streams and springs, whereas O. notabilis inhabits related species in the same genus, Ocththebius corrugatus lentic environments such as hyper-saline ponds and Rosenhauer, 1856 and Ocththebius gauthieri Peyerimhoff, salt-pans (Abella´n et al. 2005). Both species are rarely 1924 (Ja¨ch 1992 and unpublished molecular data). found co-existing in the same habitat, and usually in We sampled populations of N. baeticus and N. nemethi artificial settings (salt-pans, unpublished observations). through their complete ranges in the Iberian Peninsula To determine the relative age and phylogenetic position and in northern Morocco respectively (Fig. 1). For of O. glaber and O. notabilis, we sampled four additional N. ceresyi sampling comprised populations from the species of the same group, all typical of saline running Atlantic coast of Morocco and Spain to the eastern Med- waters: Ochthebius lanarotis Ferro 1985 (northern Mor- iterranean (Fig. 1). The species is recorded as far east as occo), Ochthebius salinator Peyerimhoff 1924 (southern Iran and Turkmenistan (Lo¨bl & Smetana 2003), but we Mediterranean), Ochthebius gereckei Ja¨ch 1993 (Sicily) could not access to samples east of Khios (Fig. 1d). and Ochthebius normandi Ja¨ch 1992 (Tunisia, Ja¨ch 1992 Samples were directly stored in the field in absolute and Algeria, S. Bouzid personal communication 2007). ethanol until processed. DNA was extracted using The only two missing species are Ochthebius maroccanus either a standard phenol–chloroform extraction or com- Ja¨ch 1992; only known from a single locality in mercial kits (Wizard Genomic DNA Purification Kit, Morocco, and Ochthebius zugmayeri Knisch, 1909, from Promega; ChargeSwitch gDNA Micro Tissue Kit, Invi- Arabia and middle Asia (Ja¨ch 1992). trogen). The mtDNA fragment used was a partial

2009 Blackwell Publishing Ltd 3888 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

A France FRA

Iberian TAR1

Peninsula FOR1 MAL1 Sicily GRE MUR5 IBI1 Balearic SIC1 HUV MUR4 Islands SIC4 SIC2 SIC3 ALM1 Tunisia Greece MOR12 ARG MLT TUN2 Malta Argeria TUN1 MOR15 TUN4 TUN3 Morocco C B ALA N. ceresyi ALA NAV3 BUR NAV2 ZAR2 O. salinator NAV1 HUE HUE LER MOR9-10 GUA4 ZAR1 MOR16 O. gereckei GUA1-3 GUA1 GUA4 CUE2 MOR11,13 O.normandi MOR8 CUE2 CUE1 CUE1 D ALB1 EBR CUE3-4 VAL1 ALB2 MUR1 ALI1 ALB1 JAE2 TAJ COR1-2 JAE1 MUR7 MUR9 ALI2-3 MUR1-3,5 JAE2 SEV1 MUR4 JAE1 MUR5,8 JUC COR1 SEV2 COR3 GRA GUD MUR2,10 COR2 JAE3 GUA SEV2 COR3 CAD SEG GRA CAD MOR4 O. glaber MOR3 NAM MOR17 MOR1 O. notabilis MOR2 MOR12 MOR5 N. baeticus RIF MOR4 O. lanarotis N. nemethi ATL MOR2,14 MOR5 MOR7

Fig. 1 Sampling sites: (a) Nebrioporus ceresyi, Ochthebius salinator, Ochthebius gereckei and Ochthebius normandi; (b) Ochthebius glaber, Ochthebius notabilis and Ochthebius lanarotis; (c) Nebrioporus baeticus and Nebrioporus nemethi; (d) Main river basins in the Iberian Penin- sula and Morocco (EBR, Ebro; TAJ, Tajo; JUC, Ju´ car; GUD, Guadiana; SEG, Segura; GUA, Guadalquivir; NAM, Northern Atlantic Morocco; RIF, Moroccan Rif; and ATL, Moroccan Atlas). See Table S1 for the codes of the localities.

Table 1 Estimates of genetic diversity within the studied species

Nº Hd % Taxa n pop h p (±SD) (±SD) Dist H1 H2

Ochthebius 226 131 O. glaber 90 17 (17) 48 0.033 (±0.002) 0.93 (±0.016) 3.6 75.0 85.4 O. notabilis 87 24 (15) 49 0.006 (±0.001) 0.65 (±0.054) 0.7 71.4 85.7 O. gereckei 15 3 (3) 14 0.008 (±0.001) 0.99 (±0.028) 0.8 100 100 O. salinator 18 5 (3) 8 0.001 (±0.000) 0.57 (±0.138) 0.2 88.0 87.5 O. lanarotis 10 2 (2) 8 0.004 (±0.001) 0.93 (±0.017) 0.4 75.0 100 O. normandi 6 1 (1) 4 0.004 (±0.001) 0.80 (±0.172) 0.4 100 — Nebrioporus 209 89 N. baeticus 93 29 (11) 36 0.005 (±0.000) 0.95 (±0.010) 0.5 50.0 66. 7 N. nemethi 24 6 (4) 21 0.005 (±0.001) 0.99 (±0.015) 0.5 85.7 85.7 N. ceresyi 92 23 (15) 32 0.005 (±0.000) 0.93 (±0.013) 0.6 46.9 68.8 N baeticus + N. nemethi 117 35 (15) 57 0.007 (±0.000) 0.96 (±0.009) 0.7 63.2 73.7 n, number of individuals; Nº pop, number of sampled populations (in parenthesis, number of populations with at least four sequenced individuals); h, number of haplotypes; p, nucleotide diversity; Hd, haplotype diversity; % Dist, overall average pairwise genetic distance; H1, percentage of haplotypes found in single individuals; H2, percentage of haplotypes restricted to single localities.

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3889 sequence of approximately 800 bp of the 3¢-end of the hypotheses, we also employed spatial analysis of cox1 gene, PCR-amplified using the primers C1-J-2183 molecular variation (SAMOVA), which defines groups of and L2-N-3014 (Simon et al. 1994). Sequencing was populations that are geographically close and geneti- done using the ABI PRISM BigDye Terminator Cycle cally similar, maximizing differences among groups Sequencing kit (Applied Biosystems) and sequenced (Dupanloup et al. 2002). Networks of the mitochon- products were electrophoresed on ABI 310 and 3700 drial cox1 haplotypes, which may be more appropriate automated sequencers (Applied Biosystems). than hierarchical trees for representing intraspecific Sequences were assembled and edited with Sequen- evolution (Posada & Crandall 2001), were inferred cher 4.7 (GeneCodes Corporation) and submitted to using statistical parsimony (Templeton et al. 1992), as GenBank (Accession nos FJ944095–FJ944484; Table S2). implemented in the program TCS v1.13 (Clement et al. 2000). The method links haplotypes with the smallest number of differences as defined by a 95% confidence Phylogenetic analyses criterion. There was no length variation in the sequence and thus We used a measure of phylogenetic diversity to the alignment was trivial. Haplotype trees were con- characterize the spatial structure of the genetic varia- structed using Bayesian methods with MrBayes 3.1.2 tion, the ‘mean pairwise distance’ (Webb et al. 2008; (Huelsenbeck & Ronquist 2001). We used ModelTest Vamosi et al. 2009) as implemented in the Phylocom 3.06 (Posada & Crandall 1998) to choose the best fit software (Webb et al. 2008). Although originally model of molecular evolution for our data set under the intended to measure interspecific phylogenetic diver- Akaike Information Criterion. For Ochthebius data, we sity (Graham & Fine 2008; Vamosi et al. 2009), it can set two independent runs of 3 · 106 generations each be used to calculate these metrics at intraspecific level implementing the optimal model in a single partition, by considering individual haplotypes as terminal taxa. sampling the chains every 100 generations and with We used the ‘comdist’ function with the trees obtained other settings with default values. The burn-in phase in the Bayesian analyses to create a matrix of pairwise was estimated by examination of the plot of the split phylogenetic distance between localities, based on the frequencies of the two independent runs. For the Neb- mean branch-length distance of all possible pairs of rioporus data, we ran two chains of 6 · 106 generations sequences (Webb et al. 2008). We tested for a relation- each, with other settings as above. ship between pairwise linear geographical distances For comparison with the Bayesian-based results, we and the phylogenetic distance computed with Phylo- also conducted maximum parsimony (MP; as imple- com with a Mantel test (Mantel 1967) with 1000 ran- mented in PAUP 4.0b, Swofford 2002) and maximum- dom permutations. The slopes of the regression lines likelihood analyses (ML) using the genetic algorithm (lentic vs. lotic) were compared by the method implemented in GARLI 0.942 (Zwickl 2006), the latter described in Zar (1984: Chapter 18), which is equiva- using the same evolutionary model as in the Bayesian lent to an analysis of covariance. analyses. We used bootstrap values and Bayesian pos- To account for differences in the number of sampled terior probabilities to assess node support. Bootstrap individuals and populations among species, we used values were calculated in PAUP and GARLI using 1000 rarefaction methods, common in ecological studies, but and 500 bootstrap pseudoreplicates respectively. more infrequently used with genetic data (but see e.g. Kalinowski 2004; Leonard et al. 2005; Vos & Velicer 2008). We treated populations (localities) as samples Genetic variability and population structure and haplotypes as ‘species’ (sample-based rarefaction; Haplotype (h) and nucleotide (p) diversities and their Colwell et al. 2004) from a matrix of haplotype frequen- variances were calculated using the program DNASP cies in populations in EstimateS 8.0.0 (Colwell 2005). As version 4.20 (Rozas et al. 2003) for each species and an asymtotic estimate of the number of haplotypes in a within populations in those with at least four individ- population, we used the Chao1 index (Chao 1984). Rar- uals. Measures of genetic divergence between groups efaction methods assume homogeneous sampling effort of haplotypes were obtained with Mega v.4 (Tamura across samples, which was not the case here as a differ- et al. 2007). Arlequin 3.1 was used to perform analyses ent number of specimens per population was sampled. of molecular variation (Excoffier et al. 1992) for an a There is, however, no a priori reason to suspect that the priori grouping corresponding to the main river basins number of sampled individuals was related to the hap- of the Iberian Peninsula and Morocco (Fig. 1d), as an lotype diversity of the population, and in any case, we initial hypothesis according to the findings of previous use rarefaction curves only as an exploratory tool to studies (Ribera 2000; Abella´n et al. 2007; see provide a more accurate comparison of haplotype also Go´mez et al. 2000). To avoid forcing a priori diversity among the studied taxa.

2009 Blackwell Publishing Ltd 3890 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

We compared the patterns of genetic diversity within with average 5.2 MY and a standard deviation of 0.1. and between groups of populations (as defined in the Preliminary results demonstrated that this calibration SAMOVA analyses) using the mean nucleotide diversity point gave estimates of the evolutionary rate similar to (p) within groups and the average number of nucleotide those obtained for related groups using other calibra- substitutions per site between groups (Dxy). The results tion events (I. Ribera et al. unpublished data). of these comparisons may be affected by several possi- For the Nebrioporus data set, preliminary estimations ble biases, among them differences in the effective pop- assuming a Messinian origin of the Iberian N. baeticus ulation size, and the relative age of haplotype as a calibration point gave unlikely low evolutionary coalescence within each of the lineages (Nei 1987; rates, so we opted for the use of a standard a priori rate. Charlesworth 2009). Although we did not have any The estimated cox1 rate for the O. notabilis group (see direct measure of effective population size, there are no ‘Results’ section) was 5.6% MY, similar to that obtained obvious large differences among lotic and lentic species for cox1 alone with other genus of Dytiscidae (Ribera in amount of suitable habitat or in population density et al. 2001a). We set up a priori rate with a normal dis- (Moreno et al. 1997). For neutral markers evolving at tribution of average 0.025 changes ⁄ position MY and a regular rates, comparisons of genetic diversity should standard deviation of 0.005 (95% confidence interval take into account the effect of large differences in age. between 0.017 and 0.033). The relative age of the lineages and their coalescent Differences in the genetic structure of the species liv- times were compared using the Bayesian relaxed phylo- ing in lotic and lentic habitats are hypothesized to have genetic approach implemented in BEAST v1.4.7 (Drum- arisen as a consequence of differences in dispersal abil- mond & Rambaut 2007), which allows variation in the ity, and thus comparisons need to be performed at the substitution rates among branches (Drummond et al. same geographical scale (Ribera et al. 2001b; Ribera 2006). We implemented a GTR + I + G model of DNA 2008). To account for differences in the overall size of substitution with four rate categories, and used the un- the geographical range, the values of p and Dxy were correlated lognormal relaxed molecular clock model to scaled by the geographical extent of the groups of pop- estimate substitution rates and the Yule process of spe- ulations (i.e. the arithmetic mean of its latitudinal and ciation as the tree prior. We ran two independent analy- longitudinal range in km) and the linear distance ses for each group, sampling every 500 generations and between the centroids of each group. used TRACER version 1.4 to determine convergence, A potential confounding factor in the comparison of measure the effective sample size of each parameter the phylogeographical structure of lotic vs. lentic spe- and calculate the mean and 95% highest posterior cies is the spatial distribution of the suitable habitat density interval for divergence times (Rambaut & Drum- patches. If, for example, the suitable lotic habitats were mond 2004). Files were combined with LogCombiner more isolated from each other than the suitable lentic v1.4.7 and the consensus tree was compiled with Tree- habitats, species living in lotic habitats may show a Annotator v1.4.7 (Drummond & Rambaut 2007). The higher degree of genetic structuring even in the absence analyses were run for 13 and 40 · 106 generations for of differences in dispersal ability. To account for this the Ochthebius and Nebrioporus data sets respectively, factor, we mapped all the known records of the two with the initial 10% discarded as burn-in. lentic-lotic species pairs in the Iberian Peninsula, based Our aim was not the estimation of absolute ages for on the data compiled by Sa´nchez-Ferna´ndez et al. the divergence of the different clades within the studied (2008), the area wherein the four species co-occur and groups, but to provide a relative temporal framework the best known of their distributional ranges (Figs S1 for the comparison of the level of divergence within and S2, Supporting information). We measured linear each of the groups. In consequence, the absolute calibra- inter-habitat distances (measured from the centroid of tion of the ultrametric trees is largely irrelevant to our the UTM 10 · 10 km square), and applied an index of conclusions. Nevertheless, to have an estimated time spatial aggregation, the average nearest neighbour framework, we calibrated the trees using either biogeo- index, as implemented in the software ArcGIS 9.2 graphical information or an estimation of the evolution- (ESRI). This index is expressed as the ratio of the ary rate. For Ochthebius, the basal split in the phylogeny observed distance divided by the expected distance, separated O. glaber (Iberian) and the remaining species, which is the average distance between neighbours in a which have a predominantly north-African distribution hypothetical random distribution (Ebdon 1986). Values (see ‘Results’ section). We used the opening of the Strait close to 0 indicate clustering and values greater than 1, of Gibraltar at the end of the Messinian (5.2 MY) as a a trend towards uniform dispersion. calibration point (see e.g. Carranza & Arnold 2003; We also plotted the cumulative average distance of Gomez-Zurita 2004), setting the prior distribution of the each population to the successive nearest neighbours, to basal node in the phylogeny as a normal distribution have a comparative measure of habitat isolation.

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3891

Within the lentic O. notabilis, there were no well-sup- Results ported deep clades, and only some groups of close haplotypes from individuals from the same geographi- Haplotype relationships and distribution of haplotype cal region were well supported (Fig. 2). The TCS analy- diversity sis included all O. notabilis haplotypes in a single In the Ochthebius notabilis group, the cox1 sequence network (Fig. 3), which had many closed loops (indicat- included 801 bp of which 225 were polymorphic, defin- ing substantial amounts of homoplasy; Posada & Cran- ing 131 distinct haplotypes among 226 individuals dall 2001). Only 12 haplotypes (24.5%) were shared (Table 1). The optimal nucleotide substitution model, as between more than one individual. Most haplotypes selected by Modeltest, was the TIM + I + G (Rodrı´guez (73%) were restricted to single localities and only two et al. 1990). The results of the Bayesian analysis were shared haplotypes among different basins were found, largely congruent with those using other phylogenetic between the Guadalquivir basin and the northern methods (Fig. 2), forming generally well-supported Atlantic coast of Morocco. monophyletic clades in agreement with recognized spe- The AMOVA test also detected significant structuring cies. Ochthebius glaber was sister to the rest of the group, among O. notabilis populations for an a priori grouping within which Ochthebius salinator and Ochthebius gereckei corresponding to the main river basins of the Iberian were sister species, and sister to a poorly resolved clade Peninsula and Morocco (Fig. 1d; Table S1), although including O. notabilis, Ochthebius lanarotis and Ochthebius with only 40.3% of the genetic variation between normandi. groups of populations (Table 2). Again, the SAMOVA Within O. glaber, there was good support for the algorithm did not allow an unambiguous identification respective monophyly of the haplotypes found in the of the number of groups of populations displaying the

Segura and Ju´ car basins, which were nested in an highest differentiation, as FCT values increased progres- unsupported paraphyletic clade including several lin- sively, whereas those of FSC decreased, as K increased. eages within the Guadalquivir basin (Fig. 2). Levels of All FCT values were statistically significant, ranging variation within species were similar, with average from 0.45 (K = 2) to 0.59 (K = 12), although for K >7, uncorrected intraspecific distances ranging from 0.3% FCT values increased less sharply (Fig. S3). The compo- to 0.8% (Table 1), with the exception of O. glaber, with sition of groups for K = 7 did not correspond to the average divergence from all pairwise comparisons of division in river basins, with populations from different 3.6%. geographical areas within the same group (e.g. a group The statistical parsimony analysis of O. glaber comprises populations from Andalusia and the north- resulted in three distinct networks corresponding to ern Atlantic coast of Morocco) (Table 2). the haplotypes of the three main river basins: Guadal- The Nebrioporus cox1 matrix included 87 variable sites quivir, Segura and Ju´ car (Fig. 3), in agreement with defining 89 haplotypes among 209 individuals. The previous results (Abella´n et al. 2007). These networks topology obtained with the Bayesian analysis and a could not be connected within the limits of parsimony TrN + I + G model (Tamura & Nei 1993), as selected (12 mutational steps at 95% confidence). When the with Modeltest, was also similar to those obtained significance limit was relaxed, the connection between using other phylogenetic methods (Fig. 4), with the len- the Segura and Guadalquivir basin sub-networks tic Nebrioporus ceresyi sister to a clade that included the required 15 mutational steps, whereas the connection two lotic species, Nebrioporus baeticus plus Nebrioporus between the Ju´ car and Guadalquivir basins required nemethi, which were pooled together for most of the 31 steps. subsequent analyses. The N. baeticus haplotypes were Results from AMOVA with an a priori grouping corre- monophyletic (although only highly supported under sponding to the three main river basins were highly sig- MP), but nested within N. nemethi, and sister to a haplo- nificant (P<0.0001), with 83.3% of the total genetic type from the Moyen Atlas (highly supported under variation among groups and only 6.1% within groups Bayesian inference) (Fig. 4). (Table 2). The analysis with SAMOVA did not result in an The haplotypes of N. baeticus and N. nemethi were unambiguous identification of the number of groups of included in a single parsimony network at the 95% con- populations displaying the highest differentiation, as fidence level, although in two separated groups corre-

FCT values increased progressively with K. However, sponding to the two named species (Fig. 3). In N. beyond K = 3 subsequent increases resulted in smaller baeticus, 18 (50%) haplotypes were shared between improvements (Fig. S3, Supporting information), so this more than one individual and 24 (66.7%) were was adopted as the optimal level of sub-division, in restricted to single localities. There was one shared hap- agreement with the three main river basins and the lotype between the Guadalquivir and Segura basins, results of the parsimony network. and three between the Guadalquivir and Ebro basins.

2009 Blackwell Publishing Ltd 3892 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

O. notabilis O. glaber LER (EBR) COR3 (GUA) HUE (EBR) COR3 (GUA) 65 HUE (EBR) 52/62 100 JAE3 (GUA) HUE (EBR) 92 94/93 JAE3 (GUA) -/56 HUE (EBR) COR3 (GUA) 64 54 -/- HUE (EBR) -/- COR2 (GUA) ALA, BUR (EBR) 98 51 -/- 92 COR3 (GUA) -/53 ALA (EBR) 64/55 JAE2 (GUA) 63 ALA (EBR) JAE1 (GUA) -/- ALA (EBR) 57 CUE3 (JUC) ALA (EBR) 74/- CUE4 (JUC) 79 98 GUA4 (TAJ) 71/84 53/- VAL1 (JUC) CUE2 (TAJ) 52 65/- VAL1 (JUC) GUA1, GUA4 (TAJ) 100 CUE4 (JUC) CUE1 (JUC) 97/100 VAL1 (JUC) ALB2 (JUC) VAL1 (JUC) 100 MUR7 (SEG) 87 CAD (GUA) 87/97 MUR7 (SEG) 63/88 CAD (GUA) GRA (GUA) CAD (GUA) ALB1 (GUD) CAD (GUA) 84 ALB1 (GUD) 51/- 89 100 JAE3 (GUA) JAE3 (GUA) 61/75 94/96 JAE3 (GUA) O. notabilis ALB2 (JUC) 90 COR1 (GUA) -/61 JAE1 (GUA) JAE1 (GUA) MOR5 (RIF) 100 JAE2 (GUA) COR2, MOR12 (GUA / NAM) 72/99 82 99 COR1 (GUA) 90 65/64 MOR12 (NAM) 83/86 JAE2 (GUA) -/- 100 O. lanarotis JAE1 (GUA) 100/100 COR2 (GUA) 100 O. normandi COR2, SEV2, MOR17 (GUA / NAM) 100 93/100 JAE1 (GUA) 62/- JAE1 (GUA) 72 JAE1 (GUA) O. gereckei COR2, CAD, SEV2, MOR12 (GUA / NAM) -/- JAE2 (GUA) 100 99/100 MOR12 (NAM) 100 COR1 (GUA) 88/- O. salinator 89 97/100 MOR12 (NAM) 65/60 COR2 (GUA) 97 JAE1 (GUA) 86 JAE2 (GUA) 86/55 COR2 (GUA) 64/59 MUR2 (SEG) 99 79 GRA (GUA) 76/96 MUR2 (SEG) -/- GRA (GUA) O. glaber MUR8 (SEG) MOR4 (RIF) 58 MUR9 (SEG) 100 MOR14 (RIF) 56/- MUR9 (SEG) 87/100 73 COR1 (GUA) MUR9 (SEG) -/- JAE1, SEV2 (GUA) 100 100 MUR5 (SEG) Outgroups MOR14 (RIF) 0. 5 99 ALI3 (SEG) JAE3 (GUA) 85 MUR8 (SEG) 50/- 87/90 MOR14 (RIF) MUR10 (SEG) 76 64/64 MOR14 (RIF) MUR9 (SEG) MOR2 (RIF) 89 ALI2 (SEG) 68 MOR4 (RIF) 60/99 54/- ALI2 (SEG) 0.5 MOR4 (RIF) ALI2 (SEG) MOR14 (RIF) MOR14 (RIF) MOR4 (RIF)

Fig. 2 Phylogenetic reconstruction of the cox1 haplotypes of Ochthebius, obtained with Bayesian analysis. Insert, phylogenetic rela- tionships among the six included species. Left, haplotypes of Ochthebius glaber; right, haplotypes of Ochthebius notabilis. Numbers above branches are Bayesian posterior probabilities (·100), below branches ML bootstrap values ⁄ parsimony bootstrap values. Only support values above 50% are shown. Codes correspond to localities (Fig. 1; Table S1) and, in brackets, main river basins of the Iberian Peninsula and Morocco (Fig. 1d).

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3893

O. glaber Fig. 3 Most parsimonious haplotype network (estimated cladogram) for the cox1 haplotypes of species of Ochthebius and Nebrioporus. Connection steps have a95% probability of being linked with- out homoplasy. Solid lines connect hapl-

31 steps otypes with a single step (missing 15 steps intermediates are indicated by an open circle). The diameter of the circle is pro- portional to the number of haplotypes. See Fig. 1 for the geographical areas.

O. notabilis Guadalquivir Segura Tajo Rif Guadiana Ebro Northern Atlantic Morocco Atlas Júcar

N. nemethi

N. baeticus

N. ceresyi Iberian Mediterranean coast Atlantic coast of Spain Northern Atlantic coast of Morocco Southern Morocco Tunisia, Sicily and Malta Greece Balearic Islands France

The AMOVA test for the pooled populations of N. baeti- nemethi populations in a second group) to K =12 cus and N. nemethi detected significant structuring for (FCT = 0.64). From K > 7, the increases in FCT were the a priori grouping corresponding to the main river smaller and had the effect of adding new groups con- basins of the Iberian Peninsula and Morocco (Fig. 1d; taining a single population, suggesting that adding Table S1): 54.6% of the genetic variation was found extra groups only moderately improved the model of between groups of populations, whereas only 7.6% was population structure (Fig. S3). found among populations within groups, with a 37.7% The phylogenetic analyses of the lentic N. ceresyi within populations. The analyses with SAMOVA were found four main poorly supported haplotype clades again inconclusive, with a linear increase in FCT with (Fig. 4): (i) all haplotypes from Tunisia, Sicily, Greece, the number of groups from K =2(FCT = 0.58, with all Malta and Mallorca, plus most from Formentera and N. baeticus populations and the haplotype of N. nemethi some from France; (ii) all haplotypes from the Mediter- from the Atlas within one group, and the remaining N. ranean coast of Iberia and Ibiza, plus some from France

2009 Blackwell Publishing Ltd 3894 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

Table 2 Distribution of genetic diversity as inferred by analysis of molecular variance

Among Among populations Within Group Species K groups within groups populations Dist Extent composition

O. glaber 3a,b 83.27 6.07 10.66 253.0 88.8 (ALI2-3, MUR2, MUR5, MUR8-10) (CAD, COR1-3, JAE1-3) (CUE3-4, VAL1) O. notabilis 7a 53.30 9.21 37.49 428.1 160.9 (CAD, COR1-2, JAE1, SEV2, MOR12, MOR17) (ALA, BUR, GRA) (ALB2, CUE1-2, GUA1, GUA4) (MOR14, MOR2, MOR4-5) (ALB1, JAE3) (HUE, LER) (MUR7) 8b 40.27 21.60 38.20 (ALA, BUR, HUE, LER)(ALB2, CUE1) (ALB1) (CAD, COR1-2, GRA, JAE1, JAE3, SEV2) (GUA1, GUA4, CUE2) (MOR12, MOR17) (MOR2, MOR4-5, MOR14) (MUR7) N. baeticus + N. nemethi 7a 60.80 5.03 34.17 526.4 193.0 (MOR1-5) (MOR7) (ALB1) (ALA, NAV2) (HUE, ZAR1) (CUE1-2, GUA1-4) (ALI1, CAD, COR1-3, GRA, JAE1-2, MUR1-5, NAV1, NAV3, SEV1-2, ZAR2) 8b 54.60 7.60 37.70 (ALA, HUE, NAV1-3, ZAR1-2) (CAD, COR1-3, GRA, JAE1-2, SEV1-2) (ALB1) (CUE1) (CUE2, GUA1-4) (ALI1, MUR1-5) (MOR1-5) (MOR7) N. ceresyi 5a 70.21 8.01 21.78 1805.1 534.9 (MOR8-11, MOR13) (HUV, MOR12, MOR15) (GRE) (FOR1, FRA, MAL1, MLT, SIC1-2, TUN1-3) (ALM1, IBI1, MUR5-6, TAR1) 4b 19.38 56.62 23.99 (n.s.) (MUR5-6) (ALM1, HUV) (TAR1) (MOR12)

K, number of groups (a, as selected with SAMOVA; b, as defined by river basins, see Fig. 1d, in classical AMOVA); Dist, average geographical distance between groups (km); Extent, average geographical extent of the groups (geometric mean of its latitudinal and longitudinal extent, in km). Unless stated, all partitions are statistically significant (P < 0.001). See Table S1 for the codes of the populations. and one from Formentera; (iii) haplotypes from the (FCT = 0.70) corresponded to the geographical organiza- southern Atlantic coast of Morocco; and (iv) haplotypes tion of haplotypes visually identified on the haplotype from the northern Atlantic coast of Morocco and the network of TCS and the main clades identified on the Iberian Atlantic coast. phylogeny, plus an additional group with the haplotype The TCS haplotype network for N. ceresyi was also from Khios (Table 2). To directly compare the results of characterized by several closed loops (Fig. 3). The same N. ceresyi with those of N. baeticus + N. nemethi we did four main haplotype groups found in the phylogenetic an AMOVA analysis for the Iberian and Moroccan popula- analyses were recovered, with the same split within the tions of N. ceresyi with an a priori group corresponding Balearic islands: all sequences from Ibiza were included to the main river basins (Fig. 1d; Table S1), which was in the Iberian group, whereas those from Mallorca were not significant (FCT = 0.001, P = 0.22). included in the Eastern Mediterranean group. Haplo- types from Formentera and southern France were split Rarefaction curves of haplotype diversity between both groups. Seventeen (53.1%) haplotypes were shared between more than one individual and 22 In the two lineages, the expected and estimated number haplotypes (68.8%) were restricted to single localities. of haplotypes (using the actual number of haplotypes

In the SAMOVA analysis, FCT values increased mono- or an estimator of the total haplotype richness respec- tonically with K (from 0.59, K = 2 to 0.76, K = 12, all sta- tively) were higher in the lotic than in the lentic species tistically significant), reaching a plateau at K =5 (Fig. 5), although not significantly different according (Fig. S3). The composition of groups for K =5 to the 95% confidence intervals provided by EstimateS.

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3895

COR3 (GUA) COR3 (GUA) 95 COR3, SEV2, NAV1 (GUA / EBR) 79/74 SEV1 (GUA) COR1, SEV2 (GUA) 0.1 COR3 (GUA) 75 JAE1 (GUA) -/- 96 JAE1, SEV2 (GUA) 61/64 ALA (EBR) 78 NAV1, NAV2, ALA (EBR) -/- N. baeticus COR3, NAV1, ZAR2 (GUA, EBR) + 100 ALB1 (GUD) 93/94 SEV1 (GUA) N. nemethi GRA, COR3, SEV1, SEV2, NAV3 (GUA / EBR) N. ceresyi CAD (GUA) NAV1, ZAR2 (EBR) JAE1 (GUA) 79 MAL1 - 53 SEV1 (GUA) 65/62 -/- MAL1, FOR1 100/63 NAV1, ZAR1, HUE (EBR) SIC1 CAD (GUA) CAD (GUA) TUN2 JAE1-2, SEV1, CAD, COR2, ALI1, MUR1,5 (GUA / SEG) GRE COR2 (GUA) TUN2 N. ceresyi 62 MUR5 (SEG) TUN1 -/- MUR1, MUR3 (SEG) SIC2 100 MUR5 (SEG) N. baeticus MAL1, FOR1 100/100 SEV2 (GUA) TUN2 MUR4 (SEG) JAE2 (GUA) FRA 97 MUR1, MUR2 (SEG) 56/- TUN1, TUN2, TUN3, SIC1, MLT MUR3 (SEG) TUN1 70 - MUR4 (SEG) -/- SIC1 -/94 MUR1 (SEG) FRA JAE1 (GUA) 93 GUA1, GUA2, GUA3, GUA4, CUE2 (TAJ) 85 MUR5, MUR6 (MIB) -/- 71 64/59 MUR5, MUR6, IBI1 (MIB) 57 -/- CUE1 (JUC) 99 -/- MOR7 (ATL) 64/- MUR6 (MIB) MOR4 (RIF) MUR5 (MIB) MOR2, MOR4 (RIF) IBI1, TAR1 (MIB) MOR1 (RIF) ALM1 (MIB) 65 MOR4 (RIF) 66 ALM1, MUR6, TAR(MIB) / IBI1, FOR1 92 62/- MOR2 (RIF) -/- 63/57 56 FRA MOR2 (RIF) -/- 85 FRA MOR2 (RIF) 64/62 MOR5 (RIF) ALM1, TAR1 (MIB) MOR3 (RIF) MOR10 (SAM) MOR4 (RIF) N. nemethi 100 85 MOR8-10, MOR13 (SAM) MOR2 (RIF) 59/58 100/100 74 MOR11 (SAM) MOR5 (RIF) -/51 MOR8, MOR9 (SAM) MOR1 (RIF) MOR15 (SAM) MOR3, MOR4 (RIF) HUV (AIB) MOR4 (RIF) 54 MOR5 (RIF) -/- MOR12 (NAM) - 53 MOR3 (RIF) 100/63 0.1 -/- MOR5 (RIF) 0.1 MOR3 (RIF) MOR3, MOR5 (RIF)

Fig. 4 Phylogenetic reconstruction of the cox1 haplotypes of Nebrioporus, obtained with Bayesian analysis. Insert, phylogenetic rela- tionships among the three included species. Left, haplotypes of Nebrioporus ceresyi; right, haplotypes of Nebrioporus baeticus plus Neb- rioporus nemethi. Numbers above branches are Bayesian posterior probabilities (·100), below branches ML bootstrap values ⁄ parsimony bootstrap values. Only support values above 50% are shown. Codes correspond to localities (Fig. 1; Table S1) and, in brackets, main river basins of the Iberian Peninsula and Morocco (Fig. 1d).

The expected haplotype accumulation curves had no ing fraction of the populations were sampled. In the obvious sign of asymptotic decline in any of the four two lineages, the slope of the lotic species was signifi- species (Fig. 5a), with linear regressions higher than cantly higher than that of the lentic ones (P < 0.001, fol- 0.98 in all cases. We thus compared the slopes of these lowing Zar 1984), both using the actual number of pairs of linear regression lines to test for differences in haplotypes (Fig. 5a) or an estimator of the total haplo- the rate of increase in haplotype diversity as an increas- type richness (Chao1) (Fig. 5b).

2009 Blackwell Publishing Ltd 3896 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

(a) 70 The values of nucleotide and haplotype diversities for Nebrioporus species were very similar, but higher 60 in the clade formed by N. baeticus plus N. nemethi than in N. ceresyi (Table 1). Although both lineages 50 are sister, the estimated coalescent time of the sam- pled haplotypes was older for the clade N. baeti- 40 cus + N. nemethi that for N. ceresyi (Fig. S5, Supporting information). 30 Nucleotide diversity within populations of the clade

No. haplotypes 20 N. baeticus + N. nemethi with at least four sequenced O. glaber individuals ranged from 0.000 to 0.007 (average 10 O. notabilis of 0.003, Table S1). The three populations with at N. baeticus + N. nemethi N. ceresyi least four sequenced individuals had a very similar 0 p 1 5101520 25 30 35 value of (ranging from 0.004 to 0.007; average 0.05) (Table S1). For N. ceresyi, nucleotide diversity in (b) 280 populations with at least four sequenced individuals 240 ranged from 0.000 to 0.004 (average of 0.002) (Table S1). 200 In all four species, the nucleotide diversity between groups of populations (as defined with SAMOVA, see 160 above) was significantly higher than that within these groups, although differences were larger in the lotic 120 than in the lentic species (Fig. 6). When the diversity

No. haplotypes 80 within groups of populations was scaled by their geo- graphical extent, and the diversity between groups by O. glaber 40 O. notabilis the distance between their centroids (see ‘Methods’ sec- N. baeticus + N. nemethi tion; Table 2), for lotic species the scaled between N. ceresyi 0 group diversity remained larger than that within group 1 5101520 25 30 35 No. localities diversity, but for lentic species the relationship was reversed, with most of the variation within groups of Fig. 5 Rarefaction curves of haplotypes vs. populations (locali- populations (Fig. 6). ties). (a) Sample-based rarefaction curves (expected haplotypes accumulation curve). (b) Estimated number of haplotypes with the Chao1 richness estimator. Circles: lotic species; squares: Geographical distribution of phylogenetic diversity lentic species. Bars: 95% confidence intervals provided by Esti- mateS. The pairwise measure of phylogenetic diversity between populations was for all four tested species sig- nificantly correlated to linear geographical distance, as measured with the Mantel’s test (P < 0.001), although Nucleotide diversity the value of the correlation coefficient was higher for Among the species of Ochthebius, the highest value of lentic than lotic species (Fig. 7). nucleotide diversity (p) was found in O. glaber (0.033), an For both Ochthebius and Nebriopous, the rate of order of magnitude higher than that of the other species, increase of phylogenetic distance with geographical dis- including O. notabilis (0.006) (Table 1). However, O. glab- tance (i.e. the phylogenetic beta diversity, Graham and er is also the older species, with the estimated age of O. Fine 2008) was significantly larger for lotic than lentic notabilis equivalent to that of the two main lineages species (P < 0.001, as measured with the slope of the within O. glaber, the haplotypes of the Guadalquivir plus regression line), attaining a larger absolute value Jucar basins (p = 0.033), and those from the Segura basin despite the shorter maximum distance. Thus, for the (p = 0.004) (Fig. S4, Supporting information). pair O. glaber (lotic) and O. notabilis (lentic), the maxi- Nucleotide diversity within populations with at least mum pairwise phylogenetic distances were 1.29 and four sequenced individuals of the two focus species 0.37, for maximum geographical distances of 471 and ranged from 0.000 to 0.016 (average of 0.006) for O. 1052 km respectively. For N. baeticus + N. nemethi (lotic) glaber, with the highest values in localities from Guadal- and N. ceresyi (lentic), maximum phylogenetic distances quivir basin; and 0.000 to 0.008 (average of 0.002) for O. were 2.07 and 1.16, for 1148 and 3728 km respectively notabilis (Table S1). (Fig. 7).

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3897

0.004 0.06 Lotic Lentic Lotic Lentic 0.0035 0.05

0.03 0.003

0.02 0.0001

0.01 0.00005

0.00 0.00 N. ceresyi O. glaber N. baeticus O. notabilis O. glaber N. baeticus O. notabilis N. ceresyi + + N. nemethi N. nemethi

Fig. 6 Patterns of nucleotide diversity within and between groups of populations defined by SAMOVA, according to the preferred hab- itat (lotic or lentic). Black columns, mean nucleotide diversity (p) within groups; hatched columns, average number of nucleotide sub- stitutions per site between groups (mean, Dxy) (bars: SE). Left, raw values; right, values scaled to the geographical extent of the groups and the geographical distance between them (see text for details).

1.4 0.4 Fig. 7 Phylogenetic distance vs. geo- (a) (b) r = 0.62 1.2 r = 0.49 graphical distance in (a) Ochthebius glab- 0.3 er, (b) Ochthebius notabilis, (c) 1.0 Nebrioporus baeticus plus Nebrioporus ne- 0.8 0.2 methi, (d) Nebrioporus ceresyi. Black 0.6 squares, pairwise distances of popula- 0.4 0.1 tions between different groups; open 0.2 circles, pairwise distances of popula- tions within the same group (for the 0.0 0.0 0 100 200 300 400 500 0 200 400 600 800 1000 1200 groups identified by SAMOVA analysis). Mantel’s r values (all statistically signifi- 1.2 cant, P < 0.001) are also indicated. 2.0 (c) (d) Insert: regression lines of the two spe- 1.6 0.9 cies-pairs (lentic and lotic) at the same Phylogenetic distance axes scale. Solid line, lotic species (O. 1.2 0.6 glaber and N. baeticus + N. nemethi); 0.8 dashed line, lentic species (O. notabilis 0.3 and N. ceresyi). 0.4 r = 0.48 r = 0.70 0.0 0.0 0 200 400 600 800 1000 1200 0 1000 2000 3000 4000 Geographical distance (Km)

The measures of spatial aggregation of the known Discussion localities of the studied species in the Iberian Peninsula (nearest neighbour index) were lower (i.e. more clus- Our results show parallel differences in phylogeograph- tered) for the lentic than the lotic species, although all ical structure in two independent groups of water bee- values were not significantly different from a random tles. Lotic lineages had more genetic diversity and distribution model, as measured with ArcGIS. The plot spatial structure than closely related lentic lineages for of the distances to the successive nearest neighbour all tested measures (haplotype diversity, phylogeo- show that distances between known localities within graphical spatial structure, nucleotid diversity), even the Iberian Peninsula were consistently higher for lentic when the two groups have contrasting life histories, than lotic species (Fig. 8). ecologies and evolutionary origin (Ja¨ch 1992; Fery et al.

2009 Blackwell Publishing Ltd 3898 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

1000

800

800

600 600

400 400

Distance (Km)

Distance (Km)

200 O. glaber 200 O. notabilis N. baeticus N. ceresyi

0 0 10 20 30 15 30 40 Localities Localities

Fig. 8 Average cummulative linear distance to the successive nearest neighbour known locality for the species-pairs Ochthebius glab- er–Ochthebius notabilis and Nebrioporus baeticus–Nebrioporus ceresyi in the Iberian Peninsula (see Figs. S1 and S2 for the distribution of the known localities). Bars, 95% confidence interval of the average distance.

1996; Beutel & Leschen 2005). Although the patterns The predicted consequences of different dispersal reported here are exclusively based on mitochondrial abilities are highly dependent on the spatial scale, and data, which may not be fully congruent with those comparisons based on standard measures of nucleotide found in nuclear genes, they are congruent with the diversity have to be made at similar absolute ranges: predictions derived from differences in dispersal ability two species may have the same metapopulation dynam- determined by habitat stability (Southwood 1977; Roff ics over their whole range, with very similar amount of 1994). By comparing closely related species with a simi- genetic variation and geographical structure, but lar morphology and ecology, with the only apparent because of the different absolute range size, have very difference of their preference for lotic or lentic habitats, different evolutionary dynamics (e.g. probability of spe- we were able to focus on the effect of habitat differ- ciation and extinction, Stanley 1979; Hansen 1980; Gas- ences. By comparing lotic and lentic species-pairs in ton 1998). Our way of introducing the spatial two independent lineages, we account for possible component is admittedly crude (scaling with a linear unknown correlated factors not related to habitat pref- distance), but it clearly shows that the consideration of erence that could determine the genetic structure in one the spatial scale increases the differences between lotic of the lineages, but would be highly unlikely to affect and lentic species, because of the general smaller geo- both in a parallel way. graphical ranges of the former. The distribution of suitable saline habitats is highly discontinuous, and determined by the local geological Nucleotide diversity and climatic conditions (Perthuisot 1995; Abella´n et al. In both groups of beetles, the absolute nucleotide diver- 2005; Velasco et al. 2006). This discontinuous distribu- sity was higher in the lotic than in the lentic species tion of the saline habitats is likely to have been the norm when compared with a similar number of sequenced through at least most of the Pleistocene (Go´mez et al. specimens. The distribution of this diversity was also 2000; Mun˜oz et al. 2008). The different distribution of different, with the proportion of variability among suitable habitat patches could by itself result in differ- groups of populations (as defined with SAMOVA) larger ences in the phylogeographical structure of species: in lotic than in lentic species. When compared over an although there is no data readily available, lentic habi- equivalent geographical setting (the main river basins, tats seem to be more restricted along the coastal line, known to be of relevance in other freshwater organ- whereas streams seem to be more evenly spread in geo- isms, Ribera 2000; Go´mez et al. 2000; Machordom et al. logically suitable semi-arid inland regions (Fig. 1d; 2000), differences between lotic and lentic species Abella´n et al. 2005). However, taking the known locali- become more apparent, with lotic species having a ties of species as a surrogate of habitat distribution, len- higher proportion of variation between groups than len- tic habitats were at larger distance to each other, and tic species, which in one of the lineages did not show with a more clustered distribution than lotic habitats. significant partitioning at this scale (Nebrioporus ceresyi). Both factors (larger absolute inter-habitat distances, and

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3899 habitat patches distributed in clusters) are favourable to long-term barriers to gene flow (c. 1–2 MY, see Fig. S4 the development of a stronger genetic structure in lentic and Abella´n et al. 2007). It must be noted that our sam- species, and thus run against our hypotheses. The differ- pling is virtually exhaustive, and that geographical gaps ent role of the Strait of Gibraltar in the phylogeography may reflect true absence of the species because of lack of lotic and lentic lineages provides additional evidence of suitable habitat. The isolation between the main cen- for the existence of differences in dispersal ability, rather tres of distribution of this species seems to have been than indirect effects of habitat isolation. In both lentic enough to interrupt the gene flow among relatively lineages, the separation between Iberia and North Africa close populations, resulting in the reciprocal monophyly was largely irrelevant, with the same, or closely related of their respective mitochondrial haplotypes (Abella´n haplotypes at both sides of the strait of Gibraltar. On the et al. 2007). contrary, with the same geographical setting both lotic The phylogeographical structuring of the populations lineages show a complete separation, defining morpho- of the lotic N. baeticus and N. nemethi is not as strong as logically recognized species with no shared haplotypes those of O. glaber, but still shows a clear separation at (Fig. 1). We cannot fully exclude the possibility that both sides of the Strait of Gibraltar, with the recognition habitat distribution had some undetected effect on the of two morphologically distinct species (Fery et al. genetic structure of the studied species, although with 1996) product of a single colonization from North the data currently available, there seems to be no signifi- Africa estimated to have occurred at c. 0.2MY (Fig. S5). cant difference in degree of isolation. In N. ceresyi, the deepest phylogeographical split seems to be between the Atlantic and Mediterranean popula- tions (at c. 0.3MY, Fig. S5), in agreement with other Haplotype and phylogeographical diversity coastal saline organisms (e.g. Iberian killifish, Perdices The rarefaction curves of haplotype diversity show that et al. 2001; see Schmitt 2007 for a review). Within the in the two lineages, for the same number of popula- Mediterranean clade, it is interesting to note that there tions, both the sample-based and the estimated haplo- seems to be a split at c. 0.2MY (Fig. S5) between eastern type richness were higher in lotic than in lentic species. and western haplotypes: Iberian coast and the western The effect of differences in the spatial scale between Balearic islands (Ibiza) in one clade, and Malta, Khios, lotic and lentic species were more clearly addressed in Sicily, Tunisia and the eastern Balearic islands (Mallor- comparing the measure of phylogenetic diversity with ca) in the other. There are only two localities with geographical distance. Although significant in all cases, shared haplotypes, Camargue and Formentera, both of the correlation of phylogenetic diversity and distance them artificial habitats (salt-pans). The separation was stronger in lentic species, and the phylogenetic between Mallorca and Menorca on the east, and Ibiza diversity increased at a much faster rate in lotic species, and Formentera in the west, with the fauna of the east- i.e. they had a larger phylogenetic beta diversity (Gra- ern islands more related to that of Sardinia or Italy, is a ham & Fine 2008) (Fig. 7). The weaker correlation with common pattern for a number of different groups (e.g. distance suggests the stronger role of geographical fac- Palmer & Cambefort 2000; Radloff et al. 2001; De La tors other than linear distance in shaping the genetic Rua et al. 2003; Brown et al. 2008). Thus, for yet structure of lotic species, such as habitat patch distribu- unknown reasons, a gap of less than 100 km seems to tion or the existence of geographical barriers, which be of more relevance than much larger distances may be a reflect of their lower dispersal ability. The lar- between localities in the eastern Mediterranean. ger phylogenetic diversity of lotic species is more Our results support the important role of habitat con- remarkable when considering their smaller geographical straints in shaping the evolutionary history of the spe- ranges: the sampled populations of N. ceresyi comprised cies, in this case linking habitat stability to dispersal a geographical area (from S Morocco to Khios) around (Roff 1994; Denno et al. 1996; Bohonak & Jenkins 2003). three times larger than that of Nebrioporus baeticus plus Through the mediation of likely differences in dispersal Nebrioporus nemethi (N Morocco and the oriental half of ability, we have shown that the ecological preference of Iberia), as happened with Ochthebius glaber (SE Iberia) a species may be an important factor to understand its and Ochthebius notabilis (Morocco and most of Iberia). evolutionary history. The phylogeographical structure in the two studied lineages show parallel differences despite their sharp Acknowledgements contrast in biology and evolutionary history. In the O. notabilis group, O. glaber comprises three ancient evolu- We thank all collectors listed in Table S2 for proving material tionary lineages corresponding to the main river basins for study, and N. Bennas, A. Cieslak, F. Picazo, D. Sa´nchez- (as clearly shown in the parsimony network), which are Ferna´ndez, J. Velasco, and the members of the Aquatic Ecology research group (Universidad de Murcia, Spain), the Universite´ geographically partitioned most probably as a result of

2009 Blackwell Publishing Ltd 3900 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

Abdelmalek Essaaˆdi (Te´touan, Morocco) and the MNCN De La Rua P, Galian J, S J, Moritz RFA (2003) Genetic structure (Madrid) for help at various stages of this project. Ana Iz- of Balearic honeybee populations based on microsatellite quierdo helped with laboratory work in the MNCN. The com- polymorphism. Genetics Selection Evolution, 35, 339–350. ments of three anonymous referees were of great help to Denno RF, Roderick GK, Peterson MA et al. (1996) Habitat improve the manuscript. This work was supported by funding persistence underlies intraspecific variation in the dispersal from a postdoctoral grant from the Fundacio´nSe´neca to PA, strategies of planthoppers. Ecological Monographs, 66, 389– and projects CGL2006-04159, 023 ⁄ 2007 (AM) and CGL2004- 408. 00028, CGL2007-61665 (IR). Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. References Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. Public Abella´nP,Sa´nchez-Ferna´ndez D, Ribera I, Velasco J, Milla´nA Library of Science, Biology, 4, e88. (2005) Ochthebius glaber (Coleoptera, Hydraenidae), un Dupanloup I, Schneider S, Excoffier L (2002) A simulated coleo´ptero acua´tico ende´mico de la Penı´nsula Ibe´rica con annealing approach to define the genetic structure of ´ ´ elevada especificidad de ha´bitat. Boletın Sociedad Entomologica populations. Molecular Ecology, 11, 2571–2581. Aragonesa, 36, 9–14. Ebdon D (1986) Statistics in Geography, 2nd edn. Blackwell, Abella´nP,Go´mez-Zurita J, Milla´nAet al. (2007) Conservation Oxford. genetics in hypersaline inland waters: mitocondrial diversity Excoffier L, Smouse PE, Quattro JM (1992) Analysis of and phylogeography of an endangered Iberian molecular variance inferred from metric distances among (Coleoptera: Hydraenidae). Conservation Genetics, 8, 79–88. DNA haplotypes: application to human mitochondrial DNA Bamber RN, Batten SD, Sheader M, Bridgewater ND (1992) On restriction data. Genetics, 131, 479–491. the ecology of brackish water lagoons in Great Britain. Aquatic Fery H, Fresneda J, Milla´n A (1996) Bemerkungen zur Conservation: Marine and Freshwater Ecosystems, 2, 65–94. Nebrioporus ceresyi-gruppe sowie Beschreibung von Barraclough TG, Nee S, Harvey PH (1998) Sister-group Nebrioporus schoedli n.sp. (Coleoptera: Dytiscidae). analysis in identifying correlates of diversification. Entomologische Zeitschrift, 106, 306–328. Evolutionary Ecology, 12, 751–754. Foster GN (2000) The aquatic Coleoptera of British Beutel RG, Leschen RAB (2005) Handbook of Zoology, 38. saltmarshes: extremes of generalism and specialism. In: Coleoptera, Beetles Vol. 1, Morphology and Systematics. Walter British Saltmarshes (eds Sherwood BR, Gardiner BG, Harris de Gruyter, Berlin. T), pp. 223–233. Linnean Society, London. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary Gaston KJ (1998) Species-range size distributions: products of significance of dispersal by freshwater invertebrates. Ecology speciation, extinction and transformation. Philosophical Letters, 6, 783–796. Transactions of the Royal Society of London Series B, 353, 219– Bowler DE, Benton TG (2005) Causes and consequences of 230. dispersal strategies: relating individual behaviour to Go´mez A, Carvalho GR, Lunt DH (2000) Phylogeography spatial dynamics. Biological Review, 80, 205–225. and regional endemism of a passively dispersing Brown RP, Terrasa B, Perez-Mellado V et al. (2008) Bayesian zooplankter: mitochondrial DNA variation in rotifer resting estimation of post-Messinian divergence times in Balearic egg banks. Proceedings of the Royal Society of London B, 267, island lizards: sequence divergence and reliability. Molecular 2189–2197. Phylogenetics and Evolution, 48, 350–358. Go´mez-Zurita J (2004) Molecular systematics and time-scale for Carranza S, Arnold EN (2003) History of West Mediterranean the evolution of Timarcha, a leaf-beetle genus with a disjunct newts, Pleurodeles (Amphibia: Salamandridae), inferred from Holarctic distribution. Molecular Phylogenetics and Evolution, old and recent DNA sequences. Systematics and Biodiversity, 32, 647–665. 1, 327–338. Graham CH, Fine PVA (2008) Phylogenetic beta diversity: Chao A (1984) Non-parametric estimation of the number of linking ecological and evolutionary processes across space in classes in a population. Scandinavian Journal of Statistics, 11, time. Ecology Letters, 11, 1265–1277. 265–270. Hansen TA (1980) Influence of larval dispersal and geographic Charlesworth B (2009) Fundamental concepts in genetics: distribution on species longevity in neogastropods. effective population size and patterns of molecular evolution Paleobiology, 6, 193–207. and variation. Nature Reviews Genetics, 10, 195–205. Harvey PH, Pagel MD (1991) The Comparative Method in Clement MD, Posada D, Crandall KA (2000) TCS: a computer Evolutionary Biology. Oxford University Press, New York. 9 program to estimate gene genealogies. Molecular Ecology, , Hof C, Bra¨ndle M, Brandl R (2006) Lentic odonates have larger 1657–1659. and more northern ranges than lotic species. Journal of Colwell RK (2005) EstimateS: statistical estimation of species Biogeography, 33, 63–70. richness and shared species from samples (version 7.5). User’s Hof C, Bra¨ndle M, Brandl R (2008) Latitudinal variation of Guide and application. Available from http://purl.oclc.org/ diversity in European freshwater is not concordant estimates. across habitat types. Global Ecology and Biogeography, 17, 539– Colwell RK, Mao CX, Chang J (2004) Interpolating, 546. extrapolating, and comparing incidence-based species Huelsenbeck J, Ronquist F (2001) Mr Bayes: Bayesian inference accumulation curves. Ecology, 85, 2717–2727. of phylogeny. Biometrics, 17, 754–755.

2009 Blackwell Publishing Ltd HABITAT STABILITY AND GENETIC STRUCTURE 3901

Hunt T, Bergsten J, Levkanicova Z et al. (2007) A Aegean archipelago: the effect of dispersal ability and comprehensive phylogeny of beetles reveals the evolutionary habitat preference. Molecular Ecology, 18, 2503–2517. origins of a superradiation. Science, 318, 1913–1916. Perdices A, Carmona JA, Ferna´ndez-Delgado C, Doadrio I Hutchinson GE (1957) A Treatise on Limnology. Wiley, New (2001) Nuclear and mitochondrial data reveal high genetic York. divergence among Atlantic and Mediterranean populations Illies J (ed.) (1978) Limnofauna Europaea. Gustav Fischer Verlag, of the Iberian killifish Aphanius iberus (Teleostei: Stuttgart ⁄ New York. Cyprinodontidae). Heredity, 87, 314–324. Ja¨ch MA (1992) Revision of the Palearctic species of the genus Perthuisot JP (1995) Inland saline lakes with lagoonal biota: Ochthebius Leach, 1815. IX. The andraei and notabilis species some reflections on the concepts and nature of athalassic groups (Coleoptera, Hydraenidae). Nachrichtenblatt (non-marine), paralic and marine saline waters. International Bayerischer Entomologen, 41, 7–21. Journal of Salt Lake Research, 4, 79–94. Ja¨ch MA (2004) Hydraenidae. In: Catalogue of Palaearctic Posada D, Crandall KA (1998) Modeltest: testing the model of Coleoptera. Vol. 2: Hydrophiloidea – Histeroidea – Staphylinoidea. DNA substitution. Bioinformatics, 14, 817–818. (eds Lo¨bl I, Smetana A), pp. 102–122. Apollo Books, Posada D, Crandall KA (2001) Intraspecific gene genealogies: Copenhagen. trees grafting into networks. Trends in Ecology and Evolution, Kalinowski ST (2004) Counting alleles with rarefaction: private 16, 37–45. alleles and hierarchical sampling designs. Conservation Radloff SE, Hepburn HR, Hepburn C, De la Ru´ a P (2001) Genetics, 5, 539–543. Morphometric affinities and population structure of Korfiatis KJ, Stamou GP (1999) Habitat templets and the honeybees of the Balearic Islands in the Mediterranean Sea. changing worldview of ecology. Biology and Philosophy, 14, Journal of Apicultural Research, 40, 97–103. 375–393. Rambaut A, Drummond AJ (2004) TRACER V1.4. Available Leonard JA, Vila` C, Wayne RK (2005) Legacy lost: genetic from http://beast.bio.ed.ac.uk/Tracer. variability and population size of extirpated US grey wolves Ribera I (2000) Biogeography and conservation of Iberian water (Canis lupus). Molecular Ecology, 14, 9–17. beetles. Biological Conservation, 92, 131–150. Lo¨bl I, Smetana A (ed.) (2003). Catalogue of Palaearctic Ribera I (2008) Habitat Constraints and the Generation of Coleoptera, Vol. 1, Apollo Books, Copenhagen. Diversity in Freshwater Macroinvertebrates. In: Aquatic Machordom A, Sua´rez J, Almodo´var A, Bautista JM (2000) Insects: Challenges to Populations (eds Lancaster J, Briers RA), Mitochondrial haplotype variation and phylogeography of pp. 289–311. CAB International Publishing, Wallingford, Iberian brown trout populations. Molecular Ecology, 9, 1325– UK. 1338. Ribera I, Vogler AP (2000) Habitat type as a determinant of Mantel N (1967) Detection of disease clustering and a species range sizes: the example of lotic-lentic differences in generalized regression approach. Cancer Research, 27, 209– aquatic Coleoptera. Biological Journal of the Linnean Society, 71, 220. 35–52. Marten A, Bra¨ndle M, Brandl R (2006) Habitat type predicts Ribera I, Hernando C, Aguilera P (2001a) Agabus alexandrae genetic population differentiation in freshwater n.sp. from Morocco, with a molecular phylogeny of the invertebrates. Molecular Ecology, 15, 2643–2651. western Mediterranean species of the A. guttatus group Milla´n A, Abella´n P, Ribera I, Sa´nchez D, Velasco J (2006) The (Coleoptera: Dytiscidae). Systematics and Evolution, 32, Hydradephaga (Coleoptera) of the Segura basin (SE Spain): 253–262. twenty-five years studying water beetles. Memorie Della Ribera I, Barraclough TG, Vogler AP (2001b) The effect of Societa` Entomologica Italiana, 85, 137–158. habitat type on speciation rates and range movements in Moreno JL, Milla´n A, Sua´rez ML, Vidal-Abarca MR, Velasco J aquatic beetles: inferences from species-level phylogenies. (1997) Aquatic Coleoptera and Heteroptera assemblages in Molecular Ecology, 10, 721–735. waterbodies from ephemeral coastal streams (‘ramblas’) of Ribera I, Foster GN, Vogler AP (2003) Does habitat use explain south-eastern Spain. Archiv fu¨r Hydrobiologie, 141, 93–107. large scale species richness patterns of aquatic beetles in Mun˜oz J, Go´mez A, Green AJ, Figuerola J, Amat F, Rico C Europe? Ecography, 26, 145–152. (2008) Phylogeography and local endemism of the native Rodrı´guez F, Oliver JF, Marı´n A, Medina JR (1990) The general Mediterranean brine shrimp Artemia salina (Branchiopoda: stochastic model of nucleotide substitution. Journal of Anostraca). Molecular Ecology, 17, 3160–3177. Theoretical Biology, 142, 485–501. Nei M (1987) Molecular Evolutionary Genetics. Columbia Roff DA (1994) Habitat persistence and the evolution of wing University Press, New York. dimorphism in insects. American Naturalist, 144, 772–798. Palmer M, Cambefort Y (2000) Evidence for reticulate Rozas J, Sa´nchez-DelBarrio JC, Messeguer X, Rozas R (2003) palaeogeography: beetle diversity linked to connection- Dnasp, DNA polymorphism analyses by the coalescent and disjunction cycles of the Gibraltar Strait. Journal of other methods. Bioinformatics, 19, 2496–2497. Biogeography, 27, 403–416. Sa´nchez-Ferna´ndez D, Lobo JM, Abella´n P, Ribera I, Milla´nA Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, (2008) Bias in freshwater biodiversity sampling: the case of Barraclough TG, Vogler AP (2008) Speciation and DNA Iberian water beetles. Diversity and Distributions, 14, 754–762. barcodes: testing the effects of dispersal on the formation of Schmitt T (2007) Molecular biogeography of Europe: discrete sequence clusters. Philosophical Transactions of the Pleistocene cycles and postglacial trends. Frontiers in Zoology, Royal Society of London, Series B, 363, 2987–2996. 4, 11. Papadopoulou A, Anastasiou I, Keskin B, Vogler AP (2009) Short AEZ, Caterino MS (2009) On the validity of habitat as a Comparative phylogeography of tenebrionid beetles in the predictor of genetic structure in aquatic systems: a

2009 Blackwell Publishing Ltd 3902 P. ABELLA´ N, A. MILLA´ N and I. RIBERA

comparative study using California water beetles. Molecular Ecology, 18, 403–414. P. Abella´n is a post-doctoral researcher at the Institute of Simon C, Frati F, Beckenbach AT, Crespi B, Liu H, Flook P Evolutionary Biology (CSIC-UPF). His research is currently (1994) Evolution, weighting, and phylogenetic utility of focused on the origin and evolution of fauna of saline waters, mitochondrial gene sequences and a compilation of phylogeography of Mediterranean water beetles and the study conserved polymerase chain reaction primers. Annals of the of changes in distributional patterns of fossil Quaternary water Entomological Society of America, 87, 651–701. beetles. This work is part of an ongoing collaboration among Southwood TRE (1977) Habitat, the templet for ecological the authors to study the systematics, ecology and conservation strategies? Journal of Animal Ecology, 46, 337–365. of the Western Mediterranean aquatic Coleoptera. A. Milla´n’s Southwood TRE (1988) Tactics, strategies and templets. Oikos, research interests focus on , ecology and conservation 52, 3–18. of aquatic Coleoptera and Hemiptera from Mediteranean eco- Stanley SM (1979) Macroevolution; Pattern and Process. W.H. systems. I. Ribera is interested in the systematics and ecology Freeman, San Francisco. of aquatic and subterranean Coleoptera. Stenseth NC, Lidicker Jr WC. (1992) The study of dispersal: a conceptual guide. In: Animal Dispersal: Small Mammals as a Model (eds Stenseth NC, Lidicker WC Jr), pp. 5–20. Chapman & Hall, New York ⁄ London. Supporting information Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Additional supporting information may be found in the online Parsimony (* and Other Methods), (version 4.0b10). Sinauer and version of this article: Associates, Sunderland, Massachusetts. Tamura K, Nei M (1993) Estimation of the number of Table S1 Sampled localities. N, sample size; p, nucleotide nucleotide substitutions in the control region of diversity for localities with four or more individuals mitochondrial DNA in humans and chimpanzees. Molecular Table S2 List of the sequenced specimens, with locality data, Biology and Evolution, 10, 512–526. date, collector and haplotype number Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software Fig. S1 Known Iberian records (10 · 10 UTM cells) of Ochthebi- version 4.0. Molecular Biology and Evolution, 24, 1596–1599. us glaber and O. notabilis. Data from Sa´nchez-Ferna´ndez et al. Templeton AR, Crandall KA, Sing CF (1992) A cladistic (2008). analysis of phenotypic associations with haplotypes inferred · from restriction endonuclease mapping. III. Cladogram Fig. S2 Known Iberian records (10 10 UTM cells) of Nebriopo- estimation. Genetics, 132, 619–633. rus baeticus and N. ceresyi. Data from Sa´nchez-Ferna´ndez et al. Toledo M (2009) Revision in part of the genus Nebrioporus (2008). Two records of N. ceresyi from Galicia and Extremadura Re´gimbart, 1906, with emphasis on the N. laeviventris-group have been omitted, as they likely represent isolated specimens (Coleoptera: Dytiscidae). Zootaxa, 2040, 1–111. and not established populations (see text). Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging Fig. S3 Plots of the values of fixation indices obtained from patterns in the comparative analysis of phylogenetic SAMOVA as a function of the number of groups (K). FCT: differ- community structure. Molecular Ecology, 18, 572–592. entiation between groups, FSC: differentiation between popula- Velasco J, Milla´n A, Herna´ndez J et al. (2006) Response of tions within groups, FST: differentiation between populations biotic communities to salinity changes in a Mediterranean among groups. hypersaline stream. Saline Systems, 2, 12. Vos M, Velicer GJ (2008) Isolation by distance in the spore- Fig. S4 Ultrametric tree obtained for Ochthebius haplotypes forming soil bacterium Myxococcus Xanthus. Current Biology, using the program BEAST (see text for details of the calibration 18, 386–391. used). Node labels, mean estimated age (MY) and 95% confi- Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software dence interval (in parenthesis). See Fig. 1 and Table S1 for the for the analysis of phylogenetic community structure and character codes of the localities and river basins. evolution (version 4.0.). Available from http:// Fig. S5 Ultrametric tree obtained for Nebrioporus haplotypes phylodiversity.net/phylocom/. using the program BEAST (see text for details of the calibration Zar J (1984) Biostatistical Analysis, 2nd edn. Prentice-Hall, New used). Node labels, mean estimated age (MY) and 95% confi- Jersey. dence interval (in parenthesis). See Fig. 1 and Table S1 for the Zwickl DJ (2006) Genetic Algorithm Approaches for the codes of the localities and river basins. Phylogenetic Analysis of Large Biological Sequence Data Sets Under the Maximum Likelihood Criterion. PhD thesis, Please note: Wiley-Blackwell are not responsible for the content University of Texas at Austin. Genetic algorithm for rapid or functionality of any supporting information supplied by the likelihood inference (version 0.942). Available from http:// authors. Any queries (other than missing material) should be www.bio.utexas.edu/faculty/antisense/garli/Garli.html. directed to the corresponding author for the article.

2009 Blackwell Publishing Ltd Supporting Information, Figures S1-S5

S1. Known Iberian records (10x10 UTM cells) of Ochthebius glaber and O. notabilis.

Data from Sánchez-Fernández et al. (2008).

S2. Known Iberian records (10x10 UTM cells) of Nebrioporus baeticus and N. ceresyi.

Data from Sánchez-Fernández et al. (2008). Two records of N. ceresyi from Galicia and

Extremadura have been omitted, as they likely represent isolated specimens and not established populations (see text).

Figure S3. Plots of the values of fixation indices obtained from SAMOVA as a function of the number of groups (K). FCT: differentiation between groups, FSC: differentiation between populations within groups, FST: differentiation between populations among groups.

Figure S4. Ultrametric tree obtained for Ochthebius haplotypes using the program

BEAST (see text for details of the calibration used). Node labels, mean estimated age

(MY) and 95% confidence interval (in parenthesis). See Fig. 1 and Table S1 for the codes of the localities and river basins.

Figure S5. Ultrametric tree obtained for Nebrioporus haplotypes using the program

BEAST (see text for details of the calibration used). Node labels, mean estimated age

(MY) and 95% confidence interval (in parenthesis). See Fig. 1 and Table S1 for the codes of the localities and river basins.

Table S1. Sampled localities. N, sample size; , nucleotide diversity for localities with four or more individuals. Main geographical areas: EBR, Ebro; TAJ, Tajo; JUC, Júcar; GUD, Guadiana; SEG, Segura; GUA, Guadalquivir; RIF, Moroccan Rif; ATL, Moroccan Atlas; MIB, Mediterranean Iberia; NAM, Northern Atlantic Morocco; SAM, Southern Atlantic Morocco. CodeLoc Locality Country N  Area Longitude Latitude O. glaber ALI2 Estrecho de la Salineta, Alicante Spain 6 0.001 SEG -0.78 38.43 ALI3 Rambla de Albatera, Alicante Spain 6 0.002 SEG -0.95 38.24 CAD Salinas de Hortales, Cádiz Spain 5 0.009 GUA -5.54 36.74 COR1 Ayo. Salinas de Duernas, Córdoba Spain 4 0.012 GUA -4.6 37.7 COR2 Salinas de la Maturra, Córdoba Spain 5 0.011 GUA -4.36 37.68 COR3 Río salado de Priego, Córdoba Spain 5 0.009 GUA -4.18 37.41 CUE3 Rambla de Minglanilla1, Cuenca Spain 5 0.002 JUC -1.57 39.56 CUE4 Rambla de Minglanilla2, Cuenca Spain 5 0.002 JUC -1.57 39.56 JAE1 Ayo. Salinas de Brujuelo, Jaén Spain 4 0.01 GUA -3.67 37.89 JAE2 Arroyo de las Salinas de Porcuna, Jaén Spain 5 0.013 GUA -4.22 37.79 JAE3 Salinas de Chíllar, Hinojares, Jaén Spain 4 0.016 GUA -3 37.71 MUR2 Rambla de Sangonera, Murcia Spain 7 0 SEG -1.29 37.95 MUR5 Rambla Salada de Fortuna, Murcia Spain 7 0.001 SEG -1.12 38.13 MUR8 Rambla de la Parra, Murcia Spain 5 0.003 SEG -1.07 38.2 MUR9 Ayo. Salinas de la Ramona, Murcia Spain 5 0.003 SEG -1.62 38.21 MUR10 Rambla de Librilla, Murcia Spain 6 0.005 SEG -1.37 37.91 VAL1 Ayo. hipersalino en R. Cabriel, Valencia Spain 6 0.002 JUC -1.3 39.34

O. notabilis ALA Salinas de Añana, Álava Spain 7 0.001 EBR -2.99 42.8 ALB1 Salinas de Pinilla, Albacete Spain 5 0.001 GUD -2.62 38.84 ALB2 Manantial en Casas de Ves, Albacete Spain 6 0.002 JUC -1.28 39.29 BUR Salinas Poza de la Sal, Burgos Spain 5 0 EBR -3.5 42.67 CAD Salinas de Hortales, Cádiz Spain 1 -- GUA -5.54 36.74 COR1 Ayo. Salinas de Duernas, Córdoba Spain 1 -- GUA -4.6 37.7 COR2 Salinas de la Maturra, Córdoba Spain 4 0.003 GUA -4.36 37.68 CUE1 Ayo. en Salinas del Manzano, Cuenca Spain 1 -- JUC -1.56 40.09 CUE2 Salinas de Valsalobre, Cuenca Spain 1 -- TAJ -1.9 40.82 GRA Salinas de Malahá, Granada Spain 5 0.003 GUA -3.72 37.1 GUA1 Salinas Alcolea de las Peñas, Guadalajara Spain 4 0 TAJ -2.79 41.22 GUA4 Salinas Saelices de la Sal , Guadalajara Spain 2 -- TAJ -2.33 40.9 HUE Salinas de la Rolda, Naval , Huesca Spain 5 0.003 EBR 0.15 42.19 JAE1 Ayo. Salinas de Brujuelo, Jaén Spain 5 0.005 GUA -3.67 37.89 JAE3 Salinas de Chíllar, Hinojares, Jaén Spain 2 -- GUA -3 37.71 LER Salinas Gerri de la Sal, Lérida Spain 4 0 EBR 1.07 42.33 MOR2 O. Sebt El Ouedaya Morocco 1 -- RIF -5.5 34.39 MOR4 Oued Khendek Morocco 4 0.008 RIF -5.35 34.69 MOR5 Salinas de Tissa Morocco 1 -- RIF -4.68 34.29 MUR7 Salinas del Zacatín, Murcia Spain 5 0.001 SEG -2.12 38.2 MOR12 Salinas de Larache Morocco 6 0.002 NAM -6.13 35.19 MOR14 Salinas Karisit El hafed Morocco 6 0.006 RIF -5.5 34.39 MOR17 Salinas de Azilah Morocco 1 -- NAM -6.01 35.5 SEV2 Ayo. Montero, Sevilla Spain 5 0.002 GUA -5.69 36.98

O. lanarotis MOR4 Oued Khendek Morocco 5 0.003 RIF -5.35 34.69 MOR5 Salinas de Tissa Morocco 5 0.001 RIF -4.68 34.29

O. normandi ARG Mellaha II Argeria 6 0.004 -0.28 35.71

O. salinator MOR8 O. Khaoui Naâm (Khnifiss) Morocco 5 0.001 SAM -12.22 27.68 MOR9 Oued El Aguig Morocco 5 0.001 SAM -11.63 28.25 MOR13 Oued Aouedrei (Khnifiss) Morocco 5 0.001 SAM -12.18 27.95 MOR16 Oued Draa, Tan Tan Morocco 2 -- SAM -10.95 28.53 TUN4 Salines (37 km SE Tozeur) Tunisia 1 -- 8.45 33.94

O. gereckei SIC2 Vallone Torto, Caltanissetta, Sicily Italy 5 0.007 13.37 37.52 SIC3 Fiume Salito, Sicily Italy 5 0.009 13.86 37.51 SIC4 Torrente Vaccarizzo (C. Castello), Sicily Italy 5 0.008 14.11 37.61

N. baeticus ALA Salinas de Añana, Álava Spain 6 0 EBR -2.99 42.8 ALB1 Salinas de Pinilla., Albacete Spain 2 -- GUD -2.62 38.84 ALI1 Rbla. de Algüeda, Albatera, Alicante Spain 1 -- SEG -0.9 38.25 CAD Salinas de Hortales, Cádiz Spain 5 0.003 GUA -5.54 36.74 COR1 Ayo. Salinas de Duernas, Córdoba Spain 1 -- GUA -4.6 37.7 COR2 Salinas de la Maturra, Córdoba Spain 2 -- GUA -4.36 37.68 COR3 Río Salado de Priego, Córdoba Spain 7 0.004 GUA -4.18 37.41 CUE1 Ayo. en Salinas del Manzano, Cuenca Spain 6 0 JUC -1.56 40.09 CUE2 Salinas de Valsalobre , Cuenca Spain 2 -- TAJ -1.9 40.82 GRA Salinas de Malahá, Granada Spain 1 -- GUA -3.72 37.1 GUA1 Salinas Alcolea de las Peñas, Guadalajara Spain 3 -- TAJ -2.79 41.22 GUA2 Salinas O. de Jadraque , Guadalajara Spain 1 -- TAJ -2.74 41.13 GUA3 Salinas de Imon, Guadalajara Spain 5 0 TAJ -2.73 41.16 GUA4 Salinas Saelices de la Sal, Guadalajara Spain 2 -- TAJ -2.33 40.9 HUE Salinas de la Rolda, Naval , Huesca Spain 3 -- EBR 0.15 42.19 JAE1 Jaén, Ayo. Salinas de Brujuelo, Jaén Spain 5 0.004 GUA -3.67 37.89 JAE2 Arroyo de las Salinas de Porcuna, Jaén Spain 2 -- GUA -4.22 37.79 MUR1 Rambla de Agua Amarga, Murcia Spain 5 0.002 SEG -1.5 38.31 MUR2 Rambla de Sangonera, Murcia Spain 1 -- SEG -1.29 37.95 MUR3 Rambla del Reventón, Murcia Spain 3 -- SEG -1.37 37.64 MUR4 Rambla Pozo Enmedio, Murcia Spain 3 -- SEG -1.98 37.89 MUR5 Rambla Salada de Fortuna, Murcia Spain 3 -- SEG -1.12 38.13 NAV1 A. Bardenas Blancas (El Yugo), Navarra Spain 5 0.005 EBR -1.61 42.25 NAV2 Barranco Salado de Mendavia, Navarra Spain 1 -- EBR -2.15 42.42 NAV3 R. salado de Valtierra, F.Eguara, Navarra Spain 1 -- EBR -1.64 42.17 SEV1 Arroyo El Peinado, Osuna, Sevilla Spain 5 0.006 GUA -5.17 37.23 SEV2 Ayo. Montero, Sevilla Spain 5 0.006 GUA -5.69 36.98 ZAR1 A. Salino Mediana de Aragón, Zaragoza Spain 5 0.002 EBR -0.74 41.46 ZAR2 Bco. Salado Zuera, Zaragoza Spain 2 EBR -0.76 41.88

N. nemethi MOR1 Laatamna, Afl. Oued Larbâa Morocco 2 -- RIF -3.92 34.36 MOR2 O. Sebt El Ouedaya Morocco 5 0.007 RIF -5.5 34.39 MOR3 Oued en Aîn-Aicha Morocco 5 0.004 RIF -4.68 34.49 MOR4 Oued Khendek Morocco 6 0.005 RIF -5.35 34.69 MOR5 Salinas de Tissa Morocco 5 0.006 RIF -4.68 34.29 MOR7 Tizi-n'Rechou Morocco 1 -- ATL -5.27 32.81

N. ceresyi ALM1 Salinas de Cabo de Gata, Almería Spain 5 0.002 MIB -2.22 36.76 FOR1 Estany Pudent, Es Brolls, Baleares Spain 5 0.002 1.44 38.74 FRA Salin du Girau, Bouches du Rhone France 5 0.004 4.75 43.39 GRE Lithi saltmarsh, Chios Greece 3 -- 26 38.34 HUV Salinas del Odiel, Huelva Spain 5 0 AIB -6.98 37.26 IBI1 Platja Codolar, Ses Salines, Baleares Spain 5 0.002 1.38 38.86 MAL1 Salines de Llevan, Baleares Spain 5 0.002 3.01 39.35 MLT Ghadira Nat. reserve, saline pool Malta 3 -- 14.35 35.97 MOR10 Oued ez Zehar Morocco 2 -- SAM -11.85 28.12 MOR11 Oued Millah Gdem Ghaba (Khnifiss) Morocco 2 -- SAM -12.08 27.78 MOR12 Salinas de Larache Morocco 5 0 NAM -6.13 35.19 MOR13 Oued Aouedrei (Khnifiss) Morocco 2 -- SAM -12.18 27.95 MOR15 Sruk-el-Jemaa, salinas Morocco 3 -- NAM -8.91 32.83 MOR8 O. Khaoui Naâm (Khnifiss) Morocco 5 0.001 SAM -12.22 27.68 MOR9 Oued El Aguig Morocco 2 -- SAM -11.63 28.25 MUR5 Rambla Salada de Fortuna, Murcia Spain 5 0.002 MIB -1.12 38.13 MUR6 Charca en Calblanque, Murcia Spain 5 0.002 MIB -0.74 37.6 SIC1 Salinas de Trapani, Sicily Italy 5 0.001 12.53 38 SIC2 Vallone Torto (Caltanissetta), Sicily Italy 5 0.001 13.37 37.52 TAR1 Delta del Ebro, Tarragona Spain 4 0.002 MIB 0.86 40.71 TUN1 O. El Melah, 24 km SW Gafsa Tunisia 5 0.001 8.58 34.34 TUN2 Oued (7 km N Hachichina) Tunisia 5 0.003 10.24 34.43 TUN3 O. Erebaieb (60 km NE Kebili) Tunisia 1 -- 9.55 33.82 Table S2. List of the sequenced specimens, with locality data, date, collector and haplotype number.

VOUCHER Species CodeLoc Locality Fecha Collector HAPL ACCESSION NUMBER MNCN-AI10 Nebrioporus baeticus ALI1 Rbla. de Algüeda, Albatera, Alicante, Spain 07/09/2004 AM et col. NB1 FJ944278 MNCN-AI12 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 11/10/2003 AM et col. NB2 FJ944288 MNCN-AI13 Nebrioporus baeticus CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. NB1 FJ944279 MNCN-AI15 Nebrioporus baeticus MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. NB4 FJ944291 MNCN-AI16 Nebrioporus baeticus COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. NB3 FJ944289 MNCN-AI17 Nebrioporus baeticus JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. NB5 FJ944293 MNCN-AI185 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero NB6 FJ944294 MNCN-AI186 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero NB7 FJ944299 MNCN-AI187 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero NB6 FJ944295 MNCN-AI201 Nebrioporus baeticus MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NB1 FJ944280 MNCN-AI202 Nebrioporus baeticus MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NB8 FJ944302 MNCN-AI203 Nebrioporus baeticus MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NB9 FJ944303 MNCN-AI207 Nebrioporus baeticus MUR3 Rambla del Reventón, Murcia, Spain 09/05/2005 AM et col. NB10 FJ944304 MNCN-AI208 Nebrioporus baeticus MUR3 Rambla del Reventón, Murcia, Spain 09/05/2005 AM et col. NB11 FJ944306 MNCN-AI209 Nebrioporus baeticus MUR3 Rambla del Reventón, Murcia, Spain 09/05/2005 AM et col. NB11 FJ944307 MNCN-AI210 Nebrioporus baeticus MUR1 Rambla de Agua Amarga, Murcia, Spain 09/05/2005 AM et col. NB4 FJ944292 MNCN-AI211 Nebrioporus baeticus MUR1 Rambla de Agua Amarga, Murcia, Spain 09/05/2005 AM et col. NB1 FJ944281 MNCN-AI212 Nebrioporus baeticus MUR1 Rambla de Agua Amarga, Murcia, Spain 09/05/2005 AM et col. NB1 FJ944282 MNCN-AI213 Nebrioporus baeticus GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. NB12 FJ944308 MNCN-AI214 Nebrioporus baeticus GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. NB12 FJ944309 MNCN-AI215 Nebrioporus baeticus GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. NB12 FJ944310 MNCN-AI219 Nebrioporus baeticus GUA3 Salinas de Imon, Guadalajara, Spain 21/05/2005 IR & A. Cieslak NB12 FJ944311 MNCN-AI220 Nebrioporus baeticus GUA3 Salinas de Imon, Guadalajara, Spain 21/05/2005 IR & A. Cieslak NB12 FJ944312 MNCN-AI221 Nebrioporus baeticus GUA3 Salinas de Imon, Guadalajara, Spain 21/05/2005 IR & A. Cieslak NB12 FJ944313 MNCN-AI230 Nebrioporus baeticus GUA2 Salinas O. de Jadraque , Guadalajara, Spain 21/05/2005 AM et col. NB12 FJ944314 MNCN-AI231 Nebrioporus baeticus GUA4 Salinas Saelices de la Sal, Guadalajara, Spain 21/05/2004 AM et col. NB12 FJ944315 MNCN-AI232 Nebrioporus baeticus GUA4 Salinas Saelices de la Sal, Guadalajara, Spain 21/05/2004 AM et col. NB12 FJ944316 MNCN-AI235 Nebrioporus baeticus CUE2 Salinas de Valsalobre, Cuenca, Spain 22/05/2005 AM et col. NB12 FJ944317 MNCN-AI236 Nebrioporus baeticus CUE2 Salinas de Valsalobre, Cuenca, Spain 22/05/2005 AM et col. NB12 FJ944318 MNCN-AI24 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 23/07/2004 IR & A. Cieslak NB6 FJ944296 MNCN-AI25 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 23/07/2004 IR & A. Cieslak NB6 FJ944297 MNCN-AI26 Nebrioporus baeticus ALA Salinas de Añana, Álava, Spain 23/07/2004 IR & A. Cieslak NB6 FJ944298 MNCN-AI27 Nebrioporus baeticus NAV1 A. Bardenas Blancas (El Yugo), Navarra, Spain 21/07/2004 IR & A. Cieslak NB13 FJ944321 MNCN-AI28 Nebrioporus baeticus NAV1 A. Bardenas Blancas (El Yugo), Navarra, Spain 21/07/2004 IR & A. Cieslak NB14 FJ944330 MNCN-AI29 Nebrioporus baeticus NAV1 A. Bardenas Blancas (El Yugo), Navarra, Spain 21/07/2004 IR & A. Cieslak NB15 FJ944333 MNCN-AI30 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 02/06/2002 IR & A. Cieslak NB15 FJ944334 MNCN-AI31 Nebrioporus baeticus ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak NB16 FJ944336 MNCN-AI32 Nebrioporus baeticus ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak NB16 FJ944337 MNCN-AI39 Nebrioporus baeticus SEV1 Arroyo El Peinado, Osuna, Sevilla, Spain 27/07/1998 IR NB19 FJ944341 MNCN-AI397 Nebrioporus baeticus MUR4 Rambla Pozo Enmedio, Murcia, Spain 02/06/2005 AM et col. NB17 FJ944338 MNCN-AI398 Nebrioporus baeticus MUR4 Rambla Pozo Enmedio, Murcia, Spain 02/06/2005 AM et col. NB17 FJ944339 MNCN-AI399 Nebrioporus baeticus MUR4 Rambla Pozo Enmedio, Murcia, Spain 02/06/2005 AM et col. NB18 FJ944340 MNCN-AI4 Nebrioporus baeticus NAV3 R. salado de Valtierra, F.Eguara, Navarra, Spain 01/01/1997 IR & C. Hernando NB22 FJ944344 MNCN-AI41 Nebrioporus baeticus SEV1 Arroyo El Peinado, Osuna, Sevilla, Spain 27/07/1998 IR NB20 FJ944342 MNCN-AI43 Nebrioporus baeticus COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR NB1 FJ944283 MNCN-AI44 Nebrioporus baeticus COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR NB21 FJ944343 MNCN-AI49 Nebrioporus baeticus JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 28/07/1998 IR NB1 FJ944284 MNCN-PA179 Nebrioporus baeticus JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. NB24 FJ944349 MNCN-PA180 Nebrioporus baeticus JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. NB25 FJ944350 MNCN-PA181 Nebrioporus baeticus ZAR1 A. Salino Mediana de Aragón, Zaragoza, Spain 24/07/2006 AM et col. NB13 FJ944322 MNCN-PA182 Nebrioporus baeticus ZAR1 A. Salino Mediana de Aragón, Zaragoza, Spain 24/07/2006 AM et col. NB13 FJ944323 MNCN-PA183 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 25/07/2006 AM et col. NB26 FJ944352 MNCN-PA184 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 25/07/2006 AM et col. NB26 FJ944353 MNCN-PA185 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 25/07/2006 AM et col. NB26 FJ944354 MNCN-PA186 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. NB14 FJ944331 MNCN-PA187 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. NB27 FJ944358 MNCN-PA188 Nebrioporus baeticus CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. NB28 FJ944359 MNCN-PA189 Nebrioporus baeticus CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. NB29 FJ944360 MNCN-PA190 Nebrioporus baeticus CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. NB30 FJ944361 MNCN-PA191 Nebrioporus baeticus CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. NB1 FJ944285 MNCN-PA192 Nebrioporus baeticus NAV1 A. Bardenas Blancas (El Yugo), Navarra, Spain 21/07/2004 IR & A. Cieslak NB31 FJ944362 MNCN-PA193 Nebrioporus baeticus NAV1 A. Bardenas Blancas (El Yugo), Navarra, Spain 21/07/2004 IR & A. Cieslak NB7 FJ944300 MNCN-PA194 Nebrioporus baeticus SEV1 Arroyo El Peinado, Osuna, Sevilla, Spain 27/07/1998 IR NB1 FJ944286 MNCN-PA195 Nebrioporus baeticus SEV1 Arroyo El Peinado, Osuna, Sevilla, Spain 27/07/1998 IR NB22 FJ944345 MNCN-PA196 Nebrioporus baeticus MUR1 Rambla de Agua Amarga, Murcia, Spain 09/05/2005 AM et col. NB32 FJ944364 MNCN-PA197 Nebrioporus baeticus MUR1 Rambla de Agua Amarga, Murcia, Spain 09/05/2005 AM et col. NB10 FJ944305 MNCN-PA198 Nebrioporus baeticus GUA3 Salinas de Imon, Guadalajara, Spain 21/05/2005 IR & A. Cieslak NB12 FJ944319 MNCN-PA199 Nebrioporus baeticus GUA3 Salinas de Imon, Guadalajara, Spain 21/05/2005 IR & A. Cieslak NB12 FJ944320 MNCN-PA2 Nebrioporus baeticus JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. NB33 FJ944365 MNCN-PA200 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 28/07/2007 AM et col. NB26 FJ944355 MNCN-PA201 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 28/07/2007 AM et col. NB26 FJ944356 MNCN-PA3 Nebrioporus baeticus ZAR1 A. Salino Mediana de Aragón, Zaragoza, Spain 24/07/2006 AM et col. NB13 FJ944324 MNCN-PA4 Nebrioporus baeticus HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. NB13 FJ944325 MNCN-PA5 Nebrioporus baeticus SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. NB3 FJ944290 MNCN-PA57 Nebrioporus baeticus ZAR2 Bco. Salado Zuera, Zaragoza, Spain 13/04/2007 AM et col. NB31 FJ944363 MNCN-PA58 Nebrioporus baeticus ZAR2 Bco. Salado Zuera, Zaragoza, Spain 13/04/2007 AM et col. NB15 FJ944335 MNCN-PA59 Nebrioporus baeticus JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. NB1 FJ944287 MNCN-PA6 Nebrioporus baeticus CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 25/07/2006 AM et col. NB26 FJ944357 MNCN-PA60 Nebrioporus baeticus JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. NB34 FJ944366 MNCN-PA61 Nebrioporus baeticus SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. NB14 FJ944332 MNCN-PA62 Nebrioporus baeticus SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. NB35 FJ944367 MNCN-PA63 Nebrioporus baeticus SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. NB22 FJ944346 MNCN-PA64 Nebrioporus baeticus SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. NB25 FJ944351 MNCN-PA65 Nebrioporus baeticus HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. NB13 FJ944326 MNCN-PA66 Nebrioporus baeticus HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. NB13 FJ944327 MNCN-PA67 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. NB22 FJ944347 MNCN-PA68 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. NB36 FJ944368 MNCN-PA69 Nebrioporus baeticus ZAR1 A. Salino Mediana de Aragón, Zaragoza, Spain 24/07/2006 AM et col. NB13 FJ944328 MNCN-PA7 Nebrioporus baeticus COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. NB36 FJ944369 MNCN-PA70 Nebrioporus baeticus ZAR1 A. Salino Mediana de Aragón, Zaragoza, Spain 24/07/2006 AM et col. NB13 FJ944329 MNCN-PA8 Nebrioporus baeticus NAV2 Barranco Salado de Mendavia, Navarra, Spain 23/07/2006 AM et col. NB7 FJ944301 MNCN-PA9 Nebrioporus baeticus GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. NB22 FJ944348 MNCN-AI2 Nebrioporus ceresyi MOR15 Sruk-el-Jemaa, salinas, Morocco 24/07/1997 IR NC5 FJ944390 MNCN-AI20 Nebrioporus ceresyi HUE Salinas de la Rolda, Naval, Huesca, Spain 12/07/2004 M. Sánchez NC3 FJ944377 MNCN-AI204 Nebrioporus ceresyi MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NC1 FJ944370 MNCN-AI205 Nebrioporus ceresyi MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NC2 FJ944376 MNCN-AI206 Nebrioporus ceresyi MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NC1 FJ944371 MNCN-AI21 Nebrioporus ceresyi IBI1 Platja Codolar, Ses Salines, Ibiza, Spain 13/10/2004 M. Palmer & D. Jaume NC4 FJ944383 MNCN-AI22 Nebrioporus ceresyi FOR1 Estany Pudent, Es Brolls, Formentera, Spain 14/10/2004 M. Palmer & D. Jaume NC4 FJ944384 MNCN-AI23 Nebrioporus ceresyi MAL1 Salines de Llevan, Mallorca, Spain 15/10/2004 IR & A. Cieslak NC6 FJ944392 MNCN-AI239 Nebrioporus ceresyi MOR15 Sruk-el-Jemaa, salinas, Morocco 24/07/1997 IR NC5 FJ944391 MNCN-AI240 Nebrioporus ceresyi HUE Salinas de la Rolda, Naval, Huesca, Spain 12/07/2004 M. Sánchez NC3 FJ944378 MNCN-AI241 Nebrioporus ceresyi HUV Salinas del Odiel, Huelva, Spain 12/07/2004 M. Sánchez NC3 FJ944379 MNCN-AI242 Nebrioporus ceresyi IBI1 Platja Codolar, Ses Salines, Ibiza, Spain 13/10/2004 M. Palmer & D. Jaume NC7 FJ944396 MNCN-AI243 Nebrioporus ceresyi IBI1 Platja Codolar, Ses Salines, Ibiza, Spain 13/10/2004 M. Palmer & D. Jaume NC8 FJ944399 MNCN-AI244 Nebrioporus ceresyi FOR1 Estany Pudent, Es Brolls, Formentera, Spain 14/10/2004 M. Palmer & D. Jaume NC6 FJ944393 MNCN-AI245 Nebrioporus ceresyi FOR1 Estany Pudent, Es Brolls, Formentera, Spain 14/10/2004 M. Palmer & D. Jaume NC10 FJ944405 MNCN-AI246 Nebrioporus ceresyi MAL1 Salines de Llevan, Mallorca, Spain 15/10/2004 IR & A. Cieslak NC9 FJ944402 MNCN-AI247 Nebrioporus ceresyi MAL1 Salines de Llevan, Mallorca, Spain 15/10/2004 IR & A. Cieslak NC10 FJ944406 MNCN-AI248 Nebrioporus ceresyi TAR1 Delta del Ebro, Tarragona, Spain 11/03/2001 P. Aguilera NC8 FJ944400 MNCN-AI249 Nebrioporus ceresyi TAR1 Delta del Ebro, Tarragona, Spain 11/03/2001 P. Aguilera NC11 FJ944407 MNCN-AI250 Nebrioporus ceresyi TAR1 Delta del Ebro, Tarragona, Spain 11/03/2001 P. Aguilera NC4 FJ944385 MNCN-AI3 Nebrioporus ceresyi MOR15 Sruk-el-Jemaa, salinas, Morocco 24/07/1997 IR NC5 FJ944410 MNCN-AI341 Nebrioporus ceresyi FRA Salin du Girau, Bouches du Rhone, France 29/07/2005 IR & A. Cieslak NC12 FJ944411 MNCN-AI342 Nebrioporus ceresyi FRA Salin du Girau, Bouches du Rhone, France 29/07/2005 IR & A. Cieslak NC13 FJ944413 MNCN-AI343 Nebrioporus ceresyi FRA Salin du Girau, Bouches du Rhone, France 29/07/2005 IR & A. Cieslak NC14 FJ944414 MNCN-AI441 Nebrioporus ceresyi FRA Salin du Girau, Bouches du Rhone, France 29/07/2005 IR & A. Cieslak NC12 FJ944412 MNCN-AI442 Nebrioporus ceresyi FRA Salin du Girau, Bouches du Rhone, France 29/07/2005 IR & A. Cieslak NC15 FJ944415 MNCN-AI468 Nebrioporus ceresyi ALM1 Salinas de Cabo de Gata, Almería, Spain 18/09/2004 AM et col. NC4 FJ944386 MNCN-AI469 Nebrioporus ceresyi ALM1 Salinas de Cabo de Gata, Almería, Spain 18/09/2004 AM et col. NC11 FJ944408 MNCN-AI470 Nebrioporus ceresyi ALM1 Salinas de Cabo de Gata, Almería, Spain 18/09/2004 AM et col. NC4 FJ944387 MNCN-AI50 Nebrioporus ceresyi TUN3 O. Erebaieb (60 km NE Kebili), Tunisia 26/10/2001 IR & A. Cieslak NC16 FJ944416 MNCN-AI51 Nebrioporus ceresyi TUN1 O. El Melah, 24 km SW Gafsa, Tunisia 26/10/2001 IR & A. Cieslak NC17 FJ944432 MNCN-AI52 Nebrioporus ceresyi MUR6 Charca en Calblanque, Murcia, Spain 08/10/2001 AM et col. NC7 FJ944397 MNCN-AI57 Nebrioporus ceresyi MLT Ghadira Nat. reserve, saline pool, Malta 28/10/2004 N. Barbara NC16 FJ944417 MNCN-AI58 Nebrioporus ceresyi MLT Ghadira Nat. reserve, saline pool, Malta 28/10/2004 N. Barbara NC16 FJ944418 MNCN-AI59 Nebrioporus ceresyi MLT Ghadira Nat. reserve, saline pool, Malta 28/10/2004 N. Barbara NC16 FJ944419 MNCN-PA131 Nebrioporus ceresyi SIC1 Salinas de Trapani, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944420 MNCN-PA132 Nebrioporus ceresyi SIC1 Salinas de Trapani, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944421 MNCN-PA133 Nebrioporus ceresyi SIC1 Salinas de Trapani, Sicily, Italy 11/06/2007 PA & F. Picazo NC18 FJ944433 MNCN-PA134 Nebrioporus ceresyi SIC1 Salinas de Trapani, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944422 MNCN-PA135 Nebrioporus ceresyi SIC1 Salinas de Trapani, Sicily, Italy 11/06/2007 PA & F. Picazo NC19 FJ944434 MNCN-PA136 Nebrioporus ceresyi SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944423 MNCN-PA137 Nebrioporus ceresyi SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944424 MNCN-PA138 Nebrioporus ceresyi SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944425 MNCN-PA139 Nebrioporus ceresyi SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo NC16 FJ944426 MNCN-PA140 Nebrioporus ceresyi SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo NC20 FJ944435 MNCN-PA15 Nebrioporus ceresyi MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. NC22 FJ944441 MNCN-PA155 Nebrioporus ceresyi MUR6 Charca en Calblanque, Murcia, Spain 08/10/2001 AM et col. NC21 FJ944436 MNCN-PA156 Nebrioporus ceresyi MUR6 Charca en Calblanque, Murcia, Spain 08/10/2001 AM et col. NC1 FJ944372 MNCN-PA157 Nebrioporus ceresyi MUR6 Charca en Calblanque, Murcia, Spain 08/10/2001 AM et col. NC1 FJ944373 MNCN-PA158 Nebrioporus ceresyi MUR6 Charca en Calblanque, Murcia, Spain 08/10/2001 AM et col. NC4 FJ944388 MNCN-PA159 Nebrioporus ceresyi FOR1 Estany Pudent, Es Brolls, Formentera, Spain 14/10/2004 M. Palmer & D. Jaume NC6 FJ944394 MNCN-PA160 Nebrioporus ceresyi FOR1 Estany Pudent, Es Brolls, Formentera, Spain 14/10/2004 M. Palmer & D. Jaume NC6 FJ944395 MNCN-PA163 Nebrioporus ceresyi IBI1 Platja Codolar, Ses Salines, Ibiza, Spain 13/10/2004 M. Palmer & D. Jaume NC4 FJ944389 MNCN-PA164 Nebrioporus ceresyi IBI1 Platja Codolar, Ses Salines, Ibiza, Spain 13/10/2004 M. Palmer & D. Jaume NC8 FJ944401 MNCN-PA165 Nebrioporus ceresyi HUV Salinas del Odiel, Huelva, Spain 12/07/2004 M. Sánchez NC3 FJ944380 MNCN-PA166 Nebrioporus ceresyi HUV Salinas del Odiel, Huelva, Spain 12/07/2004 M. Sánchez NC3 FJ944381 MNCN-PA167 Nebrioporus ceresyi TUN1 O. El Melah, 24 km SW Gafsa, Tunisia 26/10/2001 IR & A. Cieslak NC16 FJ944427 MNCN-PA168 Nebrioporus ceresyi TUN1 O. El Melah, 24 km SW Gafsa, Tunisia 26/10/2001 IR & A. Cieslak NC16 FJ944428 MNCN-PA169 Nebrioporus ceresyi TUN1 O. El Melah, 24 km SW Gafsa, Tunisia 26/10/2001 IR & A. Cieslak NC23 FJ944442 MNCN-PA170 Nebrioporus ceresyi TUN1 O. El Melah, 24 km SW Gafsa, Tunisia 26/10/2001 IR & A. Cieslak NC16 FJ944429 MNCN-PA171 Nebrioporus ceresyi TUN2 Oued (7 km N Hachichina), Tunisia 25/10/2001 IR & A. Cieslak NC16 FJ944430 MNCN-PA172 Nebrioporus ceresyi TUN2 Oued (7 km N Hachichina), Tunisia 25/10/2001 IR & A. Cieslak NC24 FJ944443 MNCN-PA173 Nebrioporus ceresyi TUN2 Oued (7 km N Hachichina), Tunisia 25/10/2001 IR & A. Cieslak NC25 FJ944444 MNCN-PA174 Nebrioporus ceresyi TUN2 Oued (7 km N Hachichina), Tunisia 25/10/2001 IR & A. Cieslak NC16 FJ944431 MNCN-PA175 Nebrioporus ceresyi MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NC7 FJ944398 MNCN-PA176 Nebrioporus ceresyi MUR5 Rambla Salada de Fortuna, Murcia, Spain 09/05/2005 AM et col. NC1 FJ944374 MNCN-PA177 Nebrioporus ceresyi MAL1 Salines de Llevan, Mallorca, Spain 15/10/2004 IR & A. Cieslak NC9 FJ944403 MNCN-PA178 Nebrioporus ceresyi MAL1 Salines de Llevan, Mallorca, Spain 15/10/2004 IR & A. Cieslak NC9 FJ944404 MNCN-PA202 Nebrioporus ceresyi TUN2 Oued (7 km N Hachichina), Tunisia 25/10/2001 IR & A. Cieslak NC31 FJ944461 MNCN-PA203 Nebrioporus ceresyi MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. NC22 FJ944437 MNCN-PA204 Nebrioporus ceresyi MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. NC22 FJ944438 MNCN-PA205 Nebrioporus ceresyi MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. NC22 FJ944439 MNCN-PA206 Nebrioporus ceresyi MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. NC22 FJ944440 MNCN-PA239 Nebrioporus ceresyi ALM1 Salinas de Cabo de Gata, Almería, Spain 18/09/2004 AM et col. NC4 FJ944382 MNCN-PA240 Nebrioporus ceresyi ALM1 Salinas de Cabo de Gata, Almería, Spain 18/09/2004 AM et col. NC32 FJ944462 MNCN-PA34 Nebrioporus ceresyi GRE Lithi saltmarsh, Chios, Greece 21/04/2004 G.N. Foster NC26 FJ944445 MNCN-PA35 Nebrioporus ceresyi GRE Lithi saltmarsh, Chios, Greece 21/04/2004 G.N. Foster NC26 FJ944446 MNCN-PA36 Nebrioporus ceresyi GRE Lithi saltmarsh, Chios, Greece 21/04/2004 G.N. Foster NC26 FJ944447 MNCN-PA47 Nebrioporus ceresyi MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944448 MNCN-PA48 Nebrioporus ceresyi MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944449 MNCN-PA49 Nebrioporus ceresyi MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. NC28 FJ944456 MNCN-PA50 Nebrioporus ceresyi MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. NC27 FJ944450 MNCN-PA51 Nebrioporus ceresyi MOR11 Oued Millah Gdem Ghaba (Khnifiss), Morocco 04/04/2007 AM et col. NC29 FJ944458 MNCN-PA52 Nebrioporus ceresyi MOR11 Oued Millah Gdem Ghaba (Khnifiss), Morocco 04/04/2007 AM et col. NC29 FJ944459 MNCN-PA53 Nebrioporus ceresyi MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944451 MNCN-PA54 Nebrioporus ceresyi MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944452 MNCN-PA55 Nebrioporus ceresyi MOR10 Oued ez Zehar, Morocco 05/04/2007 AM et col. NC30 FJ944460 MNCN-PA56 Nebrioporus ceresyi MOR10 Oued ez Zehar, Morocco 05/04/2007 AM et col. NC27 FJ944453 MNCN-PA83 Nebrioporus ceresyi MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. NC28 FJ944457 MNCN-PA84 Nebrioporus ceresyi MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944454 MNCN-PA85 Nebrioporus ceresyi MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. NC27 FJ944455 NHM-IR590 Nebrioporus ceresyi TAR1 Delta del Ebro, Tarragona, Spain 11/03/2001 P. Aguilera NC11 FJ944409 MNCN-AI307 Nebrioporus nemethi MOR1 Laatamna, Afl. Oued Larbâa, Morocco 06/04/1998 P. Aguilera, C. Hernando & IR NN1 FJ944375 MNCN-PA10 Nebrioporus nemethi MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. NN4 FJ944464 MNCN-PA105 Nebrioporus nemethi MOR7 Tizi-n'Rechou, Morocco 08/04/2007 P. Aguilera, C. Hernando & IR NN3 FJ944463 MNCN-PA11 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. NN5 FJ944465 MNCN-PA12 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 19/04/2006 AM et col. NN6 FJ944466 MNCN-PA13 Nebrioporus nemethi MOR3 Oued en Aîn-Aicha, Morocco 19/04/2006 AM et col. NN7 FJ944468 MNCN-PA14 Nebrioporus nemethi MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. NN8 FJ944470 MNCN-PA71 Nebrioporus nemethi MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. NN9 FJ944471 MNCN-PA72 Nebrioporus nemethi MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. NN10 FJ944472 MNCN-PA73 Nebrioporus nemethi MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. NN11 FJ944473 MNCN-PA74 Nebrioporus nemethi MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. NN7 FJ944469 MNCN-PA75 Nebrioporus nemethi MOR3 Oued en Aîn-Aicha, Morocco 19/04/2006 AM et col. NN12 FJ944474 MNCN-PA76 Nebrioporus nemethi MOR3 Oued en Aîn-Aicha, Morocco 19/04/2006 AM et col. NN13 FJ944475 MNCN-PA77 Nebrioporus nemethi MOR3 Oued en Aîn-Aicha, Morocco 19/04/2006 AM et col. NN14 FJ944476 MNCN-PA78 Nebrioporus nemethi MOR3 Oued en Aîn-Aicha, Morocco 19/04/2006 AM et col. NN15 FJ944477 MNCN-PA79 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. NN15 FJ944478 MNCN-PA80 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. NN16 FJ944479 MNCN-PA81 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. NN17 FJ944480 MNCN-PA82 Nebrioporus nemethi MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. NN18 FJ944481 MNCN-PA86 Nebrioporus nemethi MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. NN19 FJ944482 MNCN-PA87 Nebrioporus nemethi MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. NN20 FJ944483 MNCN-PA88 Nebrioporus nemethi MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. NN21 FJ944484 MNCN-PA89 Nebrioporus nemethi MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. NN6 FJ944467 NHM-IR194 Nebrioporus nemethi MOR1 Laatamna, Afl. Oued Larbâa, Morocco 06/04/1998 P. Aguilera, C. Hernando & IR NN2 AY250970 MNCN-PA141 Ochthebius gereckei SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo OE1 FJ944176 MNCN-PA142 Ochthebius gereckei SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo OE2 FJ944177 MNCN-PA143 Ochthebius gereckei SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo OE3 FJ944178 MNCN-PA144 Ochthebius gereckei SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo OE4 FJ944179 MNCN-PA145 Ochthebius gereckei SIC4 Torrente Vaccarizzo (C. Castello), Sicily, Italy 12/06/2007 PA & F. Picazo OE5 FJ944180 MNCN-PA146 Ochthebius gereckei SIC4 Torrente Vaccarizzo (C. Castello), Sicily, Italy 12/06/2007 PA & F. Picazo OE6 FJ944181 MNCN-PA147 Ochthebius gereckei SIC4 Torrente Vaccarizzo (C. Castello), Sicily, Italy 12/06/2007 PA & F. Picazo OE7 FJ944182 MNCN-PA148 Ochthebius gereckei SIC4 Torrente Vaccarizzo (C. Castello), Sicily, Italy 12/06/2007 PA & F. Picazo OE8 FJ944184 MNCN-PA149 Ochthebius gereckei SIC4 Torrente Vaccarizzo (C. Castello), Sicily, Italy 12/06/2007 PA & F. Picazo OE9 FJ944185 MNCN-PA150 Ochthebius gereckei SIC3 Fiume Salito, Sicily, Italy 15/06/2007 PA & F. Picazo OE10 FJ944186 MNCN-PA151 Ochthebius gereckei SIC3 Fiume Salito, Sicily, Italy 15/06/2007 PA & F. Picazo OE7 FJ944183 MNCN-PA152 Ochthebius gereckei SIC3 Fiume Salito, Sicily, Italy 15/06/2007 PA & F. Picazo OE11 FJ944187 MNCN-PA153 Ochthebius gereckei SIC3 Fiume Salito, Sicily, Italy 15/06/2007 PA & F. Picazo OE12 FJ944188 MNCN-PA154 Ochthebius gereckei SIC3 Fiume Salito, Sicily, Italy 15/06/2007 PA & F. Picazo OE13 FJ944189 MNCN-PA207 Ochthebius gereckei SIC2 Vallone Torto, Caltanissetta, Sicily, Italy 11/06/2007 PA & F. Picazo OE14 FJ944190 MNCN-PA234 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944224 MNCN-PA235 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. Ju2 FJ944231 MNCN-PA236 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944225 MNCN-PA237 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. OG2 FJ944234 MNCN-PA238 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944226 MNCN-PA241 Ochthebius glaber CUE4 Rambla de Minglanilla2, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944227 MNCN-PA242 Ochthebius glaber CUE4 Rambla de Minglanilla2, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944228 MNCN-PA243 Ochthebius glaber CUE3 Rambla de Minglanilla1, Cuenca, Spain 20/09/2007 AM et col. OG3 FJ944235 MNCN-PA244 Ochthebius glaber CUE4 Rambla de Minglanilla2, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944229 MNCN-PA245 Ochthebius glaber CUE4 Rambla de Minglanilla2, Cuenca, Spain 20/09/2007 AM et col. OG1 FJ944230 MNCN-PA249 Ochthebius glaber JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. OG4 FJ944236 MNCN-PA250 Ochthebius glaber JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. OG5 FJ944237 MNCN-PA251 Ochthebius glaber JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. OG6 FJ944238 MNCN-PA252 Ochthebius glaber JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. OG7 FJ944239 MNCN-PA29 Ochthebius glaber JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. OG8 FJ944240 MNCN-PA30 Ochthebius glaber COR3 Río salado de Priego, Córdoba, Spain 21/07/2006 AM et col. Gu32 FJ944214 MNCN-PA31 Ochthebius glaber JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. OG9 FJ944241 MNCN-PA37 Ochthebius glaber JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. OG10 FJ944242 MNCN-PA38 Ochthebius glaber JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. OG11 FJ944243 UMU-1.1 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju1 AJ890027 UMU-1.2 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju2 AJ890028 UMU-1.3 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju3 AJ890029 UMU-1.4 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju2 FJ944232 UMU-1.5 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju2 FJ944233 UMU-1.6 Ochthebius glaber VAL1 Ayo. hipersalino en R. Cabriel, Valencia, Spain 10/09/2004 AM et col. Ju4 AJ890030 UMU-10.1 Ochthebius glaber COR2 Salinas de la Maturra, Córdoba, Spain 12/10/2003 AM et col. Gu24 AJ890050 UMU-10.2 Ochthebius glaber COR2 Salinas de la Maturra, Córdoba, Spain 12/10/2003 AM et col. Gu25 AJ890051 UMU-10.3 Ochthebius glaber COR2 Salinas de la Maturra, Córdoba, Spain 12/10/2003 AM et col. Gu21 FJ944212 UMU-10.4 Ochthebius glaber COR2 Salinas de la Maturra, Córdoba, Spain 12/10/2003 AM et col. Gu26 AJ890052 UMU-10.5 Ochthebius glaber COR2 Salinas de la Maturra, Córdoba, Spain 12/10/2003 AM et col. Gu22 FJ944213 UMU-11.1 Ochthebius glaber COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. Gu27 AJ890053 UMU-11.2 Ochthebius glaber COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. Gu28 AJ890054 UMU-11.3 Ochthebius glaber COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. Gu28 FJ944211 UMU-11.4 Ochthebius glaber COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. Gu29 AJ890055 UMU-12.1 Ochthebius glaber COR3 Río salado de Priego, Córdoba, Spain 12/10/2003 AM et col. Gu30 AJ890056 UMU-12.2 Ochthebius glaber COR3 Río salado de Priego, Córdoba, Spain 12/10/2003 AM et col. Gu31 AJ890057 UMU-12.3 Ochthebius glaber COR3 Río salado de Priego, Córdoba, Spain 12/10/2003 AM et col. Gu32 AJ890058 UMU-12.4 Ochthebius glaber COR3 Río salado de Priego, Córdoba, Spain 12/10/2003 AM et col. Gu33 AJ890059 UMU-13.1 Ochthebius glaber CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. Gu34 AJ890060 UMU-13.2 Ochthebius glaber CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. Gu35 AJ890061 UMU-13.3 Ochthebius glaber CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. Gu36 AJ890062 UMU-13.4 Ochthebius glaber CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. Gu35 FJ944210 UMU-13.5 Ochthebius glaber CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. Gu37 AJ890063 UMU-2.1 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se5 AJ890031 UMU-2.2 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se5 FJ944191 UMU-2.3 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se5 FJ944192 UMU-2.4 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se6 AJ890032 UMU-2.5 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se5 FJ944193 UMU-2.6 Ochthebius glaber ALI2 Estrecho de la Salineta, Alicante, Spain 29/09/2003 AM et col. Se7 AJ890033 UMU-3.1 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se8 AJ890034 UMU-3.2 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se8 FJ944194 UMU-3.3 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se8 FJ944195 UMU-3.4 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se9 AJ890035 UMU-3.5 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se9 FJ944209 UMU-3.6 Ochthebius glaber ALI3 Rambla de Albatera, Alicante, Spain 24/06/2003 AM et col. Se8 FJ944196 UMU-4.1 Ochthebius glaber MUR8 Rambla de la Parra, Murcia, Spain 09/07/2003 AM et col. Se10 AJ890036 UMU-4.2 Ochthebius glaber MUR8 Rambla de la Parra, Murcia, Spain 09/07/2003 AM et col. Se11 AJ890037 UMU-4.3 Ochthebius glaber MUR8 Rambla de la Parra, Murcia, Spain 09/07/2003 AM et col. Se8 FJ944204 UMU-4.5 Ochthebius glaber MUR8 Rambla de la Parra, Murcia, Spain 09/07/2003 AM et col. Se8 FJ944205 UMU-4.6 Ochthebius glaber MUR8 Rambla de la Parra, Murcia, Spain 09/07/2003 AM et col. Se8 FJ944206 UMU-5.1 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se8 FJ944199 UMU-5.2 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se8 FJ944200 UMU-5.3 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se8 FJ944201 UMU-5.4 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se12 AJ890038 UMU-5.5 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se12 FJ944223 UMU-5.6 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se8 FJ944202 UMU-5.7 Ochthebius glaber MUR5 Rambla Salada de Fortuna, Murcia, Spain 10/07/2003 AM et col. Se8 FJ944203 UMU-6.1 Ochthebius glaber MUR9 Ayo. Salinas de la Ramona, Murcia, Spain 03/07/2003 AM et col. Se13 AJ890039 UMU-6.2 Ochthebius glaber MUR9 Ayo. Salinas de la Ramona, Murcia, Spain 03/07/2003 AM et col. Se8 FJ944207 UMU-6.3 Ochthebius glaber MUR9 Ayo. Salinas de la Ramona, Murcia, Spain 03/07/2003 AM et col. Se14 AJ890040 UMU-6.4 Ochthebius glaber MUR9 Ayo. Salinas de la Ramona, Murcia, Spain 03/07/2003 AM et col. Se15 AJ890041 UMU-6.5 Ochthebius glaber MUR9 Ayo. Salinas de la Ramona, Murcia, Spain 03/07/2003 AM et col. Se8 FJ944208 UMU-7.1 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se16 AJ890042 UMU-7.2 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 AJ890043 UMU-7.3 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 FJ944218 UMU-7.4 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 FJ944219 UMU-7.5 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 FJ944220 UMU-7.6 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 FJ944221 UMU-7.7 Ochthebius glaber MUR2 Rambla de Sangonera, Murcia, Spain 31/08/2004 AM et col. Se17 FJ944222 UMU-8.1 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se8 FJ944197 UMU-8.2 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se18 AJ890044 UMU-8.3 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se17 FJ944215 UMU-8.4 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se17 FJ944216 UMU-8.5 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se17 FJ944217 UMU-8.6 Ochthebius glaber MUR10 Rambla de Librilla, Murcia, Spain 10/09/2004 AM et col. Se8 FJ944198 UMU-9.1 Ochthebius glaber JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. Gu19 AJ890045 UMU-9.2 Ochthebius glaber JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. Gu20 AJ890046 UMU-9.3 Ochthebius glaber JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. Gu21 AJ890047 UMU-9.4 Ochthebius glaber JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. Gu22 AJ890048 UMU-9.5 Ochthebius glaber JAE2 Arroyo de las Salinas de Porcuna, Jaén, Spain 12/10/2003 AM et col. Gu23 AJ890049 MNCN-PA112 Ochthebius lanarotis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. OL8 FJ944253 MNCN-PA113 Ochthebius lanarotis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. OL1 FJ944244 MNCN-PA114 Ochthebius lanarotis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. OL2 FJ944245 MNCN-PA246 Ochthebius lanarotis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. OL3 FJ944246 MNCN-PA247 Ochthebius lanarotis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. OL4 FJ944249 MNCN-PA248 Ochthebius lanarotis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. OL5 FJ944250 MNCN-PA32 Ochthebius lanarotis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. OL6 FJ944251 MNCN-PA33 Ochthebius lanarotis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. OL3 FJ944247 MNCN-PA39 Ochthebius lanarotis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. OL7 FJ944252 MNCN-PA40 Ochthebius lanarotis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. OL3 FJ944248 MNCN-PA253 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI2 FJ944275 MNCN-PA254 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI1 FJ944272 MNCN-PA255 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI3 FJ944276 MNCN-PA256 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI1 FJ944273 MNCN-PA257 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI1 FJ944274 MNCN-PA258 Ochthebius normandi ARG Mellaha II, Algeria 23/08/2007 S. Bouzid OI4 FJ944277 MNCN-AI190 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero n33 FJ944095 MNCN-AI217 Ochthebius notabilis GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. n43 FJ944096 MNCN-AI218 Ochthebius notabilis GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. n43 FJ944097 MNCN-AI224 Ochthebius notabilis GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. n43 FJ944098 MNCN-AI225 Ochthebius notabilis GUA1 Salinas Alcolea de las Peñas, Guadalajara, Spain 21/05/2005 AM et col. n43 FJ944099 MNCN-AI233 Ochthebius notabilis GUA4 Salinas Saelices de la Sal, Guadalajara, Spain 21/05/2004 AM et col. n43 FJ944100 MNCN-AI234 Ochthebius notabilis GUA4 Salinas Saelices de la Sal, Guadalajara, Spain 21/05/2004 AM et col. n44 FJ944101 MNCN-AI237 Ochthebius notabilis CUE2 Salinas de Valsalobre, Cuenca, Spain 22/05/2005 AM et col. n39 FJ944102 MNCN-AI34 Ochthebius notabilis ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak n30 FJ944103 MNCN-AI35 Ochthebius notabilis ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak n34 FJ944104 MNCN-AI36 Ochthebius notabilis ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak n34 FJ944105 MNCN-AI37 Ochthebius notabilis ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak n34 FJ944106 MNCN-AI38 Ochthebius notabilis ALB1 Salinas de Pinilla, Albacete, Spain 02/06/2002 IR & A. Cieslak n34 FJ944107 MNCN-AI394 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero n33 FJ944108 MNCN-AI395 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2005 F. Camarero n37 FJ944109 MNCN-AI45 Ochthebius notabilis COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR n35 FJ944110 MNCN-AI46 Ochthebius notabilis COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR n1 FJ944111 MNCN-AI47 Ochthebius notabilis COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR n1 FJ944112 MNCN-AI48 Ochthebius notabilis COR2 Salinas de la Maturra, Córdoba, Spain 28/07/1998 IR n36 FJ944113 MNCN-PA1 Ochthebius notabilis LER Salinas Gerri de la Sal, Lérida, Spain 05/08/2006 J. Fresneda n13 FJ944120 MNCN-PA107 Ochthebius notabilis LER Salinas Gerri de la Sal, Lérida, Spain 05/08/2006 J. Fresneda n13 FJ944121 MNCN-PA108 Ochthebius notabilis LER Salinas Gerri de la Sal, Lérida, Spain 05/08/2006 J. Fresneda n13 FJ944122 MNCN-PA109 Ochthebius notabilis SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. n1 FJ944123 MNCN-PA110 Ochthebius notabilis SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. n1 FJ944124 MNCN-PA111 Ochthebius notabilis SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. n1 FJ944125 MNCN-PA115 Ochthebius notabilis MOR4 Oued Khendek, Morocco 19/04/2006 AM et col. n24 FJ944126 MNCN-PA117 Ochthebius notabilis MOR4 Oued Khendek, Morocco 19/04/2006 AM et col. n25 FJ944127 MNCN-PA118 Ochthebius notabilis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. n26 FJ944128 MNCN-PA119 Ochthebius notabilis BUR Salinas Poza de la Sal, Burgos, Spain 22/07/2006 AM et col. n33 FJ944129 MNCN-PA120 Ochthebius notabilis BUR Salinas Poza de la Sal, Burgos, Spain 22/07/2006 AM et col. n33 FJ944130 MNCN-PA121 Ochthebius notabilis BUR Salinas Poza de la Sal, Burgos, Spain 22/07/2006 AM et col. n33 FJ944131 MNCN-PA122 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n17 FJ944132 MNCN-PA123 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n18 FJ944133 MNCN-PA124 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n19 FJ944134 MNCN-PA125 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n14 FJ944135 MNCN-PA126 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n16 FJ944136 MNCN-PA127 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n1 FJ944137 MNCN-PA128 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n36 FJ944138 MNCN-PA129 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n14 FJ944139 MNCN-PA130 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n20 FJ944140 MNCN-PA16 Ochthebius notabilis CUE1 Ayo. en Salinas del Manzano, Cuenca, Spain 25/07/2006 AM et col. n38 FJ944141 MNCN-PA17 Ochthebius notabilis JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. n11 FJ944142 MNCN-PA18 Ochthebius notabilis SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. n1 FJ944143 MNCN-PA19 Ochthebius notabilis JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. n32 FJ944144 MNCN-PA20 Ochthebius notabilis BUR Salinas Poza de la Sal, Burgos, Spain 22/07/2006 AM et col. n33 FJ944145 MNCN-PA208 Ochthebius notabilis GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. n40 FJ944146 MNCN-PA209 Ochthebius notabilis GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. n40 FJ944147 MNCN-PA21 Ochthebius notabilis HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. n45 FJ944148 MNCN-PA210 Ochthebius notabilis GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. n41 FJ944149 MNCN-PA211 Ochthebius notabilis GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. n42 FJ944150 MNCN-PA212 Ochthebius notabilis JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. n1 FJ944151 MNCN-PA213 Ochthebius notabilis JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. n8 FJ944152 MNCN-PA214 Ochthebius notabilis JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. n9 FJ944153 MNCN-PA215 Ochthebius notabilis HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. n46 FJ944154 MNCN-PA216 Ochthebius notabilis HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. n47 FJ944155 MNCN-PA217 Ochthebius notabilis HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. n48 FJ944156 MNCN-PA218 Ochthebius notabilis HUE Salinas de la Rolda, Naval, Huesca, Spain 23/07/2006 AM et col. n49 FJ944157 MNCN-PA219 Ochthebius notabilis MUR7 Salinas del Zacatín, Murcia, Spain 15/09/2007 PA n29 FJ944158 MNCN-PA22 Ochthebius notabilis GRA Salinas de Malahá, Granada, Spain 20/07/2006 AM et col. n40 FJ944159 MNCN-PA220 Ochthebius notabilis MUR7 Salinas del Zacatín, Murcia, Spain 15/09/2007 PA n29 FJ944160 MNCN-PA221 Ochthebius notabilis MUR7 Salinas del Zacatín, Murcia, Spain 15/09/2007 PA n31 FJ944161 MNCN-PA222 Ochthebius notabilis MUR7 Salinas del Zacatín, Murcia, Spain 15/09/2007 PA n29 FJ944162 MNCN-PA223 Ochthebius notabilis MUR7 Salinas del Zacatín, Murcia, Spain 15/09/2007 PA n31 FJ944163 MNCN-PA229 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n21 FJ944164 MNCN-PA23 Ochthebius notabilis MOR2 O. Sebt El Ouedaya, Morocco 18/04/2006 AM et col. n23 FJ944165 MNCN-PA24 Ochthebius notabilis MOR14 Salinas Karisit El hafed, Morocco 18/04/2006 AM et col. n22 FJ944166 MNCN-PA25 Ochthebius notabilis MOR12 Salinas de Larache, Morocco 21/04/2006 AM et col. n15 FJ944167 MNCN-PA27 Ochthebius notabilis MOR5 Salinas de Tissa, Morocco 19/04/2006 AM et col. n28 FJ944168 MNCN-PA28 Ochthebius notabilis MOR17 Salinas de Azilah, Morocco 22/04/2006 AM et col. n1 FJ944169 MNCN-PA41 Ochthebius notabilis LER Salinas Gerri de la Sal, Lérida, Spain 05/08/2006 J. Fresneda n13 FJ944170 MNCN-PA42 Ochthebius notabilis JAE3 Salinas de Chíllar, Hinojares, Jaén, Spain 20/07/2006 AM et col. n12 FJ944171 MNCN-PA43 Ochthebius notabilis SEV2 Ayo. Montero, Sevilla, Spain 21/07/2006 AM et col. n8 FJ944172 MNCN-PA44 Ochthebius notabilis JAE1 Ayo. Salinas de Brujuelo, Jaén, Spain 21/07/2006 AM et col. n10 FJ944173 MNCN-PA45 Ochthebius notabilis BUR Salinas Poza de la Sal, Burgos, Spain 22/07/2006 AM et col. n33 FJ944174 MNCN-PA46 Ochthebius notabilis MOR4 Oued Khendek, Morocco 18/04/2006 AM et col. n27 FJ944175 UMU-n1.1 Ochthebius notabilis CAD Salinas de Hortales, Cádiz, Spain 11/10/2003 AM et col. n1 AJ890064 UMU-n2.1 Ochthebius notabilis COR1 Ayo. Salinas de Duernas, Córdoba, Spain 12/10/2003 AM et col. n2 AJ890065 UMU-n3.1 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 FJ944115 UMU-n3.2 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 AJ890066 UMU-n3.3 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 FJ944116 UMU-n3.4 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 FJ944117 UMU-n3.5 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 FJ944118 UMU-n3.6 Ochthebius notabilis ALB2 Manantial en Casas de Ves, Albacete, Spain 29/09/2003 AM et col. n3 FJ944119 UMU-n4.1 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2006 F. Camarero n5 AJ890068 UMU-n4.2 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2006 F. Camarero n6 AJ890069 UMU-n4.3 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2006 F. Camarero n33 FJ944114 UMU-n4.4 Ochthebius notabilis ALA Salinas de Añana, Álava, Spain 04/07/2006 F. Camarero n7 AJ890070 MNCN-AI258 Ochthebius salinator MOR16 Oued Draa, Tan Tan, Morocco 14/04/2002 C. Hernando OS1 FJ944254 MNCN-AI259 Ochthebius salinator MOR16 Oued Draa, Tan Tan, Morocco 14/04/2002 C. Hernando OS2 FJ944255 MNCN-AI53 Ochthebius salinator TUN4 Salines (37 km SE Tozeur), Tunisia 26/10/2001 IR & A. Cieslak OS8 FJ944271 MNCN-PA100 Ochthebius salinator MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944256 MNCN-PA101 Ochthebius salinator MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944257 MNCN-PA102 Ochthebius salinator MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944258 MNCN-PA103 Ochthebius salinator MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944259 MNCN-PA104 Ochthebius salinator MOR13 Oued Aouedrei (Khnifiss), Morocco 04/04/2007 AM et col. OS4 FJ944267 MNCN-PA90 Ochthebius salinator MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944260 MNCN-PA91 Ochthebius salinator MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. OS5 FJ944268 MNCN-PA92 Ochthebius salinator MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944261 MNCN-PA93 Ochthebius salinator MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944262 MNCN-PA94 Ochthebius salinator MOR8 O. Khaoui Naâm (Khnifiss), Morocco 04/04/2007 AM et col. OS3 FJ944263 MNCN-PA95 Ochthebius salinator MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. OS6 FJ944269 MNCN-PA96 Ochthebius salinator MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. OS7 FJ944270 MNCN-PA97 Ochthebius salinator MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. OS3 FJ944264 MNCN-PA98 Ochthebius salinator MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. OS3 FJ944265 MNCN-PA99 Ochthebius salinator MOR9 Oued El Aguig, Morocco 03/04/2007 AM et col. OS3 FJ944266