Circuit Complexity, Proof Complexity and Polynomial Identity Testing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reflection Principles, Propositional Proof Systems, and Theories
Reflection principles, propositional proof systems, and theories In memory of Gaisi Takeuti Pavel Pudl´ak ∗ July 30, 2020 Abstract The reflection principle is the statement that if a sentence is provable then it is true. Reflection principles have been studied for first-order theories, but they also play an important role in propositional proof complexity. In this paper we will revisit some results about the reflection principles for propositional proofs systems using a finer scale of reflection principles. We will use the result that proving lower bounds on Resolution proofs is hard in Resolution. This appeared first in the recent article of Atserias and M¨uller [2] as a key lemma and was generalized and simplified in some spin- off papers [11, 13, 12]. We will also survey some results about arithmetical theories and proof systems associated with them. We will show a connection between a conjecture about proof complexity of finite consistency statements and a statement about proof systems associated with a theory. 1 Introduction arXiv:2007.14835v1 [math.LO] 29 Jul 2020 This paper is essentially a survey of some well-known results in proof complexity supple- mented with some observations. In most cases we will also sketch or give an idea of the proofs. Our aim is to focus on some interesting results rather than giving a complete ac- count of known results. We presuppose knowledge of basic concepts and theorems in proof complexity. An excellent source is Kraj´ıˇcek’s last book [19], where you can find the necessary definitions and read more about the results mentioned here. -
Contents Part 1. a Tour of Propositional Proof Complexity. 418 1. Is There A
The Bulletin of Symbolic Logic Volume 13, Number 4, Dec. 2007 THE COMPLEXITY OF PROPOSITIONAL PROOFS NATHAN SEGERLIND Abstract. Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes. Contents Part 1. A tour of propositional proof complexity. 418 1. Is there a way to prove every tautology with a short proof? 418 2. Satisfiability algorithms and theories of arithmetic 420 3. A menagerie of Frege-like proof systems 427 4. Reverse mathematics of propositional principles 434 5. Feasible interpolation 437 6. Further connections with satisfiability algorithms 438 7. Beyond the Frege systems 441 Part 2. Some lower bounds on refutation sizes. 444 8. The size-width trade-off for resolution 445 9. The small restriction switching lemma 450 10. Expansion clean-up and random 3-CNFs 459 11. Resolution pseudowidth and very weak pigeonhole principles 467 Part 3. Open problems, further reading, acknowledgments. 471 Appendix. Notation. 472 References. 473 Received June 27, 2007. This survey article is based upon the author’s Sacks Prize winning PhD dissertation, however, the emphasis here is on context. The vast majority of results discussed are not the author’s, and several results from the author’s dissertation are omitted. c 2007, Association for Symbolic Logic 1079-8986/07/1304-0001/$7.50 417 418 NATHAN SEGERLIND Part 1. -
A Short History of Computational Complexity
The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns. -
Proof Complexity in Algebraic Systems and Bounded Depth Frege Systems with Modular Counting
PROOF COMPLEXITY IN ALGEBRAIC SYSTEMS AND BOUNDED DEPTH FREGE SYSTEMS WITH MODULAR COUNTING S. Buss, R. Impagliazzo, J. Kraj¶³cek,· P. Pudlak,¶ A. A. Razborov and J. Sgall Abstract. We prove a lower bound of the form N (1) on the degree of polynomials in a Nullstellensatz refutation of the Countq polynomials over Zm, where q is a prime not dividing m. In addition, we give an explicit construction of a degree N (1) design for the Countq principle over Zm. As a corollary, using Beame et al. (1994) we obtain (1) a lower bound of the form 2N for the number of formulas in a constant-depth N Frege proof of the modular counting principle Countq from instances of the counting M principle Countm . We discuss the polynomial calculus proof system and give a method of converting tree-like polynomial calculus derivations into low degree Nullstellensatz derivations. Further we show that a lower bound for proofs in a bounded depth Frege system in the language with the modular counting connective MODp follows from a lower bound on the degree of Nullstellensatz proofs with a constant number of levels of extension axioms, where the extension axioms comprise a formalization of the approximation method of Razborov (1987), Smolensky (1987) (in fact, these two proof systems are basically equivalent). Introduction A propositional proof system is intuitively a system for establishing the validity of propo- sitional tautologies in some ¯xed complete language. The formal de¯nition of propositional proof system is that it is a polynomial time function f which maps strings over an alphabet § onto the set of propositional tautologies (Cook & Reckhow 1979). -
On Monotone Circuits with Local Oracles and Clique Lower Bounds
On monotone circuits with local oracles and clique lower bounds Jan Kraj´ıˇcek Igor C. Oliveira Faculty of Mathematics and Physics Charles University in Prague December 17, 2019 Abstract We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi = yi(~x) that can perform unstructured computations on the input string ~x. Let µ [0, 1] be the locality of the circuit, a parameter that bounds the combined ∈ m strength of the oracle functions yi(~x), and Un,k, Vn,k 0, 1 be the set of k-cliques and the set of complete (k 1)-partite graphs, respectively⊆ (similarly { } to [Razborov, 1985]). Our results can be informally− stated as follows. (i) For an appropriate extension of depth-2 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3 (triangles) and Vn,3 (complete bipartite graphs) undergoes two phase transitions according to µ. (ii) For 5 k(n) n1/4, arbitrary depth, and µ 1/50, we prove that the monotone ≤ ≤ ≤ Θ(√k) circuit size complexity of separating the sets Un,k and Vn,k is n , under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of k-clique obtained by Alon and Boppana (1987). 1 Introduction and motivation arXiv:1704.06241v3 [cs.CC] 16 Dec 2019 We establish initial lower bounds on the power of monotone circuits with local oracles (mono- tone CLOs), an extension of monotone circuits introduced in [Kra16] motivated by problems in proof complexity. -