P = NP Problem, and Consider One of the Great Open Problems of Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
If Np Languages Are Hard on the Worst-Case, Then It Is Easy to Find Their Hard Instances
IF NP LANGUAGES ARE HARD ON THE WORST-CASE, THEN IT IS EASY TO FIND THEIR HARD INSTANCES Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma Abstract. We prove that if NP 6⊆ BPP, i.e., if SAT is worst-case hard, then for every probabilistic polynomial-time algorithm trying to decide SAT, there exists some polynomially samplable distribution that is hard for it. That is, the algorithm often errs on inputs from this distribution. This is the ¯rst worst-case to average-case reduction for NP of any kind. We stress however, that this does not mean that there exists one ¯xed samplable distribution that is hard for all probabilistic polynomial-time algorithms, which is a pre-requisite assumption needed for one-way func- tions and cryptography (even if not a su±cient assumption). Neverthe- less, we do show that there is a ¯xed distribution on instances of NP- complete languages, that is samplable in quasi-polynomial time and is hard for all probabilistic polynomial-time algorithms (unless NP is easy in the worst case). Our results are based on the following lemma that may be of independent interest: Given the description of an e±cient (probabilistic) algorithm that fails to solve SAT in the worst case, we can e±ciently generate at most three Boolean formulae (of increasing lengths) such that the algorithm errs on at least one of them. Keywords. Average-case complexity, Worst-case to average-case re- ductions, Foundations of cryptography, Pseudo classes Subject classi¯cation. 68Q10 (Modes of computation (nondetermin- istic, parallel, interactive, probabilistic, etc.) 68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.) 68Q17 Compu- tational di±culty of problems (lower bounds, completeness, di±culty of approximation, etc.) 94A60 Cryptography 2 Gutfreund, Shaltiel & Ta-Shma 1. -
Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University
Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University What is the complexity of plan generation? . How much time and space (memory) do we need? Vague question – let’s try to be more specific… . Assume an infinite set of problem instances ▪ For example, “all classical planning problems” . Analyze all possible algorithms in terms of asymptotic worst case complexity . What is the lowest worst case complexity we can achieve? . What is asymptotic complexity? ▪ An algorithm is in O(f(n)) if there is an algorithm for which there exists a fixed constant c such that for all n, the time to solve an instance of size n is at most c * f(n) . Example: Sorting is in O(n log n), So sorting is also in O( ), ▪ We can find an algorithm in O( ), and so on. for which there is a fixed constant c such that for all n, If we can do it in “at most ”, the time to sort n elements we can do it in “at most ”. is at most c * n log n Some problem instances might be solved faster! If the list happens to be sorted already, we might finish in linear time: O(n) But for the entire set of problems, our guarantee is O(n log n) So what is “a planning problem of size n”? Real World + current problem Abstraction Language L Approximation Planning Problem Problem Statement Equivalence P = (, s0, Sg) P=(O,s0,g) The input to a planner Planner is a problem statement The size of the problem statement depends on the representation! Plan a1, a2, …, an PDDL: How many characters are there in the domain and problem files? Now: The complexity of PLAN-EXISTENCE . -
On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly. -
Valuative Characterization of Central Extensions of Algebraic Tori on Krull
Valuative characterization of central extensions of algebraic tori on Krull domains ∗ Haruhisa Nakajima † Department of Mathematics, J. F. Oberlin University Tokiwa-machi, Machida, Tokyo 194-0294, JAPAN Abstract Let G be an affine algebraic group with an algebraic torus G0 over an alge- braically closed field K of an arbitrary characteristic p. We show a criterion for G to be a finite central extension of G0 in terms of invariant theory of all regular 0 actions of any closed subgroup H containing ZG(G ) on affine Krull K-schemes such that invariant rational functions are locally fractions of invariant regular func- tions. Consider an affine Krull H-scheme X = Spec(R) and a prime ideal P of R with ht(P) = ht(P ∩ RH ) = 1. Let I(P) denote the inertia group of P un- der the action of H. The group G is central over G0 if and only if the fraction e(P, P ∩ RH )/e(P, P ∩ RI(P)) of ramification indices is equal to 1 (p = 0) or to the p-part of the order of the group of weights of G0 on RI(P)) vanishing on RI(P))/P ∩ RI(P) (p> 0) for an arbitrary X and P. MSC: primary 13A50, 14R20, 20G05; secondary 14L30, 14M25 Keywords: Krull domain; ramification index; algebraic group; algebraic torus; char- acter group; invariant theory 1 Introduction 1.A. We consider affine algebraic groups and affine schemes over a fixed algebraically closed field K of an arbitrary characteristic p. For an affine group G, denote by G0 its identity component. -
EXPSPACE-Hardness of Behavioural Equivalences of Succinct One
EXPSPACE-hardness of behavioural equivalences of succinct one-counter nets Petr Janˇcar1 Petr Osiˇcka1 Zdenˇek Sawa2 1Dept of Comp. Sci., Faculty of Science, Palack´yUniv. Olomouc, Czech Rep. [email protected], [email protected] 2Dept of Comp. Sci., FEI, Techn. Univ. Ostrava, Czech Rep. [email protected] Abstract We note that the remarkable EXPSPACE-hardness result in [G¨oller, Haase, Ouaknine, Worrell, ICALP 2010] ([GHOW10] for short) allows us to answer an open complexity ques- tion for simulation preorder of succinct one counter nets (i.e., one counter automata with no zero tests where counter increments and decrements are integers written in binary). This problem, as well as bisimulation equivalence, turn out to be EXPSPACE-complete. The technique of [GHOW10] was referred to by Hunter [RP 2015] for deriving EXPSPACE-hardness of reachability games on succinct one-counter nets. We first give a direct self-contained EXPSPACE-hardness proof for such reachability games (by adjust- ing a known PSPACE-hardness proof for emptiness of alternating finite automata with one-letter alphabet); then we reduce reachability games to (bi)simulation games by using a standard “defender-choice” technique. 1 Introduction arXiv:1801.01073v1 [cs.LO] 3 Jan 2018 We concentrate on our contribution, without giving a broader overview of the area here. A remarkable result by G¨oller, Haase, Ouaknine, Worrell [2] shows that model checking a fixed CTL formula on succinct one-counter automata (where counter increments and decre- ments are integers written in binary) is EXPSPACE-hard. Their proof is interesting and nontrivial, and uses two involved results from complexity theory. -
Circuit Complexity, Proof Complexity and Polynomial Identity Testing
Electronic Colloquium on Computational Complexity, Report No. 52 (2014) Circuit Complexity, Proof Complexity and Polynomial Identity Testing Joshua A. Grochow and Toniann Pitassi April 12, 2014 Abstract We introduce a new and very natural algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial- size algebraic circuits (VNP 6= VP). As a corollary to the proof, we also show that super- polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complex- ity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. (The existence of efficient proofs for our PIT axioms appears to be somewhere in between the major conjecture that PIT2 P and the known result that PIT2 P=poly.) We use these PIT axioms to shed light on AC0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist. -
NP-Completeness Part I
NP-Completeness Part I Outline for Today ● Recap from Last Time ● Welcome back from break! Let's make sure we're all on the same page here. ● Polynomial-Time Reducibility ● Connecting problems together. ● NP-Completeness ● What are the hardest problems in NP? ● The Cook-Levin Theorem ● A concrete NP-complete problem. Recap from Last Time The Limits of Computability EQTM EQTM co-RE R RE LD LD ADD HALT ATM HALT ATM 0*1* The Limits of Efficient Computation P NP R P and NP Refresher ● The class P consists of all problems solvable in deterministic polynomial time. ● The class NP consists of all problems solvable in nondeterministic polynomial time. ● Equivalently, NP consists of all problems for which there is a deterministic, polynomial-time verifier for the problem. Reducibility Maximum Matching ● Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. ● A maximum matching is a matching with the largest number of edges. AA maximummaximum matching.matching. Maximum Matching ● Jack Edmonds' paper “Paths, Trees, and Flowers” gives a polynomial-time algorithm for finding maximum matchings. ● (This is the same Edmonds as in “Cobham- Edmonds Thesis.) ● Using this fact, what other problems can we solve? Domino Tiling Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling Solving Domino Tiling The Setup ● To determine whether you can place at least k dominoes on a crossword grid, do the following: ● Convert the grid into a graph: each empty cell is a node, and any two adjacent empty cells have an edge between them. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
Lecture 9 1 Interactive Proof Systems/Protocols
CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction The traditional mathematical notion of a proof is a simple passive protocol in which a prover P outputs a complete proof to a verifier V who decides on its validity. The interaction in this traditional sense is minimal and one-way, prover → verifier. The observation has been made that allowing the verifier to interact with the prover can have advantages, for example proving the assertion faster or proving more expressive languages. This extension allows for the idea of interactive proof systems (protocols). The general framework of the interactive proof system (protocol) involves a prover P with an exponential amount of time (computationally unbounded) and a verifier V with a polyno- mial amount of time. Both P and V exchange multiple messages (challenges and responses), usually dependent upon outcomes of fair coin tosses which they may or may not share. It is easy to see that since V is a poly-time machine (PPT), only a polynomial number of messages may be exchanged between the two. P ’s objective is to convince (prove to) the verifier the truth of an assertion, e.g., claimed knowledge of a proof that x ∈ L. V either accepts or rejects the interaction with the P . 1.2 Definition of Interactive Proof Systems An interactive proof system for a language L is a protocol PV for communication between a computationally unbounded (exponential time) machine P and a probabilistic poly-time (PPT) machine V such that the protocol satisfies the properties of completeness and sound- ness. -
Reflection Principles, Propositional Proof Systems, and Theories
Reflection principles, propositional proof systems, and theories In memory of Gaisi Takeuti Pavel Pudl´ak ∗ July 30, 2020 Abstract The reflection principle is the statement that if a sentence is provable then it is true. Reflection principles have been studied for first-order theories, but they also play an important role in propositional proof complexity. In this paper we will revisit some results about the reflection principles for propositional proofs systems using a finer scale of reflection principles. We will use the result that proving lower bounds on Resolution proofs is hard in Resolution. This appeared first in the recent article of Atserias and M¨uller [2] as a key lemma and was generalized and simplified in some spin- off papers [11, 13, 12]. We will also survey some results about arithmetical theories and proof systems associated with them. We will show a connection between a conjecture about proof complexity of finite consistency statements and a statement about proof systems associated with a theory. 1 Introduction arXiv:2007.14835v1 [math.LO] 29 Jul 2020 This paper is essentially a survey of some well-known results in proof complexity supple- mented with some observations. In most cases we will also sketch or give an idea of the proofs. Our aim is to focus on some interesting results rather than giving a complete ac- count of known results. We presuppose knowledge of basic concepts and theorems in proof complexity. An excellent source is Kraj´ıˇcek’s last book [19], where you can find the necessary definitions and read more about the results mentioned here. -
Interactive Proofs 1 1 Pspace ⊆ IP
CS294: Probabilistically Checkable and Interactive Proofs January 24, 2017 Interactive Proofs 1 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Mariel Supina 1 Pspace ⊆ IP The first proof that Pspace ⊆ IP is due to Shamir, and a simplified proof was given by Shen. These notes discuss the simplified version in [She92], though most of the ideas are the same as those in [Sha92]. Notes by Katz also served as a reference [Kat11]. Theorem 1 ([Sha92]) Pspace ⊆ IP. To show the inclusion of Pspace in IP, we need to begin with a Pspace-complete language. 1.1 True Quantified Boolean Formulas (tqbf) Definition 2 A quantified boolean formula (QBF) is an expression of the form 8x19x28x3 ::: 9xnφ(x1; : : : ; xn); (1) where φ is a boolean formula on n variables. Note that since each variable in a QBF is quantified, a QBF is either true or false. Definition 3 tqbf is the language of all boolean formulas φ such that if φ is a formula on n variables, then the corresponding QBF (1) is true. Fact 4 tqbf is Pspace-complete (see section 2 for a proof). Hence to show that Pspace ⊆ IP, it suffices to show that tqbf 2 IP. Claim 5 tqbf 2 IP. In order prove claim 5, we will need to present a complete and sound interactive protocol that decides whether a given QBF is true. In the sum-check protocol we used an arithmetization of a 3-CNF boolean formula. Likewise, here we will need a way to arithmetize a QBF. 1.2 Arithmetization of a QBF We begin with a boolean formula φ, and we let n be the number of variables and m the number of clauses of φ.