Microbiological Features Distinguishing Lyme Disease and Relapsing Fever Spirochetes

Total Page:16

File Type:pdf, Size:1020Kb

Microbiological Features Distinguishing Lyme Disease and Relapsing Fever Spirochetes Lyme Borreliosis Wien Klin Wochenschr (2018) 130:484–490 https://doi.org/10.1007/s00508-018-1368-2 Microbiological features distinguishing Lyme disease and relapsing fever spirochetes Sven Bergström · Johan Normark Received: 6 July 2018 / Accepted: 13 July 2018 / Published online: 3 August 2018 © The Author(s) 2018 Summary The recent proposal of splitting the genus Keywords Borrelia · Borreliella · Lyme borreliosis · Borrelia into two genera in the newly formed family Relapsing fever · Taxonomy of Borreliaceae,i.e.Borrelia and Borreliella has moti- vated us to reflect upon how these organisms has been Introduction characterized and differentiated. This article therefore aims to take a closer look on the biology and virulence Recent molecular analysis of Borrelia spirochetes attributes of the two suggested genera, i.e. those caus- has suggested a new taxonomic classification. Thus, ing Lyme borreliosis and relapsing fever borreliosis. spirochetes within the family Borreliaceae [1], which Both genera have much in common with similar infec- belongs to the order Spirochetales, has recently tion biological features. They are both characterized been reclassified and now been suggested to con- as bacterial zoonoses, transmitted by hematophagous tain two different genera; Borrelia,andBorreliella arthropods with almost identical microbiological ap- [2]. The genealogical separation of relapsing fever pearance. Nevertheless, a closer look at the genotypic and Lyme disease spirochetes has been debated and and phenotypic characteristics clearly reveals several questioned among researchers, clinicians and stake differences that might motivate the suggested split. holders within the borreliosis community [3, 4]. The On the other hand, a change of this well-established suggested split is based on an in-depth molecular classification within the genus Borrelia might impose analysis of phylogenetic and phenotypic characteris- an economical burden as well as a great confusion in tics, i.e. genome and proteome comparison of the society, including medical and scientific societies as increasingly available omics data. The results from the well as the general population. comparative analyses partly support this separation, which will be further discussed in this review. Although relapsing fever (RF) was described during antiquity it acquired its current name much later. About 430 BC Hippocrates described an epidemic Prof.S.Bergström() fever that was probably related to RF. Several out- Department of Molecular Biology, Umeå University, 6K och breaks of an “epidemic fever” during the following 6L, Sjukhusområdet, 901 87 Umeå, Sweden centuries have been attributed to RF mainly because [email protected] of the disease symptoms [5]. The first description of J. Normark clinical features associated to RF was documented in Department of Clinical Microbiology, Umeå University, the middle of the eighteenth century from an out- Umeå, Sweden break in Ireland. This epidemic spread all over the [email protected] British Isles and the disease was for the first time Prof.S.Bergström labelled “relapsing fever” in 1843 [5, 6]. The dis- Umeå Center for Microbial Research, Umeå University, ease was then further disseminated to the European Umeå, Sweden continent and the USA. The outbreaks continued for Prof.S.Bergström·J.Normark decades and plagued large parts of the world [5]: Molecular Infection Medicine Sweden, Umeå University, however, it is important to remember that at this time Umeå, Sweden other microorganisms could have been the etiologic 484 Microbiological features distinguishing Lyme disease and relapsing fever spirochetes K Lyme Borreliosis agent for this recurrent fever, including Rickettsiae, Nevertheless, Lyme borreliosis is characterized by the malarial parasites or various viruses. None of these deleterious effects on specific tissues, including the historical descriptions are definite but are of course skin, central nervous system, joints and the heart. In interesting from an epidemiological point of view. contrast to the tissue specificity of Lyme disease, re- The suspected RF infection was most often found in lapsing fever (RF) borreliosis initially starts as a blood- poor and overpopulated areas, and therefore the body borne disease and is characterised by a high concen- louse was assumed to spread the disease. The impor- tration of spirochetes in the blood and intermittent tance of the body louse, Pediculus humanus humanus attacks of high fever. In essence, the main disease in transmitting RF was later shown experimentally by manifestation is a recurring fever that coincides with inoculating monkeys with crushed lice from human high numbers of spirochetes in the blood. The severity RF patients [6]. In 1868 the RF microorganism was of the infection ranges from asymptomatic to serious. discovered and described by the German doctor Otto Despite the suggestion to separate the spirochetes Obermeier and initially designated “Spirocheta Ober- of the new family Borreliaceae into two genera, they meieri,” but finally denoted its current name Borrelia still have several general microbiological features in recurrentis [5]. common. They are characteristically spiral shaped, Lyme disease is of much later date, i.e. the date approximately 25–30µm long and 1µm thick [14]. of when the disease was defined and its etiologic A second typical feature of the organisms is the lo- agent was proven and described. The Lyme borre- comotor organ that contains a bundle of flagellae liosis era started when several cases of arthritis were attached to the poles. The flagellae are located in reported and described in 1977 in the town of Old the periplasmic space and wrapped around the cell Lyme,Connecticut,USA.Thiscamefromanepi- cylinder, giving it its characteristic shape [14–16]. The demic of oligoarthritis in children, which first was outer membrane is Gram-negative, meaning that it misdiagnosed as being juvenile arthritis [7]. Inter- has a diderm structure that contains a cytoplasmic- estingly, the patients often developed an expanding and an outer membrane separated by the periplasm skin rash prior to onset of arthritis. Therefore, these [17, 18]. The spirochaetal outer membrane is regarded findings led to the suspicion that the diagnosis was as more fluid than other Gram-negative bacteria with incorrect. This pathognomonic skin rash, termed a 45–62% protein, 23–50% lipid and 3–4% carbo- erythema migrans, was first reported by a Swedish hydrate content [14]. Another important difference dermatologist Arvid Afzelius in the year 1909 [8]. He compared to other Gram-negative bacteria is the ab- suggested that a tick bite caused this particular type of sence of lipopolysaccharides on the outer surface. skin lesion. Similar to the finding by Afzelius, Steere Instead, Borrelia spirocheteshavealargeamount et al. also believed that ticks were involved in the of surface located lipoproteins and as much as ~8% transmission of this novel disease [9]. Therefore, it of the open reading frames in Borreliae encodes for was proposed that the symptoms resulted from trans- lipoproteins [14, 18, 19]. Many of the surface located mission of an infectious agent by an arthropod vector. lipoproteins are thought to be important for the life Subsequently, a spirally formed bacteria could be iso- style of the Borreliae and therefore important factor(s) lated from the American Deer tick, Ixodes scapularis during infection. and a similar organism was later isolated from the blood and cerebrospinal fluid from patients with ery- Virulence factors thema migrans [9–12]. Further microbiological and biochemical characterization of this microorganism Lyme borreliosis Several factors important for the suggested that the spirochete-like organism belonged pathogenesis of the various species within the family to the genus Borrelia. Thus, these investigators now of Borreliaceae has been described and characterised suggested this novel microorganism to be a Borrelia both in vitro and in vivo. Virulence factors are de- spirochete because of its microbiological and micro- fined as any specialized virulence trait that separates scopically resemblance to RF Borrelia. This Borrelia- an infectious bacteria from a non-virulent variant. like spirochete was then named Borrelia burgdorferi Typically, those factors are involved in adhesion, col- after one of its co-discoverers, Willy Burgdorfer [12]. onization, invasion and toxin production. Several virulence factors important for Lyme borreliosis has Basic characteristics been described and investigated during the last few decades. The investigation of Lyme borreliosis vir- The typical symptom of Lyme borreliosis is the char- ulence traits took off with the publication of the acteristic skin rash denoted erythema migrans. Un- B. burgdorferi genome by Fraser et al. [18], and with treated, the disease can in certain individuals dis- the subsequent full genomic annotation in 2000 [20]. seminate and cause symptoms in the nervous system Many unique virulence factors that operate during or joints as well as the more persistent skin disor- Lyme borreliosis have been characterized and de- der acrodermatitis chronica athrophicans. For a more fined. These factors include various outer surface thorough description of the various clinical symptoms molecules that interact with the mammalian host. of Lyme borreliosis see Review by Stanek et al. [13]. Among these are several cell surface outer mem- K Microbiological features distinguishing Lyme disease and relapsing fever spirochetes 485 Lyme Borreliosis
Recommended publications
  • Borrelia Burgdorferi and Treponema Pallidum: a Comparison of Functional Genomics, Environmental Adaptations, and Pathogenic Mechanisms
    PERSPECTIVE SERIES Bacterial polymorphisms Martin J. Blaser and James M. Musser, Series Editors Borrelia burgdorferi and Treponema pallidum: a comparison of functional genomics, environmental adaptations, and pathogenic mechanisms Stephen F. Porcella and Tom G. Schwan Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA Address correspondence to: Tom G. Schwan, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA. Phone: (406) 363-9250; Fax: (406) 363-9445; E-mail: [email protected]. Spirochetes are a diverse group of bacteria found in (6–8). Here, we compare the biology and genomes of soil, deep in marine sediments, commensal in the gut these two spirochetal pathogens with reference to their of termites and other arthropods, or obligate parasites different host associations and modes of transmission. of vertebrates. Two pathogenic spirochetes that are the focus of this perspective are Borrelia burgdorferi sensu Genomic structure lato, a causative agent of Lyme disease, and Treponema A striking difference between B. burgdorferi and T. pal- pallidum subspecies pallidum, the agent of venereal lidum is their total genomic structure. Although both syphilis. Although these organisms are bound togeth- pathogens have small genomes, compared with many er by ancient ancestry and similar morphology (Figure well known bacteria such as Escherichia coli and Mycobac- 1), as well as by the protean nature of the infections terium tuberculosis, the genomic structure of B. burgdorferi they cause, many differences exist in their life cycles, environmental adaptations, and impact on human health and behavior. The specific mechanisms con- tributing to multisystem disease and persistent, long- term infections caused by both organisms in spite of significant immune responses are not yet understood.
    [Show full text]
  • The Relapsing Fever Agent Borrelia Hermsii Has Multiple
    Copyright Q 1992 by the Genetics Societyof America The Relapsing Fever AgentBorrelia hermsii Has Multiple Copiesof Its Chromosome and Linear Plasmids Todd Kitten and Alan G. Barbour Departments of Microbiology and Medicine, The Universityof Texas Health Science Center, Sun Antonio, Texas 78284 Manuscript received March 17, 1992 Accepted for publicationJune 25, 1992 ABSTRACT Borrelia hermsii, a spirochete which causes relapsing fever in humans and other mammals, eludes the immune responseby antigenic variationof the “Vmp” proteins.This occurs by replacement of an expressed vrnp gene with a copy of a silent vrnp gene. Silent and expressedvrnp genes are located on separate linearplasmids. To further characterize vrnp recombination, copy numbers were determined for two linear plasmids and for the l-megabase chromosome by comparing hybridization of probes to native DNA with hybridization to recombinant plasmids containing borrelial DNA. Plasmid copy numbers were also estimated by ethidium bromide fluorescence. Total cellular DNA content was determined by spectrophotometry. For borreliasgrown in mice, copy numbers and 95% confidence intervals were 14 (12-17)for an expression plasmid,8 (7-9) for a silent plasmid, and 16 (13-18) for the chromosome. Borrelias grown in broth mediumhad one-fourth to one-half this number of plasmids and chromosomes. Staining of cells with4’,6-diamidino-2-phenylindole revealed DNA to be distributed throughout most of the spirochete’s length. These findings indicate that borrelias organize their total cellular DNA into several complete genomes and thatcells undergoing serotype switches do one or more of the following: (1) coexpress Vmps from switched and unswitched expression plasmids for at least three to five generations, (2)suppress transcription from some expressionplasmid copies, or (3) partition expression plasmids nonrandomly.The lower copy number ofthe silentplasmid indicates that nonreciprocal Vmp gene recombination may result from loss of recombinant silent ” plasmids by segregation.
    [Show full text]
  • Antibodies of Patients with Lyme Disease to Components of the Ixodes Dammini Spirochete
    Antibodies of patients with Lyme disease to components of the Ixodes dammini spirochete. A G Barbour, … , E Grunwaldt, A C Steere J Clin Invest. 1983;72(2):504-515. https://doi.org/10.1172/JCI110998. Research Article Lyme disease is an inflammatory disorder of skin, joints, nervous system, and heart. The disease is associated with a preceding tick bite and is ameliorated by penicillin treatment. A spirochete (IDS) isolated from Ixodes dammini ticks has been implicated as the etiologic agent of Lyme disease. We examined the antibody responses of Lyme disease patients to IDS lysate components in order to further understand the pathogenesis of this disease. The components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, reacted with patients' sera, and the bound IgG was detected with 125I-labeled protein A (western blot). We found that (a) Lyme disease patients had antibodies to IDS components (b) most patients studied had antibodies to two components with apparent subunit molecular weights of 41,000 and 60,000, and (c) the patients' antibody responses during illness and remission were specific, for the most part, for the IDS. In contrast to the findings with Lyme disease sera, sera from controls showed little reactivity with IDS components in either the western blots or a derivative solid-phase radioimmunoassay. FIGURE 1FIGURE 2FIGURE 3FIGURE 4FIGURE 5 Find the latest version: https://jci.me/110998/pdf Antibodies of Patients with Lyme Disease to Components of the Ixodes dammini Spirochete ALAN G. BARBOUR, Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, Hamilton, Montana 59840 WILLY BURGDORFER, Epidemiology Branch, Rocky Mountain Laboratories, Hamilton, Montana 59840 EDGAR GRUNWALDT, 44 South Ferry Road, Shelter Island, New York 11964 ALLEN C.
    [Show full text]
  • Prevalence of Lyme Disease in the US Is 10-Times Higher Than
    Prevalence of Lyme Disease in the US Is 10-Times Higher Than Previously Reported By Dr. Mercola It‟s now been fairly well-established that chronic inflammation is an underlying factor in most chronic illnesses. Diseases, such as Parkinson's, multiple sclerosis, cardiomyopathy, gastritis, and chronic fatigue, are all turning out to be expressions of chronic infections. Lyme disease appears to be a major, yet oftentimes hidden, player. This may sound shocking to you, but diagnosing Lyme is very difficult, so the actual number of cases is high relative to reporting. According to preliminary statistics1, 2 just released by the Centers for Disease Control and Prevention (CDC), approximately 300,000 new cases of Lyme disease are diagnosed in the US each year. This is about 10 times higher than the officially reported number of cases, indicating that the disease is being vastly underreported. The data was presented by CDC officials at the 2013 International Conference on Lyme Borreliosis and Other Tick-Borne Diseases in Boston in the middle of August. As reported in the featured article by Medical News Today3: “This agrees with studies reported in the 1990s that showed the actual number of Lyme diseases cases in the US was likely to be three to twelve times higher than reported... Lyme disease is the most commonly reported tick-borne illness in the US.” What Is Lyme disease? Lyme disease was named after the East Coast town of Lyme, Connecticut, where the disease was first identified in 1975.4 The disease was first referred to as "Lyme arthritis" due to the presentation of atypical arthritic symptoms in children that lived in that city.
    [Show full text]
  • IS IT LYME DISEASE, Or TICK-BORNE RELAPSING FEVER?
    IS IT LYME DISEASE, or TICK-BORNE RELAPSING FEVER? Webinar Presented by Joseph J. Burrascano Jr. M.D. Joined by Jyotsna Shah PhD for the Q&A January 2020 Presenters Joseph J. Burrascano Jr. M.D. • Well-known pioneer in the field of tick-borne diseases, active since 1985 • Founding member of ILADS and ILADEF • Active in physician education on all aspects of tick-borne diseases Jyotsna Shah, PhD • President & Laboratory Director of IGeneX Clinical Laboratory • Over 40 Years of Research Experience in Immunology, Molecular Biology & Microbiology • Author of Multiple Publications & Holds More Than 20 Patents • Member of ILRAD as a Post-Doctoral Scientist • Started the First DNA Sequencing Laboratory in E. Africa 2 Poll Question Before we begin, we’d like to ask a poll question. Which one of these Borrelia causes Tick-Borne Relapsing Fever (TBRF)? a) B. mayonii b) B. turicatae c) B. burgdorferi d) B. andersonii e) B. garinii 3 Poll Question Before we begin, we’d like to ask a poll question. Which one of these Borrelia causes Tick-Borne Relapsing Fever (TBRF)? a) B. mayonii - Lyme b) B. turicatae - TBRF c) B. burgdorferi - Lyme d) B. andersonii - Lyme e) B. garinii – Lyme strain in Europe 4 What is TBRF? • Has been defined by clinical presentation • Has been defined by tick vector • Has been defined by genetics • Has been defined by serotype BUT • Each of these has exceptions and limitations! 5 Clinical Presentation of Classic TBRF • “Recurring febrile episodes that last ~3 days and are separated by afebrile periods of ~7 days duration.” • “Each febrile episode involves a “crisis.” During the “chill phase” of the crisis, patients develop very high fever (up to 106.7°F) and may become delirious, agitated, tachycardic and tachypneic.
    [Show full text]
  • Uvic Thesis Template
    Investigating the Role of Pallilysin in the Dissemination of the Syphilis Spirochete Treponema pallidum by Yavor Denchev Bachelor of Science, University of Victoria, 2011 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biochemistry and Microbiology Yavor Denchev, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Investigating the Role of Pallilysin in the Dissemination of the Syphilis Spirochete Treponema pallidum by Yavor Denchev Bachelor of Science, University of Victoria, 2011 Supervisory Committee Dr. Caroline Cameron, Department of Biochemistry and Microbiology Supervisor Dr. Terry Pearson, Department of Biochemistry and Microbiology Departmental Member Dr. John Taylor, Department of Biology Outside Member iii Abstract Supervisory Committee Dr. Caroline Cameron, Department of Biochemistry and Microbiology Supervisor Dr. Terry Pearson, Department of Biochemistry and Microbiology Departmental Member Dr. John Taylor, Department of Biology Outside Member Syphilis is a global public health concern with 36.4 million cases worldwide and 11 million new infections per year. It is a chronic multistage disease caused by the spirochete bacterium Treponema pallidum and is transmitted by sexual contact, direct contact with lesions or vertically from an infected mother to her fetus. T. pallidum is a highly invasive pathogen that rapidly penetrates tight junctions of endothelial cells and disseminates rapidly via the bloodstream to establish widespread infection. Previous investigations conducted in our laboratory identified the surface-exposed adhesin, pallilysin, as a metalloprotease that degrades the host components laminin (major component of the basement membrane lining blood vessels) and fibrinogen (primary component of the coagulation cascade), as well as fibrin clots (function to entrap bacteria and prevent disseminated infection).
    [Show full text]
  • Borrelia Species
    APPENDIX 2 Borrelia Species Likelihood of Secondary Transmission: • Secondary transmission of relapsing fever from blood Disease Agent: exposure or blood contact with broken skin or con- • Borrelia recurrentis—Tick-borne relapsing fever junctiva, contaminated needles • B. duttoni—Louse-borne relapsing fever At-Risk Populations: Disease Agent Characteristics: • Persons with exposure to the tick vector and people living in crowded conditions with degraded public • Not classified as either Gram-positive or Gram- health infrastructure negative, facultatively intracellular bacterium • Order: Spirochaetales; Family: Spirochaetaceae Vector and Reservoir Involved: • Size: 20-30 ¥ 0.2-0.3 mm • Nucleic acid: Approximately 1250-1570 kb of DNA • Argasid (soft) ticks: Tick-borne (endemic) relapsing fever. Rodents are the reservoir. Disease Name: • Human body louse: Louse-borne (epidemic) relaps- ing fever. No nonhuman reservoir • Relapsing fever Blood Phase: Priority Level: • Bacteria are present in high numbers in the blood • Scientific/Epidemiologic evidence regarding blood during febrile episodes and at lower levels between safety: Very low fevers. • Public perception and/or regulatory concern regard- • The duration of bacteremia is not well characterized, ing blood safety: Absent but recurrent fevers can persist for several weeks to • Public concern regarding disease agent: Very low months. Background: Survival/Persistence in Blood Products: • Relapsing fevers occur throughout the world, with the • No information for B. recurrentis; however, laboratory exception of a few areas in the Southwest Pacific. The studies indicate that B. burgdorferi survives in fresh distribution and occurrence of endemic tick-borne frozen plasma, RBCs, and platelets for the duration of relapsing fever (TBRF) are governed by the presence their storage period.
    [Show full text]
  • Pathogen and Host Response Dynamics in a Mouse Model of Borrelia Hermsii Relapsing Fever
    veterinary sciences Article Pathogen and Host Response Dynamics in a Mouse Model of Borrelia hermsii Relapsing Fever Christopher D. Crowder, Arash Ghalyanchi Langeroudi, Azadeh Shojaee Estabragh, Eric R. G. Lewis, Renee A. Marcsisin and Alan G. Barbour * Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA; [email protected] (C.D.C.); [email protected] (A.G.L.); [email protected] (A.S.E.); [email protected] (E.R.G.L.); [email protected] (R.A.M.) * Correspondence: [email protected]; Tel.: +1-949-824-5626 Academic Editor: Ulrike Munderloh Received: 13 July 2016; Accepted: 24 August 2016; Published: 30 August 2016 Abstract: Most Borrelia species that cause tick-borne relapsing fever utilize rodents as their natural reservoirs, and for decades laboratory-bred rodents have served as informative experimental models for the disease. However, while there has much progress in understanding the pathogenetic mechanisms, including antigenic variation, of the pathogen, the host side of the equation has been neglected. Using different approaches, we studied, in immunocompetent inbred mice, the dynamics of infection with and host responses to North American relapsing fever agent B. hermsii. The spirochete’s generation time in blood of infected mice was between 4–5 h and, after a delay, was matched in rate by the increase of specific agglutinating antibodies in response to the infection. After initiating serotype cells were cleared by antibodies, the surviving spirochetes were a different serotype and, as a population, grew more slowly. The retardation was attributable to the host response and not an inherently slower growth rate.
    [Show full text]
  • Values of Diagnostic Tests for the Various Species of Spirochetes
    +Model MEDMAL-4093; No. of Pages 10 ARTICLE IN PRESS Disponible en ligne sur ScienceDirect www.sciencedirect.com Médecine et maladies infectieuses xxx (2019) xxx–xxx Review Values of diagnostic tests for the various species of spirochetes Performances des tests diagnostiques pour les différentes espèces de spirochètes a,∗ b a c,d e Carole Eldin , Benoit Jaulhac , Oleg Mediannikov , Jean-Pierre Arzouni , Didier Raoult a IRD, AP–HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Université, 13005 Marseille, France b Laboratoire de bactériologie, Centre national de référence des Borrelia, faculté de médecine de Strasbourg, hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France c Plate-forme de sérologie bactérienne, IHU-Méditerranée Infection, 13005 Marseille, France d Labosud provence biologie, 13117 Martigues, France e IRD, AP–HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 13005 Marseille, France Received 26 October 2018; accepted 21 January 2019 Abstract Bacteria of the Borrelia burgdorferi sensu lato complex, responsible for Lyme disease, are members of the spirochetes phylum. Diagnostic difficulties of Lyme disease are partly due to the characteristics of spirochetes as their culture is tedious or even impossible for some of them. We performed a literature review to assess the value of the various diagnostic tests of spirochetes infections of medical interest such as Lyme borreliosis, relapsing fever borreliae, syphilis, and leptospirosis. We were able to draw similarities between these four infections. Real-time PCR now plays an important role in the direct diagnosis of these infections. However, direct diagnosis remains difficult because of a persistent lack of sensitivity. Serological testing is therefore crucial in the diagnostic process.
    [Show full text]
  • Vector-Borne Disease Flyer
    Do You Have Patients That Suffer from Chronic Pain and Fatigue? Medical Diagnostic Laboratories offers State-of-the-art Vector-Borne Disease Testing • Comprehensive vector-borne test menu including Lyme disease and viral & bacterial coinfections • Detection by DNA-based Polymerase Chain Reaction (PCR) and serology-based IgG/IgM • C6 Peptide ELISA testing for Borrelia burgdorferi • CDC and alternative interpretation of bands provided for Borrelia burgdorferi Immunoblot • Test additions available up to 30 days after collection • No refrigeration required before or after collection • 5-10 days turnaround time • Affordable patient pricing for non-insured patients • We file all insurances including Medicare, Medicaid, PPOs and HMOs • Founded in 1997 as a vector-borne & Lyme testing laboratory • Testing available for patients of all ages A DIVISION OF • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • TM Medical Diagnostic Laboratories, L.L.C. CLINICAL www.mdlab.com • 877.269.0090 DIAGNOSTICS 7/2019 Vector-Borne Diseases TICK-BORNE DISEASES Anaplasmosis & Ehrlichiosis 439 Anaplasma phagocytophilum lgG/lgM by IFA (serum required) 411 Ehrlichia chaff eensis (HME) & Anaplasma phagocytophilum (HGE) by Real-Time PCR 456 Ehrlichia ewingii (HME) by Real-Time PCR Babesiosis 431 Babesia duncani (WA-1) by Real-Time PCR 410 Babesia microti by Real-Time PCR 440 Babesia microti IgG/IgM by IFA (serum required) Borreliosis - Lyme disease 424 Borrelia afzelii (Europe) by Real-Time PCR 441 Borrelia afzelii (Europe) by Western
    [Show full text]
  • Attachment of Treponema Denticola Strains to Monolayers of Epithelial Cells of Different Origin 29
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/145980 Please be advised that this information was generated on 2021-10-08 and may be subject to change. ATTACHMENT OF TREPONEMA DENTICOLA, IN PARTICULAR STRAIN ATCC 33520, TO EPITHELIAL CELLS AND ERYTHROCYTES. - AN IN VITRO STUDY - L—J Print: Offsetdrukkerij Ridderprint B.V., Ridderkerk ATTACHMENT OF TREPONEMA DENTICOLA, IN PARTICULAR STRAIN ATCC 33520, TO EPITHELIAL CELLS AND ERYTHROCYTES. - AN IN VITRO STUDY - een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het College van Decanen in het openbaar te verdedigen op vrijdag 19 mei 1995 des namiddags te 3.30 uur precies door Robert Antoine Cornelius Keulers geboren op 4 april 1957 te Geertruidenberg Promotor: Prof. Dr. K.G. König. Co-promotores: Dr. J.C. Maltha Dr. F.H.M. Mikx Ouders, Familie, Vrienden Table of contents Page Chapter 1: General introduction 9 Chapter 2: Attachment of Treponema denticola strains to monolayers of epithelial cells of different origin 29 Chapter 3: Attachment of Treponema denticola strains ATCC 33520, ATCC 35405, Bll and Ny541 to a morphologically distinct population of rat palatal epithelial cells 35 Chapter 4: Involvement of treponemal surface-located protein and carbohydrate moieties in the attachment of Treponema denticola ATCC 33520 to cultured rat palatal epithelial cells 43 Chapter 5: Hemagglutination activity of Treponema denticola grown in serum-free medium in continuous culture 51 Chapter 6: Development of an in vitro model to study the invasion of oral spirochetes: A pilot study 59 Chapter 7: General discussion 71 Chapter 8: Summary, Samenvatting, References 85 Appendix: Ultrastructure of Treponema denticola ATCC 33520 113 Dankwoord 121 Curriculum vitae 123 Chapter 1 General introduction Table of contents chapter 1 Page 1.1.
    [Show full text]
  • Clinical Spectrum of Lyme Disease
    European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:201–208 https://doi.org/10.1007/s10096-018-3417-1 REVIEW Clinical spectrum of Lyme disease Jesus Alberto Cardenas-de la Garza1 & Estephania De la Cruz-Valadez1 & Jorge Ocampo-Candiani 1 & Oliverio Welsh1 Received: 4 September 2018 /Accepted: 30 October 2018 /Published online: 19 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Lyme disease (borreliosis) is one of the most common vector-borne diseases worldwide. Its incidence and geographic expansion has been steadily increasing in the last decades. Lyme disease is caused by Borrelia burgdorferi sensu lato, a heterogeneous group of which three genospecies have been systematically associated to Lyme disease: B. burgdorferi sensu stricto Borrelia afzelii and Borrelia garinii. Geographical distribution and clinical manifestations vary according to the species involved. Lyme disease clinical manifestations may be divided into three stages. Early localized stage is characterized by erythema migrans in the tick bite site. Early disseminated stage may present multiple erythema migrans lesions, borrelial lymphocytoma, lyme neuroborreliosis, carditis, or arthritis. The late disseminated stage manifests with acordermatitis chronica atrophicans, lyme arthritis, and neurological symptoms. Diagnosis is challenging due to the varied clinical manifestations it may present and usually involves a two-step serological approach. In the current review, we present a thorough revision of the clinical manifestations Lyme disease may present. Additionally, history, microbiology, diagnosis, post-treatment Lyme disease syndrome, treatment, and prognosis are discussed. Keywords Lyme disease . Borrelia burgdorferi . Tick-borne diseases . Ixodes . Erythema migrans . Lyme neuroborreliosis History posteriorly meningitis, establishing a link between both mani- festations.
    [Show full text]