Towards Zero Harm

Total Page:16

File Type:pdf, Size:1020Kb

Towards Zero Harm TOWARDS ZERO HARM A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW AUGUST 2020 2 TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW i CONTENTS ii ACRONYMS iv FOREWORD FROM THE CHAIR v PREFACE vii KEY MESSAGES 1 SETTING THE SCENE 2 Chapter I Global Tailings Review at a Glance: History and Overview | B. Oberle, A. Mihaylova, A. Hacket 14 Chapter II Mine Tailings Facilities: Overview and Industry Trends | E. Baker, M. Davies, A. Fourie, G. Mudd, K. Thygesen 25 THE SOCIAL DIMENSION 26 Chapter III Social Performance and Safe Tailings Management: A Critical Connection | S. Joyce, D. Kemp 37 Chapter IV Lessons for Mining from International Disaster Research | D. Kemp 47 MANAGEMENT OF TAILINGS: PAST, PRESENT AND FUTURE 48 Chapter V Mine Tailings – A Systems Approach | A. Kupper, D. van Zyl, J. Thompson 64 Chapter VI The role of technology and innovation in improving tailings management | D. Williams 84 Chapter VII Lessons from Tailings Facility Data Disclosures | D. Franks, M. Stringer, E. Baker, R. Valenta, et al 109 Chapter VIII Closure and Reclamation | G. McKenna, D. van Zyl 126 Chapter IX Addressing Legacy Sites | K. Nash 141 BUILDING ORGANISATIONAL CAPACITY 142 Chapter X Addressing the organisational weaknesses that contribute to disaster | A. Hopkins 150 Chapter XI Creating and Retaining Knowledge and Expertise | R. Evans, M. Davies 162 THE GOVERNANCE DIMENSION 163 Chapter XII The Role of the State | M. Squillace 172 Chapter XIII Comparative Analysis of Tailings-related Legislation in Key Mining Jurisdictions | White&Case LLP 186 Chapter XIV Summary of Existing Performance Standards for Tailings Management | C. Dumaresq 206 Chapter XV Insurability of Tailings Related Risk | G. Becker 215 RELATED INITIATIVES 216 Chapter XVI Investor Mining and Tailings Safety Initiative | S. Barrie, E. Baker, J. Howchin, A. Matthews 224 Chapter XVII United Nations Environment Assembly Resolution on Mineral Resource Governance | E. Tonda, D. Franks, A. Kariuki 231 Chapter XVIII Global Research Consortium on Tailings | D. Franks, A. Littleboy, D. Williams Citation: 238 PATHWAYS TO IMPLEMENTATION Oberle, B., Brereton, D., Mihaylova, A. (eds.) (2020) Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review. London: Global Tailings Review. https://globaltailingsreview.org/. 239 Chapter XIX Establishing an Independent Entity | B. Oberle, P. Bateman, D. Kemp ii TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW iii ACRONYMS AA Anglo American Technical Standard IRP International Resource Panel AG Advisory Group (for the Global Tailings Review) ISO International Organisation for Standardisation ALARP As low as reasonably practical ITRB Independent Tailings Review Board ANCOLD Australian National Committee on Large Dams IUCN International Union for Conservation of Nature APEC Asia-Pacific Economic Cooperation LDI Landform Design Institute APELL Awareness and Preparedness for Emergencies at Local Level m3 cubic metres APRA Australian Prudential Regulation Authority MAC Mining Association of Canada AusIMM Australian Institute of Mining and Metallurgy MEM Ministry of Energy and Mines (British Columbia) BAT Best available technologies MEND Mine Environment Neutral Drainage Program BAP Best available/applicable practices MMSD Mining, Minerals and Sustainable Development BC,CIM British Columbia, Chief Inspector of Mines NGO Non-Government Organisation BLM Bureau of Land Management (US) NOAMI National Orphaned/Abandoned Mines Initiative (Canada) BRA Brazilian Ordinance 70.389/17 NPV Net present value CapEx Capital Expenditure OMS Operation, Maintenance, and Surveillance CDA Canadian Dam Association OpEx Operational Expenditure CEO Chief Executive Officer PAR Pressure and Release Model CoE Church of England PBRISD Performance-Based, Risk-Informed Safe Design COI Community of Interest PMU Project Management Unit CRO Chief Risk Officer PRI Principles for Sustainable Investment CTMC Consortium of Tailings Management Consultants PSI Principles for Sustainable Insurance DBM Design Basis Memorandum QA Quality Assurance EP Expert Panel QC Quality Control ESG environmental, social, and governance RMI Responsible Mining Initiative ESMS Environmental and Social Management System RTFE Responsible Tailings Facility Engineer EU European Union SANS South African National Standards FERC Federal Energy Regulatory Commission (US) SDGs Sustainable Development Goals FMEA Failure Mode and Effects Analysis SMART specific, measurable, attainable, relevant and time-bound FoS Factor of Safety SMI Sustainable Minerals Institute (University of Queensland) FPIC Free, prior and informed consent SMRCA Surface Mining Control and Reclamation Act (U.S.) GARD Guide Global Acid Rock Drainage Guide TSF Tailings Storage Facility GIZ German Corporation for International Cooperation TSM Towards Sustainable Mining GTR Global Tailings Review UN United Nations HDTT High Density Thickened Tailings UNDRR United Nations Office of Disaster Risk Reduction HRIA Human Rights Impact Assessment UNEA United Nations Environment Assembly HSE Health and Safety Executive UNEP United Nations Environment Programme IBRAM Brazilian Mining Association UNGP UN Guiding Principles on Business and Human Rights ICMM International Council on Mining and Metals USEPA United States Environment Protection Authority ICOLD International Commission on Large Dams WISE World Information Service on Energy IFC International Finance Corporation WMTF World Mine Tailings Failures IGF Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development USGS United States Geological Survey IIED International Institute for Environment and Development VET Vocational and Educational Training IM4DC International Mining for Development Centre VSP Verification Service Provider INAP International Network for Acid Prevention WBCSD World Business Council for Sustainable Development iv TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW v FOREWORD FROM THE CHAIR PREFACE I would like to thank the whole Global Tailings Review team: This collection of individually authored papers (‘chapters’) has been prepared to accompany the release of the Global Industry Standard on Tailings Management the Expert Panel, the Advisory Group, the Co-Conveners (the Standard). The volume performs two main functions: and all authors and co-authors who have generously 1. It provides context to the Standard by informing readers about the reasons why contributed their time and expertise to this volume. I trust the Global Tailings Review (GTR) was initiated, the process that was followed, that the papers contained herein add value to the ongoing and the considerations that guided the development of the Standard. public debate on safe management of tailings facilities and 2. It goes beyond the Standard to review a wide range of issues related to the safe management of tailings facilities, for consideration by the different further reinforce the need for continued action to ensure actors involved – including governments, investors, insurers, international that tragedies like the one in Brumadinho do not continue organisations, educational institutions, and industry professionals. to happen. All members of the Expert Panel, including the Chair, have contributed at least one chapter to the volume, either as sole or co-authors. The compilation also includes invited contributions from other experienced professionals and researchers Particular and special thanks to the co-editors of this working in the area. Several of these contributors were involved in the development volume; Emeritus Professor David Brereton of The of the Standard as members of the Multi-Stakeholder Advisory Group; some contributed in their capacity as representatives of one of the co-convening University of Queensland, for his contributions, ongoing bodies; and others participated on an individual basis. As befits the breadth of support and diligence; and to the GTR Project Manager, the Standard, a broad cross-section of professional and academic disciplines is represented, including engineering, geology, environmental science, social Antonia Mihaylova, who worked tirelessly to bring the sciences, risk management, law, public policy and finance. volume to fruition. The chapters are organised into six sections. Each section contains knowledge, learnings and insights that are relevant to advancing the ultimate goal of the Standard, which is to achieve zero harm to people and the environment, with zero tolerance for human fatalities. Section One comprises two context-setting chapters. The first chapter, which was authored by the Chair and the Secretariat staff, provides a brief history and Dr. Bruno Oberle overview of the GTR. The second provides an overview of key research findings Chair of the Global Tailings Review and organisational learnings on the frequency, type, location and impact of tailings facility failures and the factors that contribute to these failings. Section Two focuses on the social performance and human rights issues involved in designing and operating tailings facilities and managing the consequences of facility failures. Social performance is a cross-cutting theme that links to most of the topics covered
Recommended publications
  • Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy
    sustainability Article Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy Neha Mehta 1,2, Giovanna Antonella Dino 1,*, Iride Passarella 3, Franco Ajmone-Marsan 4, Piergiorgio Rossetti 1 and Domenico Antonio De Luca 1 1 Department of Earth Sciences, University of Turin, 10125 Torino, Italy; [email protected] (N.M.); [email protected] (P.R.); [email protected] (D.A.D.L.) 2 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH, UK 3 Horizon s.r.l., 10095 Grugliasco (TO), Italy; [email protected] 4 Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco (TO), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-6705150 Received: 21 January 2020; Accepted: 17 March 2020; Published: 21 March 2020 Abstract: Supply of resources, a growing population, and environmental pollution are some of the main challenges facing the contemporary world. The rapid development of mining activities has produced huge amounts of waste. This waste, found in abandoned mine sites, provides the potential opportunity of extracting raw material. The current study, therefore, focuses on testing the validation of a shared methodology to recover extractive waste from abandoned mines, and applies this methodology to a case study in Gorno, northwest Italy. The methods focused on: (1) analyzing the impact of tailings and fine fraction of waste rock (<2 mm) on plants (Cress - Lepidium Sativum) to assess usability of both as soil additive, and (2) recovering raw materials from tailings and coarse fraction (>2 mm) of waste rock, by means of dressing methods like wet shaking table and froth flotation.
    [Show full text]
  • Participating in Food Waste Transitions: Exploring Surplus Food Redistribution in Singapore Through the Ecologies of Participation Framework
    Journal of Environmental Policy & Planning ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjoe20 Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework Monika Rut , Anna R. Davies & Huiying Ng To cite this article: Monika Rut , Anna R. Davies & Huiying Ng (2020): Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework, Journal of Environmental Policy & Planning, DOI: 10.1080/1523908X.2020.1792859 To link to this article: https://doi.org/10.1080/1523908X.2020.1792859 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 16 Jul 2020. Submit your article to this journal Article views: 79 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cjoe20 JOURNAL OF ENVIRONMENTAL POLICY & PLANNING https://doi.org/10.1080/1523908X.2020.1792859 Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework Monika Rut a, Anna R. Davies a and Huiying Ng b aDepartment of Geography, Museum Building, Trinity College, Dublin, Ireland; bIndependent Scholar, Singapore ABSTRACT KEYWORDS Food waste is a global societal meta-challenge requiring a sustainability transition Food waste; transitions; involving everyone, including publics. However, to date, much transitions research has participation; ecologies of been silent on the role of public participation and overly narrow in its geographical participation; Singapore reach. In response, this paper examines whether the ecologies of participation (EOP) approach provides a conceptual framing for understanding the role of publics within food waste transitions in Singapore.
    [Show full text]
  • Profits from the Past
    Reprocessing and tailings reduction.qxp_proof 29/04/2020 09:50 Page 1 REPROCESSING AND TAILINGS REDUCTION In Colombia, AuVert's technology is being combined with CDE's experience in dewatering Profits from the past and tailings management to extract the remaining precious metals existing in the ground, while removing up to 93% of residual mercury which has to date prevented this land from being used by the local population reasons why mining companies may be cautious about using tailings as backfill material or relocating current day ‘waste’ to an inaccessible area of the mine, according to Gerritsen. “As technology improves, the opportunity to recover more of the metals/minerals increases,” he said. “There are elements where that may not be the case – coal ash, for example, cannot be reprocessed but can be used to produce cement. While tailings dam liabilities and falling water resources are There are certainly opportunities with gold, affecting the ability of miners to start new mines, or expand copper and even coal, for instance.” The strategies companies ultimately pursue for existing ones, these issues are strengthening the case for these ‘waste streams’ depend on the technology reprocessing and retreating ‘waste’ sites or streams. Dan available and the safety of the facilities, Gerritsen Gleeson explores an increasingly diverse market focused on remarked. revenue generation and risk reduction “For instance, it may not be economically viable to reprocess the material currently in a ith improved transparency around recycling and thickening, or SART, plant from BQE tailings storage facility and, therefore, the owner tailings dams and waste stockpiles now Water will only bolster cash reserves through the may decide to close it or put it into a non-active Wpart and parcel of being a responsible recovery of a high-grade saleable copper sulphide state,” he said.
    [Show full text]
  • Procter & Gamble “Zero Manufacturing Waste to Landfill”
    Procter & Gamble “Zero Manufacturing Waste to Landfill” Background One of P&G’s 2020 goals for Operations is that <0.5% of Manufacturing Waste is disposed (to either landfill or incineration without energy recovery) versus a 2010 baseline and our corporate long term vision is to have zero consumer or manufacturing waste go to landfills. This goal and vision will drive an increase in the diversion of P&G waste materials away from disposal to reuse, recycling and recovery solutions and it will drive more sites to achieve zero manufacturing waste to landfill status. All P&G sites will adopt the definition of zero manufacturing waste to landfill below and will follow the subsequent guidelines on measurement, reporting and communications to ensure a consistent approach to zero manufacturing waste to landfill across the company. Definition of Zero Manufacturing Waste to Landfill “Zero manufacturing waste to Landfill means zero manufacturing waste is disposed directly to landfill or to Incineration without energy recovery by the site, except where local legal requirements specify that regulated wastes must be disposed in a landfill” Beneficial Reuse Beneficial Reuse simply includes P&G waste sent for Reuse, Recycling or Incineration with Energy Recovery. Incineration without Energy Recovery and Landfill will count as Disposal. Incineration From an environmental perspective Incineration without Energy Recovery is considered to have few benefits over landfill and much less benefit than Incineration with Energy Recovery. This position is reflected in the globally accepted Waste Hierarchy. Therefore sending waste to incineration without energy recovery will not count as diverting the material from landfill.
    [Show full text]
  • In a Best-Case Recycling Scenario Plastic Packaging Production and Plastic Leakage Still Double by 2050
    In a best-case recycling scenario plastic packaging production and plastic leakage still double by 2050 Here's why reducing plastic production at the source is a real solution to plastic pollution that opens up economic opportunities for all. Recycling, upcycling and waste-to-energy are means to immediately deal with the amounts of plastic waste that already pile up – they are mopping technologies, but they are not reducing the inflow of plastics. Fundamentally rethinking product delivery, service systems and plastic packaging leads to reducing waste at its source, striving for a circular economy with (social) businesses that skip plastics in the first place and might change the way we consume products forever, for the better. Bending the curve of plastic production to overcome leakage “Recycling is better than disposal, reuse is better than recycling, but reduction is best of all. It is easier to deal with a flood by turning it off at its source than by inventing better mopping technologies. “ – Donella Meadows, 1989 1 1 Wasting the World With a Plague of Plastic Debris Donella H. Meadows, Donella H. Meadows is an adjunct professor of environmental and policy studies at Dartmouth College. Los Angeles Times, June 4th, 1989. Online: http://articles.latimes.com/1989-06-04/opinion/op-2370_1_plastics-non-biodegradable-polyvinyl-chloride; Also published in: MEADOWS, D. H. 2008. Thinking in Systems – A Primer, Vermont, Chelsea Green Publishing. Plastic packaging production is predicted to quadruple by 2050 and the plastics peak only to be hit by 2100. Predictions clearly call for reduction of plastics at the beginning of the value chain by skipping single-use plastics in the first place.
    [Show full text]
  • Task 4. Mine Tailings Reuse Proposed and Developed by Freeport-Mcmoran
    2021 Task 4. Mine Tailings Reuse Proposed and Developed by Freeport-McMoRan Background Mine tailings are produced during the recovery of metals from their ores. For copper mines, tailings are created when the copper ore is finely ground to liberate the copper minerals from the host rock. The copper minerals are recovered, and the finely ground host rock is sent to tailing repositories as a slurry where they consolidate into a large earthen dam. The purpose of the earthen dam is for storage of the tailings. Copper mines can produce from 5,000 to over 100,000 tons of tailings per day, with particle sizes P80 of 150 microns. The material in the tailings repositories is typically never reused and the repositories become permanent landforms. These landforms may potentially be reclaimed by clean-up operations such as covering with topsoil and planting with natural vegetation, but such reclamation ignores and underutilizes the valuable resource of finely ground rock produced during the copper extraction process. Mine tailings landforms must be continually monitored for the presence of sulfates, acid, or trace metals in the tailings that may warrant draindown treatments. Alternatively, reusing the mine tailings may reduce or eliminate the need for tailing repository clean up and monitoring. Many companies have researched transforming mine tailings into useful products. Potential products include concrete, other building materials, glass, fiberglass, tiles, frac sand, soil amendments, erosion control media, etc. Reusing the tailings material can potentially provide several significant benefits to the environment including reduced dust emissions, reduced risk of tailing dam failure, and reduced risk of dissolved metals in tailings water leaching into neighboring areas.
    [Show full text]
  • Zero Waste Plan a ROADMAP to REDUCE, RECAPTURE, RECYCLE and REINVENT SFO’S MATERIAL SYSTEM Executive Summary
    Zero Waste Plan A ROADMAP TO REDUCE, RECAPTURE, RECYCLE AND REINVENT SFO’S MATERIAL SYSTEM Executive Summary Our Goal Our Plan San Francisco International Airport (SFO) has set This document lays out SFO Airport’s Zero Waste a Strategic Plan goal of becoming the world’s Plan, a suite of measures to achieve zero waste by first ‘zero waste’ airport by 2021. Zero waste, as 2021 and work towards becoming a “Closed-Loop defined by the Zero Waste Alliance, is to divert at Circular Campus” in the years that follow. Pivoting least 90% of waste from landfills and incinerators from a landfill-centric system will require the airport’s using methods like recycling and composting. dynamic group of materials managers to track new metrics, test new technologies and behavior-focused Our Status campaigns, and team up with new stakeholders. In Fiscal Year 2015-16, SFO Airport generated 12,200 tons, or 26,888,800 pounds, of solid waste. A recent study confirmed that more than 95% of this waste was compostable or recyclable, so for SFO, zero waste is already within reach. By implementing this plan, SFO can become a leader in addressing some of the largest challenges of our time – climate change, human health risks, ecosystem destruction, and more. Table of Contents Our Goal . 4 What is Zero Waste? . 5 Why Zero? . 5 Plan Development . 6 Scope of Materials . 6 Baseline Data on SFO’s Current Materials System . 7 SFO’s Six-Step Zero Waste Plan . 19 1. Metrics Management . 21 2. Material Recovery Area Upgrades . 23 3. Maximizing People Power .
    [Show full text]
  • Steps to Being a Zero Waste Consumer If You Need to Buy It
    STEPS TO BEING A ZERO WASTE CONSUMER Before you acquire a product, ask yourself these questions: CAN I GO WITHOUT IT? In the past 50 years, Zero waste starts with consuming less! The first step to reducing humans have consumed is letting go of the consumption mentality. Before you take or buy, more resources than in all think critically whether you really need that thing or could you previous history. repurpose something you already have. Source: US EPA CAN I BORROW IT? 26 billion pounds of Buying less means decreasing demand for creating new products so less textiles end up in will end up in the landfill. Ask yourself - how often will you use it? Borrowing isn’t just for books from the library, you can rent anything from landfills each year. formal wear to sports equipment if you dig a little deeper. Source: US EPA ZERO WASTE TIP: Did you know Solana Center has a tool library open to all San Diego residents? CAN I GET IT USED? For every one can of Buying used eliminates the upstream impacts. It’s not just clothes you can get used, you can also buy furniture, sporting garbage we put at the curb, 87 goods, books, and more. You can find these in brick and cans worth of waste have already mortar second hand thrift stores or online from handy sites been made from the extraction such as Nextdoor, OfferUp, Facebook Marketplace, & ThredUp. and manufacturing processes. Source: World Resource Institute (WRI) IF YOU NEED TO BUY IT... CAN I GET A REUSABLE VERSION? There are many types of reusable items - from water bottles, to The average American uses bags, to soap dispensers.
    [Show full text]
  • A Review of Sustainability Frameworks
    A review of: Materials Sustainability Frameworks An Oregon perspective A report from the Materials Management Program February 2019 By: Minal Mistry Oregon Department of Environmental Quality Materials Management Program Materials management takes a holistic view of environmental impacts across the full life cycle of materials, as well as actions that can be taken to reduce those impacts. It includes resource extraction and use of recovered materials, the design and production of materials, their use, and end-of-life management, including solid waste disposal and recovery. Acknowledgements We sincerely acknowledge the considered review, comments, and guidance from colleagues at: Oregon Department of Environmental Quality – David Allaway and Babe O’Sullivan Washington Department of Ecology – Janine Bogar StopWaste.org – Miya Kitahara and Justin Lehrer Contents Synopsis .................................................................................................................................... 5 Overview ...................................................................................................................................11 Frameworks for Material Sustainability ...................................................................................... 13 Objectives ................................................................................................................................. 14 Life Cycles of Materials ............................................................................................................
    [Show full text]
  • How Circular Economy and Industrial Ecology Concepts Are Intertwined?
    How circular economy and industrial ecology concepts are intertwined? A bibliometric and text mining analysis Michael Saidani, Bernard Yannou, Yann Leroy, François Cluzel, Harrison Kim To cite this version: Michael Saidani, Bernard Yannou, Yann Leroy, François Cluzel, Harrison Kim. How circular economy and industrial ecology concepts are intertwined? A bibliometric and text mining analysis. Online Sym- posium on Circular Economy and Sustainability, Jul 2020, Alexandroupolis, Greece. hal-02886470 HAL Id: hal-02886470 https://hal.archives-ouvertes.fr/hal-02886470 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Online Symposium on Circular Economy and Sustainability, Greece 1-3 July, 2020 How circular economy and industrial ecology concepts are intertwined? A bibliometric and text mining analysis Michael Saidani1*, Bernard Yannou2, Yann Leroy2, Francois Cluzel2, Harrison Kim1 1University of Illinois at Urbana-Champaign, Industrial and Enterprise Systems Engineering, USA 2Université Paris-Saclay, CentraleSupélec, Laboratoire Genie Industriel, Gif-sur-Yvette, France *Contact author: [email protected] Abstract Combining new insights from both bibliometric and text mining analyses, with prior relevant research conversations on circular economy (CE) and industrial ecology (IE), this paper aims to clarify the recent development trends and relations between these concepts, including their representations and applications.
    [Show full text]
  • Operations of Sewage Waste to Zero Waste
    Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCNTCE-2015 Conference Proceedings Operations of Sewage Waste to Zero Waste (Environmental Friendly Treatment) V. P. Gogul Ram, C. Aravindhan G. Sugiladevi. UG Students M.E. Head of the department Department of civil engineering Department of civil engineeering Nadar Saraswathi College of engineering and technology Nadar Saraswathi College of engineering and technology Theni, Tamilnadu-625531. Theni, Tamilnadu - 625531. Abstract— In our world wastes are generated in huge amount. 6. In case of chemical waste the process of adsorption, Especially in our country, wastes are generated in huge and they absorption techniques are used to decrease the COD contents. are not treated regularly. If it is treated regularly we can get 7. In case of oil content in water, polymers are recommended more money by its byproducts and these Sewage wastes are to clear over the oil. collected and it is to be treated to satisfy the needs of human 8. Then process of biological treatment takes place now, beings. Like reusable water, bio-manures, bio-gas, electricity, pure oxygen, fly ash. Thus our project is eco -friendly to our trickling filter and anaerobic sludge process techniques are environment and also benefits people through their wastes and implemented in order to attain 99% of pure water. makes India as a hygienic domain. 9. Then the final product of water is taken for solar evaporation process, the water is heated, during heating the I. INTRODUCTION vapor water is very pure which is used for drinking purpose. 10. After solar boiling, the process of The proposed project which comes under the three following chlorination/ozonalisation takes place.
    [Show full text]
  • Commingled Organics on the Road to Zero Waste
    Commingled Organics On the Road to Zero Waste On the Road to Zero Waste California State Mandates • AB 1826 - Mandatory Commercial Organics Recycling • AB 1594 - 2020 ADC No Longer Counts as Diversion • SB 1383 – Short Lived Climate Pollutants (SLCP): Organic Waste Methane Emissions Reductions - 2020 - 50% Reduction in Landfilled Organics - 2022 - Regulations Take Effect - 2025 - 75% Reduction in Landfilled Organics / Residential & Commercial / 20% Increase in Recovery of Disposed Edible Food On the Road to Zero Waste Commingled Organics Collection • Expand Green Waste Service to Include Food Waste • Easy & Convenient / Increase Participation • Residential & Commercial • Residential Kitchen Caddie Offered - Dishwasher Safe / Odor & Bug Resistant Organic Waste On the Road to Zero Waste State-of-the-Art Anaerobic Digestion (AD) Facility • Produces Renewable Natural Gas (RNG) • Assists Jurisdictions to Meet State Mandates • Carbon Neutral Fleet • Begin Serving Customers in January 2021 On the Road to Zero Waste Coming Soon; New Anaerobic Digestion Facility https://youtu.be/iSPxQXcUkUE What is Anaerobic Digestion • Biological Process • Microorganisms Breakdown Material • Biogas Upgraded into Renewable Natural Gas (RNG) On the Road to Zero Waste The Process • Three Week Process • Rotating Paddle Mixes Digestate / Bio Gas Released • Solid & Liquid Digestate Used as Organic Fertilizer • Raw Gas Upgraded into RNG / Injected into Pipeline On the Road to Zero Waste Public Education • Commercial Site Visits / Meetings • Direct Mail Piece / Environmental Times Newsletter • Email Notifications / Web Page Information • Point of Delivery Cart Tags / Follow-up Postcards On the Road to Zero Waste Digester One and Digester Two framing rings are up and the screen wall is advancing. Pictures as off January 13, 2020.
    [Show full text]