450 Part 770—Interpretations

Total Page:16

File Type:pdf, Size:1020Kb

450 Part 770—Interpretations Pt. 770 15 CFR Ch. VII (1±1±98 Edition) (xii) Evidence of the reputation of the for- identity as a bearing. In this scenario, eign item including, if possible, information the machine or segment of machinery on maintenance, repair, performance, and containing the bearing is the item sub- other pertinent factors. ject to export control requirements. SUPPLEMENT NO. 2 TO PART 768ÐITEMS (3) An anti-friction bearing or bear- ELIGIBLE FOR EXPEDITED LICENSING ing system not incorporated in a seg- PROCEDURES [RESERVED] ment of a machine prior to shipment, but shipped as a component of a com- PART 770ÐINTERPRETATIONS plete unassembled (knocked-down) ma- chine, is considered a component of a Sec. machine. In this scenario, the complete 770.1 Introduction. machine is the item subject to export 770.2 Commodity interpretations. license requirements. 770.3 Interpretations related to exports of (b) Interpretation 2: Classification of technology and software to destinations ``parts'' of machinery, equipment, or other in Country Group D:1. itemsÐ(1) An assembled machine or unit 770.4 Interpretations related to chemical mixturesÐde minimis exceptions exam- of equipment is being exported. In in- ples. stances where one or more assembled machines or units of equipment are AUTHORITY: 50 U.S.C. app. 2401 et seq.; 50 being exported, the individual compo- U.S.C. 1701 et seq.; E.O. 12924, 3 CFR, 1994 Comp., p. 917; Notice of August 15, 1995 (60 FR nent parts that are physically incor- 42767, August 17, 1995). porated into the machine or equipment do not require a license. The license or SOURCE: 61 FR 12920, Mar. 25, 1996, unless otherwise noted. general exception under which the complete machine or unit of equipment § 770.1 Introduction. is exported will also cover its compo- In this part, references to the EAR nent parts, provided that the parts are are references to 15 CFR chapter VII, normal and usual components of the subchapter C. This part provides com- machine or equipment being exported, modity, technology, and software in- or that the physical incorporation is terpretations. These interpretations not used as a device to evade the re- clarify the scope of controls where such quirement for a license. scope is not readily apparent from the (2) Parts are exported as spares, re- Commerce Control List (CCL) (see Sup- placements, for resale, or for stock. In in- plement No. 1 to part 774 of the EAR) stances where parts are exported as and other provisions of the Export Ad- spares, replacements, for resale, or for ministration Regulations. stock, a license is required only if the appropriate entry for the part specifies § 770.2 Commodity interpretations. that a license is required for the in- (a) Interpretation 1: Anti-friction bear- tended destination. ing or bearing systems and specially de- (c) Interpretation 3: Wire or cable cut to signed parts. (1) Anti-friction bearings length. (1) Wire or cable may be in- or bearing systems shipped as spares or cluded as a component of a system or replacements are classified under Ex- piece of equipment, whether or not the port Control Classification Numbers wire or cable is cut to length and (ECCNs) 2A001, 2A002, 2A003, 2A004, whether or not it is fitted with connec- 2A005, and 2A006 (ball, roller, or needle- tors at one or both ends, so long as it roller bearings and parts). This applies is in normal quantity necessary to to separate shipments of anti-friction make the original installation of the bearings or bearing systems and anti- equipment and is necessary to its oper- friction bearings or bearing systems ation. shipped with machinery or equipment (2) Wire or cable exported as replace- for which they are intended to be used ment or spares, or for further manufac- as spares or replacement parts. ture is controlled under the applicable (2) An anti-friction bearing or bear- wire or cable ECCN only. This includes ing system physically incorporated in a wire or cable, whether or not cut to segment of a machine or in a complete length or fitted with connectors at one machine prior to shipment loses its or both ends. 450 VerDate 12<MAR>98 09:04 Mar 13, 1998 Jkt 179050 PO 00000 Frm 00444 Fmt 8010 Sfmt 8010 Y:\SGML\179050.TXT 179050-3 Bureau of Export Administration, Commerce § 770.2 (d) Interpretation 4: Telecommuni- Officer may require evidence that the cations equipment and systems. Control shipment is not scrap. Such evidence equipment for paging systems (broad- may include, but is not limited to, bills cast radio or selectively signalled re- of sale, orders and correspondence indi- ceiving systems) is defined as circuit cating whether the commodities are switching equipment in Category 5 of scrap or are being exported for use as the CCL. parts, accessories, or equipment. (e) Interpretation 5: Numerical control (g) Interpretation 7: Scrap arms, ammu- systemsÐ(1) Classification of ``Numerical nition, and implements of war. Arms, Control'' Units. ``Numerical control'' ammunition, and implements of war, units for machine tools, regardless of as defined in the U.S. Munitions List, their configurations or architectures, and are under the jurisdiction of the are controlled by their functional char- U.S. Department of State (22 CFR parts acteristics as described in ECCN 120 through 130), except for the follow- 2B001.a. ``Numerical control'' units in- ing, which are under the jurisdiction of clude computers with add-on ``motion the Department of Commerce: control boards''. A computer with add- (1) Cartridge and shell cases that on ``motion control boards'' for ma- have been rendered useless beyond the chine tools may be controlled under possibility of restoration to their origi- ECCN 2B001.a even when the computer nal identity by means of excessive alone without ``motion control boards'' heating, flame treatment, mangling, is not subject to licensing require- crushing, cutting, or by any other ments under Category 4 and the ``mo- method are ``scrap''. tion control boards'' are not controlled (2) Cartridge and shell cases that under ECCN 2B001.b. have been sold by the armed services as (2) Export documentation requirement. ``scrap'', whether or not they have been (i) When preparing a license applica- heated, flame-treated, mangled, tion for a numerical control system, crushed, cut, or reduced to scrap by the machine tool and the control unit any other method. are classified separately. If either the machine tool or the control unit re- (3) Other commodities that may have quires a license, then the entire unit been on the U.S. Munitions List are requires a license. If either a machine ``scrap'', and therefore under the juris- tool or a control unit is exported sepa- diction of the Department of Com- rately from the system, the exported merce, if they have been rendered use- component is classified on the license less beyond the possibility of restora- application without regard to the other tion to their original identity only by parts of a possible system. means of mangling, crushing, or cut- (ii) When preparing the Shipper's Ex- ting. When in doubt as to whether a port Declaration (SED), a system being commodity covered by the Munitions shipped complete (i.e., machine and List has been rendered useless, export- control unit), should be reported under ers should consult the Office of Defense the Schedule B number for each ma- Trade Controls, U.S. Department of chine. When either a control unit or a State, Washington, DC 20520, or the Ex- machine is shipped separately, it porter Counseling Division, Office of should be reported under the Schedule Exporter Services, Room 1099A, U.S. B number appropriate for the individ- Department of Commerce, Washington, ual item being exported. DC 20230, before reporting a shipment (f) Interpretation 6: Parts, accessories, as metal scrap. and equipment exported as scrap. Parts, (h) Interpretation 8: Military auto- accessories, or equipment that are motive vehicles and parts for such vehi- being shipped as scrap should be de- clesÐ(1) Military automotive vehicles. (i) scribed on the SED in sufficient detail For purposes of U.S. export controls, to be identified under the proper ECCN. military automotive vehicles ``possess- When commodities declared as parts, ing or built to current military speci- accessories, or equipment are shipped fications differing materially from nor- in bulk, or are otherwise not packaged, mal commercial specifications'' may packed, or sorted in accordance with include, but are not limited to, the fol- normal trade practices, the Customs lowing characteristics: 451 VerDate 12<MAR>98 09:04 Mar 13, 1998 Jkt 179050 PO 00000 Frm 00445 Fmt 8010 Sfmt 8010 Y:\SGML\179050.TXT 179050-3 § 770.2 15 CFR Ch. VII (1±1±98 Edition) (A) Special fittings for mounting ord- under general exception or submitting nance or military equipment; an application to BXA for a license. (B) Bullet-proof glass; (2) [Reserved] (C) Armor plate; (i) Interpretation 9: Aircraft, parts, ac- (D) Fungus preventive treatment; cessories and components. Aircraft, (E) Twenty-four volt electrical sys- parts, accessories, and components de- tems; fined in Categories VIII and IX of the (F) Shielded electrical system (elec- Munitions List are under the export li- tronic emission suppression); or censing authority of the U.S. Depart- (G) Puncture-proof or run-flat tires. ment of State (22 CFR parts 120 (ii) Automotive vehicles fall into two through 130). All other aircraft, and categories. parts, accessories and components (A) Military automotive vehicles on the therefor, are under the export licensing Munitions List, new and used. Auto- authority of the U.S. Department of motive vehicles in this category are Commerce. The following aircraft, primarily combat (fighting) vehicles, parts, accessories and components are with or without armor and/or arma- under the licensing authority of the ment, ``designed for specific fighting U.S.
Recommended publications
  • Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides
    Proceedings of the Iowa Academy of Science Volume 61 Annual Issue Article 26 1954 Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides B. R. Bluestein Coe College Albert Hybl Coe College Yoshimi Al Nishioka Coe College Let us know how access to this document benefits ouy Copyright ©1954 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Bluestein, B. R.; Hybl, Albert; and Nishioka, Yoshimi Al (1954) "Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides," Proceedings of the Iowa Academy of Science, 61(1), 225-232. Available at: https://scholarworks.uni.edu/pias/vol61/iss1/26 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Bluestein et al.: Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlor Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides By B. R. BLUESTEIN, ALBERT HYBL* AND YosHIMI AL NISHIOKA INTRODUCTION The reaction kinetics of the alcoholysis of substituted benzoyl chlorides was studied. The mechanism of the alcoholysis reaction, which is most generally accepted ( 1), shows that the overall re­ action should be second-order and that the reaction should be first-order with respect to the acid chloride and first-order with respect to the alcohol. This rate study was carried out using a large excess of alcohol as the solvent, thus obtaining pseudo-first order rate constants, first-order with respect to the acid chloride only.
    [Show full text]
  • Solvent-Free and Safe Process for the Quantitative Production of Phosgene from Triphosgene by Deactivated Imino-Based Catalysts
    Organic Process Research & Development 2010, 14, 1501–1505 Solvent-Free and Safe Process for the Quantitative Production of Phosgene from Triphosgene by Deactivated Imino-Based Catalysts Heiner Eckert* and Johann Auerweck Department of Chemistry, Technische UniVersitaet Muenchen, Lichtenbergstr. 4, Garching 85747, Germany Abstract: Scheme 1. Decomposition of triphosgene (1a) into carbon tetrachloride, carbon dioxide, and 1 equiv of phosgene (3) Phosgene is quantitatively formed from solid triphosgene in a solvent-free and safe process without any reaction heat, catalyzed by planar N-heterocycles with deactivated imino functions. The rate of phosgene generation is adjustable to the rate of phosgene consumption in the subsequent phosgenation reaction by thermal control, catalyst concentration, and in some cases, specific proper- ties of selected metal phthalocyanines. A thermal runaway reaction of this process is impossible. phosgene in most reactions, yet several phosgenation reactions are advantageously carried out with phosgene, that is, when excessive triphosgene is difficult to remove during the reaction Introduction workup because of its high boiling point of over 200 °C. Its Phosgene (3) is a highly useful and versatile chemical in excess can be destroyed by hydrolysis, when phosgenation performing syntheses.1a Although consisting of only four atoms, products are not sensitive to moisture as are carbonates, four important transformations can be carried out with it in carbamates, ureas, diarylketones, alkylhalides, cyanides, and organic
    [Show full text]
  • Efficient Esterification of Oxidized L-Glutathione and Other Small Peptides
    Molecules 2015, 20, 10487-10495; doi:10.3390/molecules200610487 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Efficient Esterification of Oxidized L-Glutathione and Other Small Peptides Emily R. Vogel, William Jackson and Douglas S. Masterson * Department of Chemistry and Biochemistry, the University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA; E-Mails: [email protected] (E.R.V.); [email protected] (W.J.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-601-266-4714. Academic Editor: Derek J. McPhee Received: 17 May 2015 / Accepted: 4 June 2015 / Published: 8 June 2015 Abstract: Oxidized L-glutathione was esterified to the tetra methyl ester using thionyl chloride in methanol solvent. Other alcohols were tested and the reaction progress was monitored via ESI-MS. This procedure proved to be compatible with other small peptides not containing serine and cysteine residues. In contrast to previously reported methods this procedure provided convenient access to esterified peptides requiring no purification, extended reaction times, or complicated reaction setups. Keywords: esterification; peptide esterification; amino acids; carboxylic acids; esters 1. Introduction The design and synthesis of novel glutathione analogues are studied extensively for their pharmacological properties in the treatment of a wide range of diseases [1–3]. Reduced glutathione (GSH), -L-glutamyl-L-cysteinyl-glycine, is prone to reactivity at the sulfhydryl, terminal amino group, and both carbonyls. Thus, the synthesis of GSH analogues are a synthetic challenge to chemists, and the clever manipulation of protecting groups are needed to prevent unwanted reactions.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • 9-2909-00045/02001 Effective Date: 10/16/2014 Expiration Date: 10/15/2019
    Facility DEC ID: 9290900045 PERMIT Under the Environmental Conservation Law (ECL) IDENTIFICATION INFORMATION Permit Type: Air State Facility Permit ID: 9-2909-00045/02001 Effective Date: 10/16/2014 Expiration Date: 10/15/2019 Permit Issued To:TWIN LAKE CHEMICAL INC 520 MILL ST PO BOX 411 LOCKPORT, NY 14094-0411 Contact: JAMES D HODAN TWIN LAKE CHEMICAL INC PO BOX 411 LOCKPORT, NY 14095 (716) 433-3824 Facility: TWIN LAKE CHEMICAL INC 520 MILL ST LOCKPORT, NY 14094 Contact: WILLIAM CASWELL TWIN LAKE CHEMICAL INC 520 MILL ST LOCKPORT, NY 14094-1712 (716) 433-3824 Description: This Air State Facility permit incorporates monitoring conditions for Twin Lake Chemical located in Lockport New York. The facility is a manufacturer of various organic acid chlorides used as intermediaries in the production of other compounds and encompasses two main production buildings and 8 reactors. The primary products produced are trimellitic trichloride, trimellitic Anhydride Monoacid chloride,isophthaloyl chloride, orthophthaloyl chloride, terephthaloyl chloride, and phosphorous pentachloride (2-200 gallon nickel reactors). Phosgene and thionyl chloride are used as chlorinating agents. The phosgene is purchased in 1 ton containers from Vandemark Chemical located next to the facility. Raw materials are added to the batch reactors along with a chlorinating agent and a catalyst. Prior to opening the reactor for chemical addition, the reactor is put under vacuum to remove gases. During the reaction process, the reactor is under slight pressure. Reactor temperatures are monitored. After the reaction is completed, the material is transferred to a distillation unit to refine and separate the product. Air strippers remove chlorinated hydrocarbons from wastewater prior to discharge to Lockport WWTP.
    [Show full text]
  • Pacs by Chemical Name (Mg/M3) (Pdf)
    Table 4: Protective Action Criteria (PAC) Rev 25 based on applicable 60-minute AEGLs, ERPGs, or TEELs. Values are presented in mg/m3. August 2009 Table 4 is an alphabetical listing of the chemicals in the PAC data set. It provides Chemical Abstract Service Registry Numbers (CASRNs)1, PAC values, and technical information on the source of the PAC values. Table 4 presents all values for TEEL-0, PAC-1, PAC-2, and PAC-3 in mg/m3. The conversion of ppm to mg/m3 is calculated assuming 25 ºC and 760 mm Hg. The columns presented in Table 4 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical Name The chemical name given to the PAC Development Team. CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no adverse health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Source of PACs: Technical comments provided by the PAC development team that TEEL-0, PAC-1, indicate the source of the data used to derive PAC values. Future efforts PAC-2, PAC-3 are directed at reviewing, revising, and enhancing this information.
    [Show full text]
  • Atmospheric Fate of a Series of Methyl Saturated Alcohols
    https://doi.org/10.5194/acp-2019-662 Preprint. Discussion started: 9 August 2019 c Author(s) 2019. CC BY 4.0 License. 1 Atmospheric fate of a series of Methyl Saturated Alcohols 2 (MSA): Kinetic and Mechanistic study 3 Inmaculada Colmenar1,2, Pilar Martin1,2, Beatriz Cabañas1,2, Sagrario Salgado1,2, Araceli 4 Tapia1,2, Inmaculada Aranda1,2 5 1Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías 6 Químicas, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain 7 2Universidad de Castilla La Mancha, Instituto de Combustión y Contaminación Atmosférica (ICCA), Camino 8 Moledores S/N, 13071 Ciudad Real, Spain 9 Correspondence to: Pilar Martín ([email protected]) 10 Abstract. The atmospheric fate of a series of Methyl Saturated Alcohols (MSA) has been evaluated through the 11 kinetic and reaction product studies with the main atmospheric oxidants. Rate coefficients (in cm3 molecule-1 s-1 12 unit) measured at 298K and atmospheric pressure ( 740 Torr) were as follows: (3.71 ± 0.53) × 10-10, (1.91 ± -11 -15 13 0.65) × 10 and (2.92 ± 1.38) × 10 for reaction of E-4-methyl-cyclohexanol with Cl, OH and NO3, respectively. 14 (2.70 ± 0.55) × 10-10 and (5.57 ± 0.66) × 10-12 for reaction of 3,3-dimethyl-1-butanol with Cl and OH radical 15 respectively and (1.21 ± 0.37) × 10-10 and (10.51 ± 0.81) × 10-12 for reaction of 3,3-dimethyl-2-butanol with Cl 16 and OH radical respectively. The main detected products were 4-methylcyclohexanone, 3,3-dimethylbutanal and 17 3,3-dimethyl-2-butanone for the reactions of E-4-methyl-cyclohexanol, 3,3-dimethyl-1-butanol and 3,3-dimethyl- 18 2-butanol respectively with the three oxidants.
    [Show full text]
  • An Efficient, Heterogeneous and Green Catalyst for Organic Synthesis
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(2):991-1015 ISSN : 0975-7384 Review Article CODEN(USA) : JCPRC5 Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis Navjeet Kaur and Dharma Kishore Department of Chemistry, Banasthali University, Banasthali (Rajasthan), India ______________________________________________________________________________ ABSTRACT Reactions of organic molecules on Montmorillonite clay mineral have been investigated from various aspects. These include catalytic reactions for organic synthesis, chemical evolution, the mechanism of humus-formation, and environmental problems. Catalysis by clay minerals has attracted much interest recently, and many reports including the catalysis by synthetic or modified clays have been published. In this review, we will limit the review to organic reactions using Montmorillonite clay as catalyst. Keywords: Montmorillonite, catalysis, clay, organic synthesis, green chemistry. ______________________________________________________________________________ INTRODUCTION One of the major current challenges before chemists is to develop synthetic methods that are less polluting, i.e., to design clean or 'green' chemical transformations. The chemical manufacturing processes should be such that they do not cause permanent damage to the environment or disturb the ecological balance. Ways to minimize the consumption of energy and raw materials used in synthesis must be devised so that optimal value of resources could be realized. Thereby environmentally benign products are obtained at affordable costs. Such a concept, though not new, has received enormous attention in recent times. The desire to make chemical manufacturing environmental friendly is not a new one. Such awareness was there even among the nineteenth century chemists, industrialists and lawmakers. The problem has become more acute in recent times and has received wider attention because of our better understanding of the causes of environmental degradation.
    [Show full text]
  • Rearrangement of Allylic Alcohols Herbert Barbehenn
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 1-1-1971 Rearrangement of allylic alcohols Herbert Barbehenn Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Barbehenn, Herbert, "Rearrangement of allylic alcohols" (1971). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. REARRANGEMENT OF ALLYLIC ALCOHOLS HERBERT S. BARBEHENN JANUARY, 1971 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE APPROVED: Dr. Jerry Adduci Project Adviser Department Head Library Rochester Institute of Technology Rochester, New York To Rath, my wife - - - for the many lonely nights, for the many unfinished chores and for being herself. Acknowledgements Grateful appreciation is tendered to the many faculty members with whom it has been my pleasure to be associated with during the past eleven years at Rochester Institute of Technology. Special thanks are expressed to Dr. Jerry Adduci for his guidance and patience in seeing this endeavor to its conclusion. While it may have taken a little longer than the norm, much of the credit for this thesis must be ascribed to his dedication to complete and conclusive research. I also wish to thank Dr. Earl Krakower for the many nuclear magnetic resonance spectra he so graciously completed in the course of elucidating the many structures formed and to Dr.
    [Show full text]
  • Halogenation Reagents
    Halogenation Reagents Halogenation is a basic and fundamental transformation in organic chemistry, and halogenated compounds are of extreme importance as building blocks in organic synthesis. The development of modern coupling reactions, such as the [P2140] Suzuki-Miyaura and Mizoroki-Heck reactions, have greatly increased the demand for halogenated compounds as starting materials. P2140 (2.3 eq.) On the other hand, introduction of fluorine into a certain position of bioactive compound such as a pharmaceutical and an agricultural chemical may remarkably reduce the toxicity of the compound, or improve the efficiency of medicine. This is due to the structurally mimic and blocking effect characterized by fluorine. P2140 (3 eq.) In response to this situation, a number of novel halogenation reagents have been developed. 4-tert-Butyl-2,6-dimethylphenylsulfur trifluoride (FLUOLEAD™) [B3664] is introduced as below: B3664 is a novel nucleophilic 1-Fluoro-3,3-dimethyl-1,2-benziodoxole [F0957] is a hypervalent fluorinating agent which was first reported by Umemoto et al.1) iodine derivative developed by Stuart et al.3) F0957 is stable to air Differing from other existing fluorinating agents, such as DAST, and moisture and used as an electrophilic fluorinating reagent for B3664 is a crystalline solid with high thermal stability and less a α-monofluorination of β-ketoesters in the presence of fuming character, which makes it easier to handle. B3664 triethylamine trihydrofluoride. fluorinates a hydroxyl or carbonyl group to afford the corresponding fluorinated compounds in good yields.1) F I O [F0957] O O Ph OEt F0957(2eq.) F O O Et3N-3HF(2.7eq.) [B3664] Ph OEt CH2Cl2 O O 40oC,24h Ph OEt F F Dibromoisocyanuric acid (DBI) [D3753] which was first reported by Gottardi, is a mild and highly effective brominating agent,4a,b,c) and has superior brominating ability when compared with N-bromosuccinimide (NBS), which is frequently used in organic IF5-Pyridine-HF (Hara Reagent) [P2140] is also a novel synthesis.
    [Show full text]
  • 318 the Chemistry of 3-Nitrochromenes
    318 T HE CHEMISTRY OF 3 - NITROCHROMENES DOI: http://dx.medra.org/ 10.17374/targets.2019.22.318 Robby Vroemans , Wim Dehaen* Molecular Design and Synthesis, Depa rtment of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (e - mail : [email protected] ) Abstract. A large variety of natural products and medicinal drugs have chromene and chromane core s incorporated in their structures . Because of their high and versatile reactivity , and simple synthesis , 3 - nitrochromenes are regarded as an easily available and highly functional constituent for the preparation of chromene and chromane derivatives . In the present review , t he synthesis of the 3 - nitr ochromene scaffold is briefly discussed . The multifaceted reactivity of 3 - nitrochromenes is highlighted and divided in to different subject s in which emphasis is mainly placed on recent advances in literature from 2013 up until now . Contents 1. Introduction 2. Synthesis of 3 - nitrochromenes 3. Reactivity of 3 - n itrochromenes 3 .1. Oxidations 3 .2. Reductions 3 .3. Conjugate additions 3.4. Cycloaddition reactions 4. Conclusion s Acknowledgement References 1. Introduction Chromenes (2 H - benzo[ b ]pyrans) have been of considerable interest for a long period of time and remain omnipresent in various fields such as medicinal chemistry and natural products . 1 - 4 Characterization of natural products proved that chromenes are common patterns in many biological systems . 3 Some important examples of naturally occurring chromenes and chromanes are α - tocopherol (one out of eight compounds featuring vitamin E activity) , 5 - 8 tetrahydrocannabinol (THC) , 9 - 12 a rahypin - 5, 13,14 c alanone 15 and s eselin 16 (Figure 1).
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 14-Feb-2020 Revision Number 2 1. Identification Product Name 3,3-Dimethyl-2-butanol Cat No. : 43725 CAS-No 464-07-3 Synonyms Pinacolyl Alcohol.; Tert-Butyl Methyl Carbinol Recommended Use Laboratory chemicals. Uses advised against Food, drug, pesticide or biocidal product use. Details of the supplier of the safety data sheet Company Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Emergency Telephone Number During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable liquids Category 3 Label Elements Signal Word Warning Hazard Statements Flammable liquid and vapor ______________________________________________________________________________________________ Page 1 / 7 3,3-Dimethyl-2-butanol Revision Date 14-Feb-2020 ______________________________________________________________________________________________ Precautionary Statements Prevention Keep away from heat/sparks/open flames/hot surfaces. - No smoking Keep container tightly closed Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/lighting/equipment Use only non-sparking tools Take precautionary measures against static discharge Wear protective gloves/protective clothing/eye protection/face protection Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower Fire In case of fire: Use CO2, dry chemical, or foam for extinction Storage Store in a well-ventilated place. Keep cool Disposal Dispose of contents/container to an approved waste disposal plant Hazards not otherwise classified (HNOC) None identified 3.
    [Show full text]