MS Abellán Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Iaps) and Other Small Waterbodies in Northern Ireland Quercus Project QU09-03
Natural Heritage Research Partnership Important Areas for Ponds (IAPs) and other small waterbodies in Northern Ireland Quercus Project QU09-03 Bog pool at Montiaghs Moss Nature Reserve and ASSI Prepared for the Northern Ireland Environment Agency (NIEA) by Helen Keeble, Penny Williams, Jeremy Biggs, Pond Conservation & Neil Reid, Natural Heritage Research Partnership, Quercus This report should be cited as: Keeble, H. Williams, P. Biggs, J. & Reid, N. (2009) Important Areas for Ponds (IAPs) and other small waterbodies in Northern Ireland. Report prepared by Pond Conservation and the Natural Heritage Research Partnership, Quercus for the Northern Ireland Environment Agency, Northern Ireland, UK. Pond Conservation c/o Oxford Brookes University Gipsy Lane, Headington Oxford, OX3 0BP www.pondconservation.org.uk Quercus project QU09-03 Quercus hosts the Natural Heritage Research Partnership between the Northern Ireland Environment Agency and Queen's University Belfast. http://www.quercus.ac.uk/ www.quercus.ac.uk Acknowledgements We would like to thank all those who provided data, photos or other information for this assessment, and especially those who took time to visit sites with us in June 2009. In particular: Bob Davidson, Brian Nelson, Catherine McSorley, Jane Preston, John Early, Lynne Rendle, Marcus Malley, Mary Gallagher, Patrick Kelly, Richard Weyl, Seamus Burns and Tony Waterman. Report production: July 2009 Consultation: August 2009 SUMMARY Ponds are an important freshwater habitat that has been shown to play a key role in maintaining biodiversity at landscape level. However, ponds are also vulnerable to environmental degradation and there is evidence that, at a national level, pond quality is declining. In 2007, the biodiversity importance of ponds was recognised when high quality ponds (Priority Ponds) were added to the list of UK Biodiversity Action Plan (BAP) Priority Habitats. -
Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests. -
Water Beetles
Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE ....................................................................................................................................................... -
Artificial Laboratory Breeding of Xylophagous Insect Larvae and Its Application in Cytogenetic Studies 2)
Eos, t. LXII, págs. 7-22 (1986). Artificial laboratory breeding of xylophagous insect larvae and its application in cytogenetic studies 2) BY J. R. BARAGAÑO, A. NOTARIO y M. G. DE VIEDMA. INTRODUCTION HAYDAK, in 1936, managed to rear Oryzaephilus surinantensis (L.) in the la- boratory using an artificial diet. Many researchers have followed in his footsteps, so that since then, approximately 260 species of Coleoptera have been raised on nonnatural diets. Among these species there are 121 which are eminently xylophagous. They belong to seven families (Buprestidae, Elateridae, Bostrychiclae, Lyctidae, Myc- teridae, Cerambyciclae and Curculionidae). Their importance, from the economic point of view, varies widely : some of them attack living trees making them a pest ; others feed on dead or decaying wood so that they may be considered harmless or even beneficial (for example in the decomposition of tree stumps in forests) ; finally, a few cause damage to seasoned timber. Therefore, specialists in artificial breeding have been motivated by different objectives, and so have chosen the insect or insects in each case which were most suitable for obtaining specific desired results. It is clear that in the majority of cases the choice was not made at random. Generally, the insect studied was either recently established as a pest or well documented as such. •With these laboratory breeding experiments it is possible on the one hand to draw conclusions about the insects' nutritive requirements, parasitism, ethology etc ; and on the other to obtain enough specimens to try out different phytosanitary treatments with them. Both of these achievements are applicable to effectiye control of the insect problem. -
Supertramp New Guinea Highland Origin of a Widespread Arthropod
Downloaded from rspb.royalsocietypublishing.org on 7 April 2009 New Guinea highland origin of a widespread arthropod supertramp Michael Balke, Ignacio Ribera, Lars Hendrich, Michael A. Miller, Katayo Sagata, Aloysius Posman, Alfried P. Vogler and Rudolf Meier Proc. R. Soc. B published online 1 April 2009 doi: 10.1098/rspb.2009.0015 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/03/30/rspb.2009.0015.DC1.h tml References This article cites 41 articles, 12 of which can be accessed free http://rspb.royalsocietypublishing.org/content/early/2009/03/26/rspb.2009.0015.full.ht ml#ref-list-1 P<P Published online 1 April 2009 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (70 articles) ecology (491 articles) evolution (564 articles) Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on 7 April 2009 Proc. -
HABITAT MANAGEMENT PLAN Green Bay and Gravel Island
HABITAT MANAGEMENT PLAN Green Bay and Gravel Island National Wildlife Refuges October 2017 Habitat Management Plans provide long-term guidance for management decisions; set forth goals, objectives, and strategies needed to accomplish refuge purposes; and, identify the Fish and Wildlife Service’s best estimate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute a commitment for staffing increases, operational and maintenance increases, or funding for future land acquisition. The National Wildlife Refuge System, managed by the U.S. Fish and Wildlife Service, is the world's premier system of public lands and waters set aside to conserve America's fish, wildlife, and plants. Since the designation of the first wildlife refuge in 1903, the System has grown to encompass more than 150 million acres, 556 national wildlife refuges and other units of the Refuge System, plus 38 wetland management districts. This page intentionally left blank. Habitat Management Plan for Green Bay and Gravel Island National Wildlife Refuges EXECUTIVE SUMMARY This Habitat Management Plan (HMP) provides vision and specific guidance on enhancing and managing habitat for the resources of concern (ROC) at the refuge. The contributions of the refuge to ecosystem- and landscape-scale wildlife and biodiversity conservation, specifically migratory waterfowl, are incorporated into this HMP. The HMP is intended to provide habitat management direction for the next 15 years. The HMP is also needed to ensure that the refuge continues to conserve habitat for migratory birds in the context of climate change, which affects all units of the National Wildlife Refuge System. -
Crossness Sewage Treatment Works Nature Reserve & Southern Marsh Aquatic Invertebrate Survey
Commissioned by Thames Water Utilities Limited Clearwater Court Vastern Road Reading RG1 8DB CROSSNESS SEWAGE TREATMENT WORKS NATURE RESERVE & SOUTHERN MARSH AQUATIC INVERTEBRATE SURVEY Report number: CPA18054 JULY 2019 Prepared by Colin Plant Associates (UK) Consultant Entomologists 30a Alexandra Rd London N8 0PP 1 1 INTRODUCTION, BACKGROUND AND METHODOLOGY 1.1 Introduction and background 1.1.1 On 30th May 2018 Colin Plant Associates (UK) were commissioned by Biodiversity Team Manager, Karen Sutton on behalf of Thames Water Utilities Ltd. to undertake aquatic invertebrate sampling at Crossness Sewage Treatment Works on Erith Marshes, Kent. This survey was to mirror the locations and methodology of a previous survey undertaken during autumn 2016 and spring 2017. Colin Plant Associates also undertook the aquatic invertebrate sampling of this previous survey. 1.1.2 The 2016-17 aquatic survey was commissioned with the primary objective of establishing a baseline aquatic invertebrate species inventory and to determine the quality of the aquatic habitats present across both the Nature Reserve and Southern Marsh areas of the Crossness Sewage Treatment Works. The surveyors were asked to sample at twenty-four, pre-selected sample station locations, twelve in each area. Aquatic Coleoptera and Heteroptera (beetles and true bugs) were selected as target groups. A report of the previous survey was submitted in Sept 2017 (Plant 2017). 1.1.3 During December 2017 a large-scale pollution event took place and untreated sewage escaped into a section of the Crossness Nature Reserve. The primary point of egress was Nature Reserve Sample Station 1 (NR1) though because of the connectivity of much of the waterbody network on the marsh other areas were affected. -
Bedfordshire and Luton County Wildlife Sites
Bedfordshire and Luton County Wildlife Sites Selection Guidelines VERSION 14 December 2020 BEDFORDSHIRE AND LUTON LOCAL SITES PARTNERSHIP 1 Contents 1. INTRODUCTION ........................................................................................................................................................ 5 2. HISTORY OF THE CWS SYSTEM ......................................................................................................................... 7 3. CURRENT CWS SELECTION PROCESS ................................................................................................................ 8 4. Nature Conservation Review CRITERIA (modified version) ............................................................................. 10 5. GENERAL SUPPLEMENTARY FACTORS ......................................................................................................... 14 6 SITE SELECTION THRESHOLDS........................................................................................................................ 15 BOUNDARIES (all CWS) ............................................................................................................................................ 15 WOODLAND, TREES and HEDGES ........................................................................................................................ 15 TRADITIONAL ORCHARDS AND FRUIT TREES ................................................................................................. 19 ARABLE FIELD MARGINS........................................................................................................................................ -
POLISHJOURNAL of ENTOMOLOG Y Food of Adult Diving Beetles
P O L I S H JOU R NAL OF ENTOM O LOG Y POL SKIE PISMO ENTOMOL OGICZ N E VOL. 83: 171–180 Lublin 30 June 2014 DOI: 10.2478/pjen-2014-0012 Food of adult diving beetles Colymbetes fuscus (LINNAEUS, 1758) and C. striatus (LINNAEUS, 1758) (Coleoptera: Dytiscidae) in the Zehlau Peatbog and in oxbow lakes and fens (the Biebrza Marshes) ANNA FRELIK Department of Ecology and Environment Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland, e-mail: [email protected] ABSTRACT. The study involved the analysis of the foregut content of 120 adult specimens of Colymbetes fuscus and C. striatus collected in aquatic habitats in the Biebrza Marshes (Poland) and the Zehlau Peatbog (Russia). The gut content comprised animals (including eggs of aquatic invertebrates), plants and detritus. Larvae of Ephemeroptera were common in beetles from the Biebrza Marshes. The gut content also included Dytiscidae, Cladocera, Chironomidae and other Diptera, Copepoda, other insects, other Coleoptera aquatica, Heteroptera, Acari, Ostracoda, Culicidae and Asellus aquaticus. In the Zehlau Peatbog, both of the beetle species fed predominantly on the larval stages of Chironomidae (Diptera). The gut content also included adult terrestrial insects and spiders. KEY WORDS: predation, diving beetles, the Zehlau Peatbog, the Biebrza Marshes, Dytiscidae. INTRODUCTION Predation is one of the dominant antagonistic relationships integrating a biocoenosis. In spite of the availability of a rich literature relating to food consumed by predatory insects, our knowledge of the diet of Dytiscidae is still scarce. It is the larval stages of these beetles that seem to have been examined the most thoroughly (JOHANSSON & NILSSON 1992, YOUNG 1967, YOUNG & SPERLING 1986, PEARMAN 1995, LE LOUARN & CLOAREC 1997, GAUTAM & GOUTAM 2006, INODA 2012). -
An Updated Checklist of the Water Beetles of Montenegro 205-212 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; Download
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2016 Band/Volume: 039 Autor(en)/Author(s): Scheers Kevin Artikel/Article: An updated checklist of the water beetles of Montenegro 205-212 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 39 2 205-212 München, Dezember 2016 ISSN 0341-8391 An updated checklist of the water beetles of Montenegro (Coleoptera, Hydradephaga) Kevin Scheers Scheers, K. 2016. An updated checklist of the water beetles of Montenegro (Co- leoptera, Hydradephaga). Spixiana 39 (2): 205-212. During a short collecting trip to Montenegro in 2014, 26 locations were sampled and 692 specimens belonging to 45 species of water beetles were collected. The following species are recorded for the first time from Montenegro: Haliplus dal- matinus J. Müller, 1900, Haliplus heydeni Wehncke, 1875, Haliplus laminatus (Schaller, 1783), Hydroporus erythrocephalus (Linnaeus, 1758), Hyphydrus anatolicus (Guignot, 1957), Melanodytes pustulatus (Rossi, 1792) and Rhantus bistriatus (Bergsträsser, 1778). The addition of these seven species brings the total of Hydradephaga known from Montenegro to 91 species. The new records are presented and an updated checklist of the Hydradephaga of Montenegro is given. Kevin Scheers, Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium; e-mail: [email protected] Introduction of the sampling sites were obtained using a GPS (Garmin eTrex Vista HCx). The material was collected with a The first data on the Hydradephaga of Montenegro small sieve and a hydrobiological handnet. Traps were were given by Guéorguiev (1971). -
A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. -
Aquatic Insects in a Multistress Environment: Cross-Tolerance To
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1277-1286 doi:10.1242/jeb.152108 RESEARCH ARTICLE Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation Susana Pallarés1,*,Marıá Botella-Cruz1, Paula Arribas2,3,4, Andrés Millán1 and Josefa Velasco1 ABSTRACT against the two stressors are shared (cross-tolerance, e.g. Elnitsky Exposing organisms to a particular stressor may enhance tolerance et al., 2009; Holmstrup et al., 2002) or, conversely, can cause to a subsequent stress, when protective mechanisms against the two the organisms to be more susceptible to the second stress stressors are shared. Such cross-tolerance is a common adaptive (cross-susceptibility) (Sinclair et al., 2013; Todgham and response in dynamic multivariate environments and often indicates Stillman, 2013). potential co-evolution of stress traits. Many aquatic insects in inland Studies on multiple stressors have received increasing attention saline waters from Mediterranean-climate regions are sequentially for their potential to reveal interesting information, which would be challenged with salinity and desiccation stress. Thus, cross-tolerance difficult to predict based on single stressor approaches (DeBiasse to these physiologically similar stressors could have been positively and Kelly, 2016; Gunderson et al., 2016), as well as to increase our selected in insects of these regions. We used adults of the understanding of responses to global change in natural multivariate saline water beetles Enochrus jesusarribasi (Hydrophilidae) and environments (Hewitt et al., 2016). However, these approaches are Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses still scarce in the literature and are mostly focused on the combined to desiccation and salinity.