Substitution and Propositional Proof Complexity Sam Buss Abstract We discuss substitution rules that allow the substitution of formulas for formula variables. A substitution rule was first introduced by Frege. More recently, substitution is studied in the setting of propositional logic. We state theorems of Urquhart’s giving lower bounds on the number of steps in the substitution Frege system for propositional logic. We give the first superlinear lower bounds on the number of symbols in substitution Frege and multi-substitution Frege proofs. “The length of a proof ought not to be measured by the yard. It is easy to make a proof look short on paper by skipping over many links in the chain of inference and merely indicating large parts of it. Generally people are satisfied if every step in the proof is evidently correct, and this is permissable if one merely wishes to be persuaded that the proposition to be proved is true. But if it is a matter of gaining an insight into the nature of this ‘being evident’, this procedure does not suffice; we must put down all the intermediate steps, that the full light of consciousness may fall upon them.” [G. Frege, Grundgesetze, 1893; translation by M. Furth] 1 Introduction The present article concentrates on the substitution rule allowing the substitution of formulas for formula variables.1 The substitution rule has long pedigree as it was a rule of inference in Frege’s Begriffsschrift [9] and Grundgesetze [10], which contained the first in-depth formalization of logical foundations for mathematics. Since then, substitution has become much less important for the foundations of Sam Buss Department of Mathematics, University of California, San Diego, e-mail:
[email protected], Supported in part by Simons Foundation grant 578919.