Adverse Drug Reactions of Antihypertensive Drugs: a Review Sandhoshini Meena S 1, Praveen D 2, Ranadheer Chowdary P 2, M

Total Page:16

File Type:pdf, Size:1020Kb

Adverse Drug Reactions of Antihypertensive Drugs: a Review Sandhoshini Meena S 1, Praveen D 2, Ranadheer Chowdary P 2, M High Technology Letters ISSN NO : 1006-6748 Adverse Drug Reactions of Antihypertensive Drugs: A Review Sandhoshini Meena S 1, Praveen D 2, Ranadheer Chowdary P 2, M. Vijey Aanandhi 3* 1School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, India. 2Research Scholar, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, India. 3Department of Pharmaceutical Chemistry and Analysis, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, India. Corresponding Author Dr. M. Vijey Aanandhi Professor and Head, Department of Pharmaceutical Chemistry and Analysis, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Pallavaram, Chennai – 600117, India. Abstract Adverse drug reaction (ADR) is defined by the World Health Organization (WHO) as “any response to a drug which is noxious and unintended and which occurs at doses normally used in man for prophylaxis, diagnosis, or therapy of disease, or for the modification of physiological function”. The recent epidemiological studies say that the adverse drug reactions (ADRs) are fourth to sixth leading cause of death. Adverse drug reactions (ADRs) are the major reason behind the cause of morbidity and mortality, and also the leading cause of hospital admissions. ADRs negatively affect the patient’s quality of life and confidence in medications, which consequently leads to worse treatment outcomes. Monitoring of ADRs should be an ongoing, continuing and ceaseless process. The most ADRs would subside once the causative agent is discontinued or dose is being reduced; however, many ADRs results in permanent damage to the patients. Monitoring of ADRs is even more important in case of chronic conditions such as hypertension. Hypertension is an asymptomatic disorder and requires long term treatment predisposing to adverse drug reactions. Most of the adverse drug reactions are predictable and preventable. Therefore continuous monitoring and reporting of ADRs can have a positive impact on the medication use, improving the patient’s quality of life and in reducing the incidence of devastating ADRs. The active surveillance of a clinical pharmacist in detecting the Adverse Drug Reactions and giving the awareness regarding the need of monitoring and reporting of adverse drug reactions among healthcare professionals would improve the scenario in under-reported hospitals. Keywords: Adverse Drug Reactions (ADRs), Antihypertensive Drugs, Hypertension, Clinical Pharmacist, ADRs reporting. Volume 27, Issue 3, 2021 14 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 I. INTRODUCTION Adverse drug reaction (ADR) has been defined by the World Health Organization (WHO) as “any response to a drug which is noxious and unintended and which occurs at doses normally used in man for prophylaxis, diagnosis, or therapy of disease, or for the modification of physiological function”. The recent epidemiological studies say that the adverse drug reactions (ADRs) are fourth to sixth leading cause of death [1] . Adverse drug reactions are seen in day to day clinical practice. Estimation of the incidence rate of adverse drug reactions is very difficult and highly variable among countries all over the world. Prevalence of adverse drug reactions is 14.7% in United Kingdom and 16.2% in India [2,3] . The incidence of hospital admissions due to adverse drug reactions ranges from 2.4 to 12% while incidence of ADRs during hospital stay ranges from 0.05 to 0.19 % [4,5] . Fatality due to ADRs was found to be 0.3% [6]. Adverse drug reactions (ADRs) are the major reason behind the cause of morbidity and mortality, and also the leading cause of hospital admissions. ADRs negatively affect the patient’s quality of life and confidence in medications, which consequently leads to worse treatment outcomes [7]. Lack of reliable data on the true prevalence and incidence of ADRs is the major limitation in adverse drug reaction research. The incidence rate of adverse drug reactions is captured through voluntary reporting systems. Due to under- reporting the true incidence of adverse drug reaction is not known, which results in lack of information about the number of patients at risk and making assessment of the relative frequencies of different adverse drug reactions are impossible. Singapore stands the highest rate in spontaneous ADR reporting in the world. Even though under-reporting, incomplete information of the data and reporting bias causes inability to calculate the true prevalence of ADRs [8,9]. Monitoring of ADRs should be an ongoing, continuing and ceaseless process. Adverse drug reaction monitoring and reporting is still infancy in India, this must likely to change and expand in future years. As the newer medications are striking the Indian market, the need for ADR monitoring is important more than ever before. Therefore, monitoring of the adverse drug reactions particularly those of serious nature is obligatory. The most ADRs would subside once the causative agent is discontinued or dose is being reduced; however, many ADRs results in permanent damage to the patients. Therefore, it is important to motivate the healthcare providers to know their role and responsibility within the detection, treatment, documentation, and reporting of adverse drug reactions. Since most of the clinical trials exclude the geriatric, pediatric, pregnant women, patients with multiple diseases or metabolic disorder, and those on medication suspected of interactions with the study drug or investigational drug, thus the study population may not be the true representative of the real world where the medications are eventually used. Hence, there is a need to monitor the adverse drug reactions of all the medications on continuous basis. Monitoring of ADRs is even more important in case of chronic conditions such as hypertension. Hypertension is an asymptomatic disorder and requires long term treatment predisposing to adverse drug reactions. A study by Fowad Khurshid et al . carried out to monitor the adverse drug reactions (ADRs) caused by antihypertensive medicines prescribed in a university teaching hospital, New Delhi, India were a total of 21 adverse drug reactions were seen in 192 hypertensive patients. Combination therapy showed higher number of adverse drug reactions (66.7%) when compared to monotherapy (33.3%). Calcium channel blockers were found to be the most frequently associated drugs with the occurence of adverse drug reactions (n = 7), followed by diuretics (n = 5), and β-blockers (n = 4). Among individual medications, amlodipine was found to be associated with maximum number of adverse drug reactions (n = 7), followed by Volume 27, Issue 3, 2021 15 http://www.gjstx-e.cn/ High Technology Letters ISSN NO : 1006-6748 torasemide (n = 3). Pain in abdomen, ankle oedema, sedation, pedal oedema, and back pain were the adverse drug reaction observed with the use of amlodipine. Adverse drug reactions associated with central nervous system were found to be the most frequent (42.8%) followed by musculo-skeletal complaints (23.8%) and gastro-intestinal disorders (14.3%) [10,11]. Adverse drug reactions profile of antihypertensive medications will be useful in selecting the appropriate medicines for hypertension patients, improving patient adherence with the medications by selecting the medicines of fewer adverse drug reactions profile, reducing unnecessary financial burden to the patients due to the unintended effects of the medications. II. ADVERSE DRUG REACTIONS OF BETA- BLOCKERS 2.1. Raynaud’s phenomenon and Peripheral vasoconstriction: β-adrenoceptor blockers-induced Raynaud’s phenomenon (RP) is well known adverse drug reactions caused by beta blockers but its true incidence was not known. Beta-adrenoceptor blocker is the most common cause of secondary RP which was estimated by analysis of the Framingham Heart study data (34.2% of secondary RP). A meta-analysis was conducted in 2012 which includes 13 studies were 1012 patients are involved and this analysis observed a prevalence of 14.7% in patients receiving Beta blockers [12] . Transient ischaemia of the extremities is the characterization of Raynaud’s phenomenon (RP). Its clinical manifestation includes: changes to the fingers associated with pallor (vasospasm and decreased blood flow), cyanosis (deoxygenation of the static venous blood) and rubor (reperfusion), often accompanied by pain. RP is of two types: primary (i.e. idiopathic) and secondary. In both the type abnormality in the cutaneous microcirculation are mainly involved in the pathophysiology of RP. RP is aggravated or induced by several drugs which have peripheral vascular effects causing decreased microvascular perfusion. Due to limited information of this adverse drug reaction drug-induced RP probably goes unrecognized in clinical settings. A network meta-analysis of prospective randomized controlled trials was conducted which showed a prevalence of peripheral vasoconstriction among patients treated with Beta blockers of 7%. 4.6% and 1.7% of patients treated with placebo or active control experienced this adverse drug reaction [13,14,15] . Peripheral vasoconstriction is a known vascular adverse drug reactions of beta blockers. Beta-adrenoceptor blockers are known to induce peripheral vasoconstriction, probably according to their pharmacological properties (e.g. preferential binding to Beta 1‐adrenoreceptors,
Recommended publications
  • Unit 2 Lab 2
    Unit 2, Lab 1 PTA/OTA 106 Regional A & P G. Blevins Updated: Fall 2011 SURFACE ANATOMY: VERTEBRAL COLUMN BONES [26] Jugular or suprasternal notch Vertebra (general features) Sternal angle Body Manubrium Neural arch Body of the sternum Pedicles Xiphisternal joint Laminae Costal margin Spinal (or vertebral) foramen Costal arch Transverse processes Anterior median line Spinous process Midclavicular lines Superior articulating processes Intermammary cleft Inferior articulating processes Axillary fossa Intervertebral foramen Anterior axillary line Intervertebral disc Anterior axillary fold Midaxillary line Thoracic vertebrae [12] Posterior axillary line Rib facets or demifacets Posterior median line Scapular lines Lumbar vertebrae [5] Epigastric fossa Lack rib facets and transverse Iliac crest foramina Umbilicus Linea alba Sacrum [1] Rectus abdominis Fused bone consisting of 5 Serratus anterior vertebrae Semilunar line Sacral promontory Sacral foramina (pelvic & dorsal) VERTEBRAL COLUMN- Auricular surface Special Features Coccyx [1] Normal Curves Fused bone consisting of 3-5 Primary: vertebrae Thoracic Sacral THORACIC BONES [25] Secondary: Sternum [1] Cervical Manubrium Lumbar Body (or gladiolus) Abnormal Curves Jugular (or suprasternal) notch Kyphosis Xiphoid process Lordosis Ribs [12 pair] Scoliosis Head Neck Tubercle Body (or shaft) Costal groove Costal cartilages Types of ribs True ribs False ribs Floating ribs PECTORAL (OR SHOULDER) GIRDLE Clavicles [2] Sternal extremity Acromial extremity Conoid tubercle Scapula [2] Borders: Superior
    [Show full text]
  • The Inter-Mammary Sticky Roll: a Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection
    Open Access Technical Report DOI: 10.7759/cureus.719 The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection David R. Santiago-Dieppa 1 , Arvin R. Wali 1 , Brandon C. Gabel 1 , Alexander A. Khalessi 1 , Hoi Sang U 1 , John C. Drummond 2 1. Department of Neurosurgery, University of California, San Diego 2. Department of Anesthesiology, University of California, San Diego Corresponding author: David R. Santiago-Dieppa, [email protected] Abstract Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the “inter-mammary sticky roll,” a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient. Categories: Anesthesiology, Neurosurgery Keywords: venous air embolism, precordial doppler, neurosurgery, neuroanesthesia, intermammary sulcus, intermammary cleft, inter-mammary sticky roll, adhesive tape, surgical towel, probe positioning Introduction Venous air embolism (VAE) is defined as air that becomes entrained within venous structures [1]. Although a VAE can occur during any invasive intervention, the incidence during neurosurgical procedures, in particular those involving the posterior fossa, has been reported to be as high as 82.6% [2]. A precordial Doppler is the standard of care for monitoring situations in which significant risk of VAE is anticipated. VAE that remains unrecognized or untreated can rapidly result in cardiovascular collapse and death.
    [Show full text]
  • A Dissertation on a Prospective Comparative Study of Tamoxifen
    A Dissertation on A prospective comparative study of Tamoxifen versus standard treatment response in fibrocystic disease of the breast in tertiary health care Submitted to THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY In partial fulfillment of the requirements For the award of degree of M.S. (BRANCH-I) GENERAL SURGERY GOVERNMENT STANLEY MEDICAL COLLEGE & HOSPITAL THE TAMILNADU DR. M.G.R. MEDICAL UNIVERSITY, CHENNAI, TAMILNADU. MAY 2020 CERTIFICATE This is to certify that this dissertation titled A prospective comparative study of Tamoxifen versus standard treatment response in fibrocystic disease of the breast in tertiary health care is a bona-fide research work carried out by Dr.Zothanpari Ralte under our direct supervision and guidance, submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai, in partial fulfilment of the requirements in the award of degree of M.S. (GENERAL SURGERY)Branch -I for the May 2020 examination. PROF. Dr.C.BALAMURUGAN. M.S., PROF.Dr.T .SIVA KUMAR M.S., Professor of Surgery, Professor and Head of the Department, Department of General Surgery, Department of General Surgery, Govt. Stanley Medical College, Govt. Stanley Medical College, Chennai – 1. Chennai - 1 PROF .Dr. R.SHANTHI MALAR MD.,D.A., The Dean, Govt. Stanley Medical College, DECLARATION I, Dr.Zothanpari Ralte solemnly declare that “A prospective comparative study of Tamoxifen versus standard treatment response in fibrocystic disease of the breast in tertiary health care” is a bonafide work done by me. I also declare that this bonafide work or a part of this work was not submitted by me or any other for any award, degree, diploma to any university board either in India or abroad.
    [Show full text]
  • Practitioner's Corner
    PRACTITIONER'S CORNER We report on a 48-year old woman with a 20-year history of Aspirin Desensitization Achieved After Omalizumab chronic rhinosinusitis with nasal polyposis requiring multiple Treatment in a Patient With Aspirin-Exacerbated sinus operations in addition to asthma and chronic idiopathic Urticaria and Respiratory Disease urticaria. She had experienced worsening of nasal congestion, rhinorrhea, wheezing, and urticaria on several occasions Guillén D1, Bobolea I1, Calderon O,1 Fiandor A,1 Cabañas R1, following NSAID intake (ibuprofen 600 mg, aspirin 500 mg). Heredia R1, Quirce S1,2 She thereafter avoided these drugs, as advised, and experienced 1Department of Allergy, Hospital La Paz Institute for Health no more episodes of urticaria. When first seen at our Research (IdiPAZ), Madrid, Spain department in 2011, she reported good tolerance to paracetamol 2CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain 650 mg but not to paracetamol 1 g, which triggered the above- mentioned reactions. Her asthma symptoms were controlled Key words: Aspirin-exacerbated respiratory disease (AERD). Aspirin with salmeterol/fluticasone 50/250 mcg twice a day. However, desensitization. Non-steroidal anti-inflammatory drugs (NSAIDs). because of severe nasal symptoms consisting of congestion, Omalizumab. Aspirin-exacerbated urticaria. hyposmia, and frequent sinus infections (score of 35 on a 100-mm visual analog scale for nasal symptoms) and regrowth Palabras clave: Enfermedad respiratoria exacerbada por aspirina (EREA). of nasal polyps, she was waiting for her third endoscopic Desensibilización a aspirina. Anti-inflamatorios no esteroideos (AINE). sinus operation. She denied seasonal worsening of respiratory Omalizumab. Urticaria exacerbada por aspirina. symptoms. Skin prick tests with common aeroallergens were negative, and baseline spirometric parameters were normal (forced vital capacity [FVC], 128% of predicted; forced expiratory volume in the first second [FEV1], 100.8%; FEV1/ Aspirin-exacerbated respiratory disease (AERD), formerly FVC, 77.35).
    [Show full text]
  • Essential Respiratory Medicine Essential Respiratory Medicine
    Essential Respiratory Medicine Essential Respiratory Medicine Shanthi Paramothayan Consultant Respiratory Physician UK This edition first published 2019 © 2019 by John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Shanthi Paramothayan to be identified as the author of editorial in this work has been asserted in accordance with law. Registered Office(s) John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions.
    [Show full text]
  • 1118618327 Lp.Pdf
    Essential Respiratory Medicine Essential Respiratory Medicine Shanthi Paramothayan Consultant Respiratory Physician UK This edition first published 2019 © 2019 by John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Shanthi Paramothayan to be identified as the author of editorial in this work has been asserted in accordance with law. Registered Office(s) John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions.
    [Show full text]
  • Klatka Piersiowa I
    WSKAZÓWKI DO ĆWICZEŃ DLA STUDENTÓW WYDZIAŁU LEKARSKIEGO Zakład Anatomii Prawidłowej i Klinicznej CB WUM w Warszawie B.Ciszek Thorax I Dostępne badaniu punkty kostne, linie topograficzne na tułowiu, granice i okolice klp. Powtórzenie wiadomości z układu kostno-stawowego klp. Mięśnie piersiowo-ramienne i mięśnie własne klp - przyczepy, przebieg, topografia, czynność, unaczynienie, unerwienie, objawy porażenia. Naczynia i nerwy ścian klp - naczynia i nerwy międzyżebrowe, naczynia piersiowe wewnętrzne, ich gałęzie, zakres unaczynienia i unerwienia. Budowa i zawartość przestrzeni międzyżebrowej. Sutek- położenie, budowa, unaczynienie krwionośne i chłonne, unerwienie. Punkty bazowe Vertebra m.intercostalis ext. Sternum breast bone m.intercostalis int. Clavicula colar bone a.thoracica interna internal thoracic(mammary) Costa, costa prima rib artery m.pectoralis maior n.intercostalis m.pectoralis minor aorta descendens m.serratus ant. vena azygos Inne struktury do praktycznego rozpoznania Mamma: breast Truncus costocervicalis, Sulcus intermammarius intermammary cleft a.intercostalis suprema areola mammae a. intercostalis posterior et rami. papilla mammae nipple a.subcostalis lig.suspensoria mammaria A.toracica interna – rami corpus mammae body of breast Vena hemiazygos lobi, lobuli, Vena hemiazygos accessoria proc.axillaris, axillary tail v.intercostalis sup.dextra ductus latiferi lactiferous duct spatium intercostale sinus lactiferi jw linea mediana ant.post. m.pectoralis major partes heads linaea mediclavicularis midclavicular line fascia pectoralis linea mimillaris nipple line fascia clavipectoralis lineae axillares mm.intercostales intimi linea scapularis membrane intercostalis ext.int. linea para sternalis mm.subcostales linea sternalis m.transversus thoracis linea paravertebralis fascia endothoracica Zagadnienia opisowe Okolica klatki piersiowej, granice i ukształtowanie. Struktury ściany klatki piersiowej dostępne badaniem palpacyjnym. Drogi odpływ chłonki z sutka, aspekty onkologiczne. Budowa i topografia przestrzeni międzyżebrowej.
    [Show full text]
  • Latin Term Latin Synonym UK English Term American English Term English
    General Anatomy Latin term Latin synonym UK English term American English term English synonyms and eponyms Notes Termini generales General terms General terms Verticalis Vertical Vertical Horizontalis Horizontal Horizontal Medianus Median Median Coronalis Coronal Coronal Sagittalis Sagittal Sagittal Dexter Right Right Sinister Left Left Intermedius Intermediate Intermediate Medialis Medial Medial Lateralis Lateral Lateral Anterior Anterior Anterior Posterior Posterior Posterior Ventralis Ventral Ventral Dorsalis Dorsal Dorsal Frontalis Frontal Frontal Occipitalis Occipital Occipital Superior Superior Superior Inferior Inferior Inferior Cranialis Cranial Cranial Caudalis Caudal Caudal Rostralis Rostral Rostral Apicalis Apical Apical Basalis Basal Basal Basilaris Basilar Basilar Medius Middle Middle Transversus Transverse Transverse Longitudinalis Longitudinal Longitudinal Axialis Axial Axial Externus External External Internus Internal Internal Luminalis Luminal Luminal Superficialis Superficial Superficial Profundus Deep Deep Proximalis Proximal Proximal Distalis Distal Distal Centralis Central Central Periphericus Peripheral Peripheral One of the original rules of BNA was that each entity should have one and only one name. As part of the effort to reduce the number of recognized synonyms, the Latin synonym peripheralis was removed. The older, more commonly used of the two neo-Latin words was retained. Radialis Radial Radial Ulnaris Ulnar Ulnar Fibularis Peroneus Fibular Fibular Peroneal As part of the effort to reduce the number of synonyms, peronealis and peroneal were removed. Because perone is not a recognized synonym of fibula, peronealis is not a good term to use for position or direction in the lower limb. Tibialis Tibial Tibial Palmaris Volaris Palmar Palmar Volar Volar is an older term that is not used for other references such as palmar arterial arches, palmaris longus and brevis, etc.
    [Show full text]
  • Thieme Verlag KG Stuttgart • New York Lateinisch Arteria(-Ae) Intercostalis Posterior Prima 477
    476 Abdomen Lateinisch Angulus sterni (Ludovici) 52.31 Apex ossis sacri 50.38 A – subpubicus 64.17 – partis petrosae 30.25 Abdomen 2.18 – superior scapulae 54.20 – patellae 68.34 Abductio 15.25 Ansa cervicalis 412.22 – prostatae 194.6 Acetabulum 62.4 – lenticularis 368.1; 390.22 – pulmonis 176.5 Acromion 54.11 – peduncularis 368.4; 388.23 – radicis dentis 136.27 Adductio 15.26 – subclavia 426.22 – vesicae 186.9 Adenohypophysis 220.3 Antebrachium 2.26 Apicalis 4.23 Adhesio interthalamica 360.10 Anterior 4.12 Aponeurosis 16.33 Aditus ad antrum mastoideum Antihelix 450.10 – bicipitalis 112.16 454.21 Antitragus 450.17 – epicranialis 94.13 – laryngis 170.24 Antrum mastoideum 454.28 – glutea 122.9 – orbitalis 22.26 – pyloricum 146.32 – linguae 140.25 Adminiculum lineae albae 108.28 Anulus conjunctivae 434.29 – m. bicipitis brachii 112.16 Agger nasi 164.38 – femoralis 120.3 – m. erectoris spinae 102.9 Aggregationes cellularum – fibrocartilagineus 452.29 – palatina 142.17 chemergicarum 396.1 – fibrosus 78.4 – palmaris 116.25 Ala cristae galli 38.5 – – dexter/sinister [cor] 224.7 – plantaris 120.18 – lobuli centralis 356.13 – inguinalis profundus 108.25 Apophysis 12.44 – major [Os sphen.] 28.24 – – superficialis 108.17 Apparatus lacrimalis 448.7 – minor [Os sphen.] 28.20 – iridis major 438.6 Appendices adiposae 152.10 – nasi 164.6 – – minor 438.7 – epiploicae 152.10 – ossis ilii 62.15 – lymphaticus cardiae 306.17 – omentales 152.10 – – sacri 50.21 – lymphoideus pharyngis 298.33 – vesiculosae 204.21 – vomeris 38.32 – tendineus communis 444.17 Appendix
    [Show full text]
  • Physical Cues of Partner Quality
    1 Physical Cues of Partner Quality Ian D. Stephen1,2, Severi Luoto3,4 In: The Oxford Handbook of Evolutionary Psychology and Romantic Relationships 1 Department of Psychology, Macquarie University, Sydney, Australia 2 Perception in Action Research Centre, Macquarie University, Sydney, Australia 3 English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand 4 School of Psychology, University of Auckland, Auckland, New Zealand Cite as: Stephen, I. D., & Luoto, S. (in press). Physical cues of partner quality. In J. K. Mogilski & T. K. Shackelford (Eds.), The Oxford Handbook of Evolutionary Psychology and Romantic Relationships. Oxford, UK: Oxford University Press. Correspondence: ian.stephen (a) mq.edu.au Word count: 9 775 (body text only), 16 554 (including abstract, body text, and references) 2 Abstract The dominant evolutionary theory of sexual attraction posits that attraction serves as a psychological mechanism for identifying healthy, fertile, and appropriate mates. According to this theory, humans and animals display cues that reflect their mate quality and are perceived as attractive by potential mates. There is evidence for such valid cues in human faces, bodies, and in non-bodily traits, which include adornments and items that signal provisioning ability, creativity, artistic skills, or conspicuous consumption. In this chapter, we discuss the evidence for the existence of these facial, bodily, and non-bodily cues, and for their role in communicating aspects of partner quality, including health, fertility, developmental stability, genetic quality, and potential for parental investment. We further discuss sex differences in the kinds of physical cues that men and women rely on in mate choice. We conclude by noting how central and evolutionarily important physical cues are even in contemporary sexual selection, and how the importance of physical cues of partner quality manifests in evolutionarily novel inventions such as physical self-enhancements, social media, and online dating.
    [Show full text]
  • Mutations in Γ-Secretase Subunit–Encoding PSENEN Underlie Dowling-Degos Disease Associated with Acne Inversa
    The Journal of Clinical Investigation BRIEF REPORT Mutations in γ-secretase subunit–encoding PSENEN underlie Dowling-Degos disease associated with acne inversa Damian J. Ralser,1 F. Buket Ü. Basmanav,1 Aylar Tafazzoli,1 Jade Wititsuwannakul,2 Sarah Delker,3 Sumita Danda,4 Holger Thiele,5 Sabrina Wolf,1 Michélle Busch,6 Susanne A. Pulimood,7 Janine Altmüller,5 Peter Nürnberg,5 Didier Lacombe,8 Uwe Hillen,3 Jörg Wenzel,9 Jorge Frank,10 Benjamin Odermatt,6 and Regina C. Betz1 1Institute of Human Genetics, University of Bonn, Bonn, Germany. 2Department of Medicine, Chulalongkorn University, Bangkok, Thailand. 3Department of Dermatology, University of Essen, Essen, Germany. 4Department of Clinical Genetics, Christian Medical College and Hospital, Tamil Nadu, India. 5Cologne Center for Genomics, University of Cologne, Cologne, Germany. 6Institute of Anatomy, University of Bonn, Bonn, Germany. 7Department of Dermatology, Christian Medical College and Hospital, Tamil Nadu, India. 8Department of Genetics, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France. 9Department of Dermatology, University of Bonn, Bonn, Germany. 10Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany. Dowling-Degos disease (DDD) is an autosomal-dominant disorder of skin pigmentation associated with mutations in keratin 5 (KRT5), protein O-fucosyltransferase 1 (POFUT1), or protein O-glucosyltransferase 1 (POGLUT1). Here, we have identified 6 heterozygous truncating mutations in PSENEN, encoding presenilin enhancer protein 2, in 6 unrelated patients and families with DDD in whom mutations in KRT5, POFUT1, and POGLUT1 have been excluded. Further examination revealed that the histopathologic feature of follicular hyperkeratosis distinguished these 6 patients from previously studied individuals with DDD.
    [Show full text]
  • 해부학용어 Anatomical Terminology | Terminologia Anatomica
    해부학용어 Anatomical Terminology | Terminologia Anatomica 일반해부학|Generalanatomy 3 일반해부학 General anatomy Anatomia generalis 해부학 용어 일반용어 General terms Nomina generalia 위치와 방향용어 Terms for position and direction of Termini situm et directionem partium parts of body corporis indicantes 수직 Vertical Verticalis 수평 Horizontal Horizontalis 정중 Median Medianus 관상;이마 Coronal Coronalis 시상1 Sagittal Sagittalis 오른(쪽) Right Dexter 왼(쪽) Left Sinister 중간2 Intermediate Intermedius 안쪽 Medial Medialis 가쪽 Lateral Lateralis 앞 Anterior Anterior 뒤 Posterior Posterior 1배쪽;앞2아래3 Ventral Ventralis 1등쪽;뒤2위4 Dorsal Dorsalis 1이마2관상5 Frontal Frontalis 뒤통수6 Occipital Occipitalis 위 Superior Superior 아래 Inferior Inferior 1머리쪽2위쪽3뇌7 Cranial Cranialis 1꼬리쪽2뒤쪽8 Caudal Caudalis 1입쪽2앞쪽9 Rostral Rostralis 꼭대기쪽;끝쪽 Apical Apicalis 바닥(쪽)10 Basal Basalis 1바닥쪽2(뇌)바닥쪽 Basilar Basilaris 중간 Middle Medius 가로 Transverse Transversus;Transversalis 세로 Longitudinal Longitudinalis 1 방향을 가리키는 데 알맞지 않은 마루를 뺐음. 2 영어와 라틴어에서 medial과 lateral 사이에서 발음의 혼동을 피하기 위하여 씀. 3 2는 뇌에서 씀(배쪽말고는 쪽을 붙인 용어가 없음). 4 2는 뇌에서 씀(등쪽말고는 쪽을 붙인 용어가 없음). 5 이 용어는 방향을 가리키려고 쓰지 않음. 이마에 속하는 구조를 가리키거나 coronal (frontal) plane을 뜻하려고 씀. 6 이 용어는 방향을 가리키려고 쓰지 않음. 뒤통수 또는 뒤통수뼈와 관련된 구조를 가리키려고 씀. 7 동의어를 올려 함께 사용함. 8, 9 2는 뇌에서 씀. 10 오른(쪽)과 맞추었음. 4 해부학용어|Anatomicalterminology 축 Axial Axialis 바깥 External Externus 속 Internal Internus 속공간 Luminal Luminalis 얕은 Superficial Superficialis 깊은 Deep Profundus 몸쪽 Proximal Proximalis 먼쪽 Distal Distalis 중심;중추 Central Centralis 말초 Peripheral Periphericus;Peripheralis 노쪽;가쪽 Radial Radialis 자쪽;안쪽 Ulnar Ulnaris
    [Show full text]