Vector-Borne Diseases in Pets: the Stealth Health Threat

Total Page:16

File Type:pdf, Size:1020Kb

Vector-Borne Diseases in Pets: the Stealth Health Threat Parasites 101 Vector-Borne Diseases in Pets: The Stealth Health Threat Michael W. Dryden, DVM, MS, PhDa Kansas State University Elizabeth Hodgkins, DVM, JD Summit VetPharm Rutherford, New Jersey n 1975, in the small coastal town of Lyme, Connecticut, the bite of the deer tick (Ixodes scapularis) and was asso- a group of mothers brought a unique, remarkable clus- ciated with neurologic symptoms in some patients. Today, Itering of cases to the attention of local health authori- human Lyme borreliosis is the most commonly diagnosed ties: all had children with diagnosed rheumatoid arthritis. infectious VBD, with more than 20,000 cases reported each Unfortunately, this malady was not immediately recognized year in the United States alone.1 as a bacterial vector-borne disease (VBD). Not until 1985 The history of the recognition of the insidious and often was “Lyme arthritis” associated with infection by the spiro- debilitating signs of Lyme disease illustrates how easily infec- chete Borrelia burgdorferi, by Dr. Willy Burgdorfer. tious agents can enter the human population and, unsus- Throughout the 1980s, many skeptics denounced the pected and undetected, wreak medical havoc for decades existence of Lyme disease, as it came to be known, as a or longer. The prevalence of clinical and subclinical Lyme discrete infectious disease of humans or animals. The mat- borreliosis in pets is poorly understood at present, much as ter was not settled until the 1990s, when the genome of the the prevalence of its human counterpart was decades ago. causative agent was sequenced and the pathogenesis of the This issue is complicated by a lack of agreement about how human disease was fully understood. to detect infection with the causative agent and controversy In fact, the first recorded case of Lyme disease had about when and whether to immunize pets in endemic been described more than a century earlier by Dr. Alfred areas against B. burgdorferi.2–4 Buchwald, who noted a degenerative human skin condi- Recent studies suggest that the US prevalence of B. burg- tion known as acrodermatitis chronica atrophicans (ACA). dorferi infection in dogs may be highest (more than 6%) in In 1921, Dr. Arvid Afzelius published research about the the upper Midwest and northeastern areas of the country, expanding ring skin lesion (erythema migrans) that is now where prevalence of the infection in humans is also high- well associated with Lyme disease in people. Dr. Afzelius est.5 Studies of this infection in cats are sparse; however, it speculated that this skin condition was somehow caused by is clear that cats, while not clinically affected, do become infected.6 What is most clear is that scientific understanding aDr. Dryden discloses that he has received financial benefits from Bayer Animal Health, Elanco, Merial, Novartis Animal Health, Pfizer of the importance of this VBD is incomplete and awaits a Animal Health, and Summit VetPharm. great deal more research. As this research unfolds, we may Contributed by the Companion Animal Parasite Council The Companion Animal Parasite Council (CAPC) is an independent association of veterinarians and other animal health care professionals established to create guidelines for the optimal control of internal and external parasites that threaten the health of pets and people. It brings together broad expertise in parasitology, internal medicine, public health, veterinary law, private practice, and association leadership. Initially convened in 2002, the CAPC was formed with the expressed purpose of chang- ing the way veterinary professionals and pet owners approach parasite management. The CAPC advocates best practices for protecting pets from parasitic infections and reducing the risk for zoonotic parasite transmission. For more information, visit www.capcvet.org. Vetlearn.com | June 2010 | Compendium: Continuing Education for Veterinarians® E1 ©Copyright 2010 MediMedia Animal Health. This document is for internal purposes only. Reprinting or posting on an external website without written permission from MMAH is a violation of copyright laws. Parasites 101: Vector-Borne Diseases in Pets discover that we have seriously underestimated the impor- • I. scapularis and Ixodes pacificus (black-legged ticks), tance, prevalence, and severity of borreliosis in companion vector for B. burgdorferi in the eastern and western animals. United States, respectively, as well as for Anaplasma and Unfortunately, B. burgdorferi is only one of a myriad of Bartonella spp VBD agents known to infect and cause mild to severe clini- • Rhipicephalus sanguineus (the brown dog tick, which cal signs in pets. Most of these agents, including Ehrlichia, lives in homes and kennels), vector for Babesia spp, Anaplasma, Rickettsia, Bartonella, Mycoplasma, Babesia, Ehrlichia canis, and the Rocky Mountain spotted fever and Cytauxzoon spp, are incompletely characterized. In pathogen, Rickettsia rickettsii 2008, Dr. Susan Little, of the University of Oklahoma, speak- • Dermacentor andersoni, vector for R. rickettsii and the ing at the North American Veterinary Conference, discussed tularemia pathogen, Francisella tularensis the disturbing findings that tick populations are expand- • Dermacentor variabilis, vector for Cytauxzoon felis, R. ing geographically and appear to be carrying an increasing rickettsii, and F. tularensis array of pathogenic organisms. Her data showed that at least • Amblyomma americanum, vector for Ehrlichia spp, C. one VBD agent exists in each of the 50 US states and that felis, and F. tularensis several disease agents are present in the tick populations of • Amblyomma maculatum, vector for Hepatozoon many states.7 americanum All of these pathogens have at least one thing in com- mon: they are transmitted to companion animals by arthro- Mosquitoes are also important disease vectors for pets, pod vectors worldwide. Only for Lyme disease does a notably as carriers of infective heartworm (Dirofilaria immi- preventive vaccine exist, and the widespread use of this tis) larvae. The mosquito species most commonly implicated vaccine is controversial among veterinary experts. However, in heartworm transmission to dogs and cats in the United there is hope for control of these vectors and the diseases States are Aedes (including the Asian tiger mosquito), Culex, they transmit to household pets. Regular, appropriate use of Anopheles, and Ochlerotatus. Mosquitoes also carry West arthropod-effective ectoparasiticides in the home environ- Nile virus, which can infect humans and many species of ment and, more importantly, on pets, is the most effective animals, but the importance of this disease in cats and dogs preventive measure available against VBD transmission in is thought to be small.10 companion animals. Although these products cannot guar- antee prevention of tick-transmitted diseases, regular and Can We Afford to Ignore Vector-Borne Diseases Any correct application can reduce the likelihood that pets will Longer? become infected. Public health authorities warn that VBDs are spreading from narrow historical ranges well into new areas of the United The Vectors and Their Diseasesb States. The vectors appear to be moving into new areas and Fleas, ticks, and mosquitoes are major arthropod carriers increasing in other areas due to the following factors11–13: of many potentially serious diseases of humans and pets in the United States. The cat flea, Ctenocephalides felis, is the • Natural climate fluctuations that favor the development most important flea species infesting dogs and cats in most of fleas, ticks, and mosquitoes areas of the world.8 In addition to causing serious skin irrita- • Mobility of people and pets and residential and recre- tion, flea bites can lead to the important clinical condition ational encroachment on highly populated wildlife areas flea allergy dermatitis, caused by injection of flea-specific • Population increases among critical reservoir wildlife spe- antigens.8,9 Occasionally, severe, even life-threatening, ane- cies, especially deer and wild turkeys, across the country mia can occur in young or debilitated pets with severe flea infestations. Adding to the complexity of VBD expansion is the under- Infectious agents transmitted by cat fleas include diagnosis of VBDs in pets and humans in regions where Bartonella henselae (the cause of cat-scratch disease in these diseases are already well established.7,14,15 The years humans), Rickettsia typhi (murine or endemic typhus), and ahead will almost certainly show physicians and veterinar- Rickettsia felis (murine typhus–like disease). Fleas are also ians that VBDs are far more important causes of serious the intermediate hosts for a clinically important tapeworm infectious disease in the United States than previously sus- of dogs and cats (Dipylidium caninum). pected. Improved understanding of the importance of VBDs Several tick species are responsible for transmitting dis- in humans may well come, in large part, from efforts to bet- eases of companion animals in North America. Some of the ter understand and diagnose these diseases in pets.16 most important are: Although veterinarians play an important role in the bFor more information on vector species and the infectious agents identification and prevention of zoonotic infections that they carry, visit www.capcvet.org. affect humans, the profession’s central focus is the success- E2 Compendium: Continuing Education for Veterinarians® | June 2010 | Vetlearn.com Parasites 101: Vector-Borne Diseases in Pets ful diagnosis, treatment,
Recommended publications
  • Antibodies of Patients with Lyme Disease to Components of the Ixodes Dammini Spirochete
    Antibodies of patients with Lyme disease to components of the Ixodes dammini spirochete. A G Barbour, … , E Grunwaldt, A C Steere J Clin Invest. 1983;72(2):504-515. https://doi.org/10.1172/JCI110998. Research Article Lyme disease is an inflammatory disorder of skin, joints, nervous system, and heart. The disease is associated with a preceding tick bite and is ameliorated by penicillin treatment. A spirochete (IDS) isolated from Ixodes dammini ticks has been implicated as the etiologic agent of Lyme disease. We examined the antibody responses of Lyme disease patients to IDS lysate components in order to further understand the pathogenesis of this disease. The components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, reacted with patients' sera, and the bound IgG was detected with 125I-labeled protein A (western blot). We found that (a) Lyme disease patients had antibodies to IDS components (b) most patients studied had antibodies to two components with apparent subunit molecular weights of 41,000 and 60,000, and (c) the patients' antibody responses during illness and remission were specific, for the most part, for the IDS. In contrast to the findings with Lyme disease sera, sera from controls showed little reactivity with IDS components in either the western blots or a derivative solid-phase radioimmunoassay. FIGURE 1FIGURE 2FIGURE 3FIGURE 4FIGURE 5 Find the latest version: https://jci.me/110998/pdf Antibodies of Patients with Lyme Disease to Components of the Ixodes dammini Spirochete ALAN G. BARBOUR, Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, Hamilton, Montana 59840 WILLY BURGDORFER, Epidemiology Branch, Rocky Mountain Laboratories, Hamilton, Montana 59840 EDGAR GRUNWALDT, 44 South Ferry Road, Shelter Island, New York 11964 ALLEN C.
    [Show full text]
  • Prevalence of Lyme Disease in the US Is 10-Times Higher Than
    Prevalence of Lyme Disease in the US Is 10-Times Higher Than Previously Reported By Dr. Mercola It‟s now been fairly well-established that chronic inflammation is an underlying factor in most chronic illnesses. Diseases, such as Parkinson's, multiple sclerosis, cardiomyopathy, gastritis, and chronic fatigue, are all turning out to be expressions of chronic infections. Lyme disease appears to be a major, yet oftentimes hidden, player. This may sound shocking to you, but diagnosing Lyme is very difficult, so the actual number of cases is high relative to reporting. According to preliminary statistics1, 2 just released by the Centers for Disease Control and Prevention (CDC), approximately 300,000 new cases of Lyme disease are diagnosed in the US each year. This is about 10 times higher than the officially reported number of cases, indicating that the disease is being vastly underreported. The data was presented by CDC officials at the 2013 International Conference on Lyme Borreliosis and Other Tick-Borne Diseases in Boston in the middle of August. As reported in the featured article by Medical News Today3: “This agrees with studies reported in the 1990s that showed the actual number of Lyme diseases cases in the US was likely to be three to twelve times higher than reported... Lyme disease is the most commonly reported tick-borne illness in the US.” What Is Lyme disease? Lyme disease was named after the East Coast town of Lyme, Connecticut, where the disease was first identified in 1975.4 The disease was first referred to as "Lyme arthritis" due to the presentation of atypical arthritic symptoms in children that lived in that city.
    [Show full text]
  • Clinical Spectrum of Lyme Disease
    European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:201–208 https://doi.org/10.1007/s10096-018-3417-1 REVIEW Clinical spectrum of Lyme disease Jesus Alberto Cardenas-de la Garza1 & Estephania De la Cruz-Valadez1 & Jorge Ocampo-Candiani 1 & Oliverio Welsh1 Received: 4 September 2018 /Accepted: 30 October 2018 /Published online: 19 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Lyme disease (borreliosis) is one of the most common vector-borne diseases worldwide. Its incidence and geographic expansion has been steadily increasing in the last decades. Lyme disease is caused by Borrelia burgdorferi sensu lato, a heterogeneous group of which three genospecies have been systematically associated to Lyme disease: B. burgdorferi sensu stricto Borrelia afzelii and Borrelia garinii. Geographical distribution and clinical manifestations vary according to the species involved. Lyme disease clinical manifestations may be divided into three stages. Early localized stage is characterized by erythema migrans in the tick bite site. Early disseminated stage may present multiple erythema migrans lesions, borrelial lymphocytoma, lyme neuroborreliosis, carditis, or arthritis. The late disseminated stage manifests with acordermatitis chronica atrophicans, lyme arthritis, and neurological symptoms. Diagnosis is challenging due to the varied clinical manifestations it may present and usually involves a two-step serological approach. In the current review, we present a thorough revision of the clinical manifestations Lyme disease may present. Additionally, history, microbiology, diagnosis, post-treatment Lyme disease syndrome, treatment, and prognosis are discussed. Keywords Lyme disease . Borrelia burgdorferi . Tick-borne diseases . Ixodes . Erythema migrans . Lyme neuroborreliosis History posteriorly meningitis, establishing a link between both mani- festations.
    [Show full text]
  • The Lyme Times V 25 No 2
    ABOUT LYMEDISEASE.ORG 25th Anniversary Issue We advocate nationally for quality accessible healthcare for patients with Lyme and other tick-borne diseases. We are committed to shaping health policy through advocacy, legal and ethical analysis, education, physician training and medical research. We communicate our message in print and online. We connect and educate the patient community through net- working and state online support groups. We take the pulse of the Lyme community through patient surveys. We analyze and archive information in our quarterly journal, The Lyme Times, and maintain an educational website at lymedisease.org. We publish regularly in peer- reviewed medical and health policy publications. Online Support Groups Participate in education and advocacy activities in your state. Learn about local resources and receive technical support for your efforts. Exchange information and patient support conveniently from your home. To find your own LymeDisease.org is grateful for the special online state-based group, go to: health.groups.yahoo.com/ support of the following sponsors: group/(yourstatename)lyme. Jill & Ira Auerbach Website Sandy Berenbaum, LCSW, BCD Dolly Curtis Visit our extensive educational website at lymedisease. Marcia Datson org. Discover the basics at Lyme 101, read news and Brian Fallon, MD analysis, and check the events calendar. Sign up for our free Ken & Kerry Fordyce email newsletter. Suzanne MacDonald Fratus Facebook In Memory of Paul E. Lavoie, MD Georgia Lyme Disease Association Keep on top of developing news and share your own ex- Thora Graves periences and opinions by joining the conversation on our Bob Lane, PhD Facebook page: facebook.com/lymedisease.org.
    [Show full text]
  • Discovery of the Lyme Disease Spirochete and Its Relation to Tick Vectors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central THE YALE JOURNAL OF BIOLOGY AND MEDICINE 57 (1984), 515-520 Discovery of the Lyme Disease Spirochete and Its Relation to Tick Vectors WILLY BURGDORFER, Ph.D. Department of Health and Human Services, Public Health Service, National Institutes ofHealth, National Institute ofAllergy and Infectious Diseases, Epidemiology Branch, Rocky Mountain Laboratories, Hamilton, Montana Received November 16, 1983 The various hypotheses concerning the etiologic agent of erytheina chroniicum migranis of Europe and of Lyme disease in the United States are reviewed, and an account of evenlts tllat led to the discovery of the causative spirochetal agent in Ixodes dammini is presented. Spiro- chetes morphologically and antigenically similar, if not identical to, the organism detected in L. dammini were also found for the first time in Ixodes pacificus and Ixodes ricinus, the vectors hitherto incriminated, respectively, in western United States and Europe. In most infected ticks, spirochetal developmenit was found to be limnited to the midgut. Ticks with generalized infections were shown to transmit spirochetes via eggs, but inifectionis de- creased in intensity and became restricted to the central ganglion as filial ticks developed to adults. Although the mechanisms of transmission to a host are still under inlvestigation, the spiro- chetes may be transmitted by saliva of ticks with generalized infectionis and possibly also by regurgitation of infected gut contents, or even by means of infected fecal material. Ever since the first description of Erythema chronicum migrans (ECM) in Europe [1] and of Lyme disease in the United States [2], tick-transmitted toxins, viruses, rickettsiae, and spirochetes have been considered as possible causes of these ailments.
    [Show full text]
  • Willy Burgdorfer Oral History
    INTRODUCTORY NOTE Deirdre Boggs: I interviewed Dr. Willy Burgdorfer on tape in three different sessions, beginning on July 10, 2001, and ending in August. After reading the transcribed version of the interviews, Dr. Burgdorfer wished to make some changes and refinements to the answers that he gave to the interview questions. He finished making the desired changes at the beginning of October 2001. The following transcription reflects Dr. Burgdorfer's oral responses to the interview questions as later edited and supplemented by Dr. Burgdorfer. This is Deirdre Boggs of Historical Research Associates interviewing Dr. Willy Burgdorfer in Hamilton, Montana on July 10, 2001. The interview is being done at the request of the National Institutes of Health. DB: Dr. Burgdorfer, I'd like to begin by asking you where you grew up and what your first language was? WB: I was born and grew up in Basel, Switzerland. Basel is in the northwest corner of the country where German is spoken, so my mother tongue is German. DB: Where and how did you learn to speak English? WB: I became exposed to the English language for four years in gymnasium. DB: Can you still speak German? WB: Oh, yes. DB: And do you ever speak German anymore? WB: Yes, I do. Some of my correspondence is still written in German. DB: Although you've been speaking English for many years. Isn't that true? WB: Yes. DB: For over 50 years? WB: That's true. DB: Did your parents encourage you to attend university? 1 WB: Yes, both my mother and father did.
    [Show full text]
  • Lyme Disease
    Rochester Institute of Technology RIT Scholar Works Theses 5-1-1996 Lyme disease Carolyn Nichols Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Nichols, Carolyn, "Lyme disease" (1996). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. o6160678 RDDDblbDb?fl ROCHESTER INSTITUTE OF TECHNOLOGY A Thesis Submitted to the Faculty of The College of Imaging Arts and Sciences in Candidacy for the Degree of MASTER OF FINE ARTS LYME DISEASE By Carolyn H. Nichols May 1, 1996 APPROVALS Adviser: Glen Hintz ._----- Date: -4~<t3:::--- Associate Adviser: Robert Wabnitz Date: -3/-J.dtJ:J---- Associate Adviser: Bob Heischman 7 Date: -----~--..L----20,L;h /71 Special Assistant to the Dean for Graduate Affairs: Date: ~ _ Dean, College of Imaging Arts and Sciences: Margaret Lucas, PhD. Date: _ I, Carolyn H Nichols, hereby grant permIssIOn to the Wallace Memorial Library of RIT to reprocduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. CONTENTS SECTIONI - Lyme Disease ? History 1 ? Geographic Ranges 2 ? Incidence of Lyme Disease 2 ? Ticks 3 Tick Identification Tick Biology Tick-Borne Diseases ? Life Cycles 5 Ixodes Tick Life Cycle Spirochete Life Cycle ? Borrelia Spirochetes 7 Spirochete Identification Spirochete Biology ? Transmission of Lyme Disease 8 Tick Bite Other Additional Spirochete Carriers Transovarial Transmission Maternal Transmission Blood Transmission Pretender" ? Symptoms: "The Great 1 2 Rash (erythmia migrans) Stages 1-3 ? Testing 1 5 ? Treatment 1 6 ? Veterinary Concerns 1 7 ? Effects on Children and the Elderly 1 8 ? Decrease Strategies for the Existence of Lyme Disease...
    [Show full text]
  • MOTILITY and CHEMOTAXIS in the LYME DISEASE SPIROCHETE BORRELIA BURGDORFERI: ROLE in PATHOGENESIS by Ki Hwan Moon July, 2016
    MOTILITY AND CHEMOTAXIS IN THE LYME DISEASE SPIROCHETE BORRELIA BURGDORFERI: ROLE IN PATHOGENESIS By Ki Hwan Moon July, 2016 Director of Dissertation: MD A. MOTALEB, Ph.D. Major Department: Department of Microbiology and Immunology Abstract Lyme disease is the most prevalent vector-borne disease in United States and is caused by the spirochete Borrelia burgdorferi. The disease is transmitted from an infected Ixodes scapularis tick to a mammalian host. B. burgdorferi is a highly motile organism and motility is provided by flagella that are enclosed by the outer membrane and thus are called periplasmic flagella. Chemotaxis, the cellular movement in response to a chemical gradient in external environments, empowers bacteria to approach and remain in beneficial environments or escape from noxious ones by modulating their swimming behaviors. Both motility and chemotaxis are reported to be crucial for migration of B. burgdorferi from the tick to the mammalian host, and persistent infection of mice. However, the knowledge of how the spirochete achieves complex swimming is limited. Moreover, the roles of most of the B. burgdorferi putative chemotaxis proteins are still elusive. B. burgdorferi contains multiple copies of chemotaxis genes (two cheA, three cheW, three cheY, two cheB, two cheR, cheX, and cheD), which make its chemotaxis system more complex than other chemotactic bacteria. In the first project of this dissertation, we determined the role of a putative chemotaxis gene cheD. Our experimental evidence indicates that CheD enhances chemotaxis CheX phosphatase activity, and modulated its infectivity in the mammalian hosts. Although CheD is important for infection in mice, it is not required for acquisition or transmission of spirochetes during mouse-tick-mouse infection cycle experiments.
    [Show full text]
  • Rocky Mountain Labs: NIAID’S Montana Campus
    Rocky Mountain Labs: NIAID’s Montana campus Karen Honey J Clin Invest. 2009;119(2):240-240. https://doi.org/10.1172/JCI38528. News The Division of Intramural Research (DIR) is a branch of the National Institute of Allergy and Infectious Diseases (NIAID). A fact not widely known about the DIR is that more than 20% of its research is conducted in western Montana at the Rocky Mountain Laboratories (RML) (Figure 1). Furthermore, RML soon will house one of the very few biosafety level four (BSL4) facilities — laboratories with the strictest levels of biosafety, biocontainment, and security — in the US. The DIR conducts basic, translational, and clinical research related to immunology, allergy, and infectious diseases, with the aim of promoting the development of new vaccines, therapeutics, and diagnostics to improve human health. At RML, the specific research focus is infectious microorganisms that cause disease in humans and animals. This focus reflects the history of RML, whose most well-known alumni are probably Herald Rea Cox and Gordon Davis, who were involved in identifying Coxiella burnetii, the vector-borne bacterium that causes Q fever, and Willy Burgdorfer, who isolated Borrelia burgdorferi, the vector-borne spirochete that causes Lyme disease. Even before the first RML building was completed in 1928, researchers were working in the area (in makeshift cabins and tents) to determine the cause of Rocky Mountain spotted fever, a disease that in the early 1900s was lethal in nearly four out of every five cases […] Find the latest version: https://jci.me/38528/pdf News Rocky Mountain Labs: NIAID’s Montana campus The Division of Intramural Research traveled to work in the area each summer the future impact of the new microscope that (DIR) is a branch of the National Institute of was Howard Ricketts, from the University the Microscopy Unit will house, which is the Allergy and Infectious Diseases (NIAID).
    [Show full text]
  • Pathogenesis of Relapsing Fever
    Curr. Issues Mol. Biol. 42: 519-550. caister.com/cimb Pathogenesis of Relapsing Fever Job Lopez1, Joppe W. Hovius2 and Sven Bergström3 1Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA 2Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands 3Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.042.519 Abstract outbreaks of RF. One of the best recorded Relapsing fever (RF) is caused by several species of descriptions of RF came from the physician John Borrelia; all, except two species, are transmitted to Rutty, who kept a detailed diary during his time in humans by soft (argasid) ticks. The species B. Dublin, where he described the weather and illnesses recurrentis is transmitted from one human to another in the area during the mid-1700’s (Rutty, 1770). by the body louse, while B. miyamotoi is vectored by Interestingly, the fatality rate was very low and most hard-bodied ixodid tick species. RF Borrelia have of the affected people did recover after two or three several pathogenic features that facilitate invasion relapses. and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and RF symptoms also were described in detail by field subsequent transmission of RF Borrelia to their medics during the 1788 Swedish-Russian war. The vertebrate hosts. We also review taxonomic Swedish navy conquered the Russian 74-cannon challenges for RF Borrelia as new species have been battleship Vladimir and its 783 men crew at a battle in isolated throughout the globe.
    [Show full text]
  • History, Rats, Fleas, and Opossums. II. the Decline and Resurgence of Flea-Borne Typhus in the United States, 1945–2019
    Tropical Medicine and Infectious Disease Review History, Rats, Fleas, and Opossums. II. The Decline and Resurgence of Flea-Borne Typhus in the United States, 1945–2019 Gregory M. Anstead Medical Service, South Texas Veterans Health Care System and Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; [email protected] Abstract: Flea-borne typhus, due to Rickettsia typhi and R. felis, is an infection causing fever, headache, rash, and diverse organ manifestations that can result in critical illness or death. This is the second part of a two-part series describing the rise, decline, and resurgence of flea-borne typhus (FBT) in the United States over the last century. These studies illustrate the influence of historical events, social conditions, technology, and public health interventions on the prevalence of a vector-borne disease. Flea-borne typhus was an emerging disease, primarily in the Southern USA and California, from 1910 to 1945. The primary reservoirs in this period were the rats Rattus norvegicus and Ra. rattus and the main vector was the Oriental rat flea (Xenopsylla cheopis). The period 1930 to 1945 saw a dramatic rise in the number of reported cases. This was due to conditions favorable to the proliferation of rodents and their fleas during the Depression and World War II years, including: dilapidated, overcrowded housing; poor environmental sanitation; and the difficulty of importing insecticides and rodenticides during wartime. About 42,000 cases were reported between 1931–1946, and the actual number of cases may have been three-fold higher. The number of annual cases of FBT peaked in 1944 at 5401 cases.
    [Show full text]
  • Lyme Disease
    Pondicherry Journal of Nursing Vol S, Issue1, December'11 -Marcl1'12 LYME DISEASE Ms. Snvithri K B INTRODUCTION Hard-bodied ticks of the genus lxodes arc the main vectors of Lyme Lyme disease, or Lyme disease. borreliosis is an emerging infectious disease caused by three species of Lyme spirochetes have been bacteria belonging to the genus found in insects as well as ticks. It has BoITelia The disease is named after the been found in semen and breast milk, town of Lyme, Connecticut, USA, but transmission has not been known to where a number of cases were take place through sexual contact. identified in 1975. Although Allen Transmission across the placenta Steere realized Lyme disease was a during pregnancy has not been tick-home disease in 1978, the cause of demonstrated. the disease remained a mystery until 1981, when B. burgdorferi was identified by Willy Burgdorfer. ETIOLOGY Borrelia bacteria, the causative agent of Lyme disease. It is caused by Gram-negative, spirochetal bacteria from the genus Borrelia. The Borrelia species that cause Lyme disease are collectively known as Borrelia burgdorferi sensu lato. It made up of three closely related species namely B. burgdorferi sensu stricto B. afzelii, and B. garinii TRANSMISSION Lyme disease is classified as a zoonosis, as it is transmitted to humans from a natural reservoir among rodents by ticks that feed on both sets of hosts. Ms. Savithri KB, Lecturer, Vel RS Deer Tick medical college - College of Nursing, life cycle Avadi, Chennai. 17 Pond/cherry Journal of Nursing Vol S, lssue1, December'll -1\,f Q,.c,_,, .1.< targeted by antibodies, an0 variation of the VlsE surface tg~i~ .
    [Show full text]