Subsistence Salmon Harvest Monitoring Report, Kuskokwim Fisheries Management Area, Alaska, 2004

Total Page:16

File Type:pdf, Size:1020Kb

Subsistence Salmon Harvest Monitoring Report, Kuskokwim Fisheries Management Area, Alaska, 2004 Technical Paper No. 313 Subsistence Salmon Harvest Monitoring Report, Kuskokwim Fisheries Management Area, Alaska, 2004 by Jim Simon, Tracie Krauthoefer, David Koster, and David Caylor August 2007 Alaska Department of Fish and Game Division of Subsistence Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d’Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient nautical mile nmi Corporation Corp. (multiple) R ounce oz Incorporated Inc. correlation coefficient pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov yard yd et alii (and others) et al. degree (angular ) ° et cetera (and so forth) etc. degrees of freedom df Time and temperature exempli gratia expected value E day d (for example) e.g. greater than > degrees Celsius °C Federal Information greater than or equal to ≥ degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees kelvin K id est (that is) i.e. less than < hour h latitude or longitude lat. or long. less than or equal to ≤ minute min monetary symbols logarithm (natural) ln second s (U.S.) $, ¢ logarithm (base 10) log months (tables and logarithm (specify base) log2, etc. Physics and chemistry figures): first three minute (angular) ‘ all atomic symbols letters Jan,...,Dec not significant NS alternating current AC registered trademark ® null hypothesis HO ampere A trademark ™ percent % calorie cal United States probability P direct current DC (adjective) U.S. probability of a type I error hertz Hz United States of (rejection of the null horsepower hp America (noun) USA hypothesis when true) α hydrogen ion activity pH U.S.C. United States probability of a type II error Code (negative log of) (acceptance of the null U.S. state use two-letter parts per million ppm hypothesis when false) β abbreviations parts per thousand ppt, (e.g., AK, WA) second (angular) “ ‰ standard deviation SD volts V standard error SE watts W variance population Var sample var TECHNICAL PAPER NO. 313 SUBSISTENCE SALMON HARVEST MONITORING REPORT, KUSKOKWIM FISHERIES MANAGEMENT AREA, ALASKA, 2004 by Jim Simon Alaska Department of Fish and Game, Division of Subsistence, Fairbanks Tracie Krauthoefer Alaska Department of Fish and Game, Division of Subsistence, Anchorage David Koster Alaska Department of Fish and Game, Division of Subsistence, Anchorage and David Caylor Alaska Department of Fish and Game, Division of Subsistence, Anchorage Alaska Department of Fish and Game Division of Subsistence PO Box 115526, Juneau, Alaska, 99811-5526 August 2007 Final Report to the U.S. Fish and Wildlife Service, Office of Subsistence Management, Fisheries Resource Monitoring Program, to fulfill obligations for Study No. FIS 04-359 under agreement 701814J335. The Division of Subsistence Technical Paper Series was established in 1979 and represents the most complete collection of information about customary and traditional uses of fish and wildlife resources in Alaska. The papers cover all regions of the state. Some papers were written in response to specific fish and game management issues. Others provide detailed, basic information on the subsistence uses of particular communities which pertain to a large number of scientific and policy questions. Technical Paper Series reports are available through the Alaska State Library and on the Internet: http://www.subsistence.adfg.state.ak.us/ Jim Simon, Alaska Department of Fish and Game, Division of Subsistence, 1300 College Road, Fairbanks, Alaska 99701-1599 USA and Tracie Krauthoefer, David Koster, and David Caylor, Alaska Department of Fish and Game, Division of Subsistence, 333 Raspberry Road, Anchorage, Alaska, 99518-1599 USA This document should be cited as: Simon, J., T. Krauthoefer, D. Koster, and D. Caylor. 2007. Subsistence salmon harvest monitoring report, Kuskokwim Fisheries Management Area, Alaska, 2004. Alaska Department of Fish and Game, Division of Subsistence Technical Paper No. 313. Juneau. The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau AK 99811-5526 U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, Washington DC 20240 The department’s ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078 For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Subsistence, Website: http://www.subsistence.adfg.state.ak.us/ TABLE OF CONTENTS Page TABLE OF CONTENTS ...............................................................................................................................................i LIST OF TABLES.........................................................................................................................................................ii LIST OF FIGURES......................................................................................................................................................iii ABSTRACT ..................................................................................................................................................................1 INTRODUCTION.........................................................................................................................................................1 The Study Area..............................................................................................................................................................3 Background: Kuskokwim area Subsistence Salmon Harvest Monitoring ....................................................................3 Program History........................................................................................................................................................3 1960-1987 .......................................................................................................................................................3 1988-2003 .......................................................................................................................................................4 Regulatory Context...................................................................................................................................................5 Licenses, Permits, and Harvest Limits ............................................................................................................5 Fishing Gear....................................................................................................................................................6 Subsistence Salmon Fishing Schedule ............................................................................................................6 2004 Subsistence Salmon Fishing Season.......................................................................................................7 Subsistence Closures During the Commercial Fishery ...................................................................................7 PROJECT OBJECTIVES..............................................................................................................................................7 HARVEST MONITORING METHODS......................................................................................................................8 Harvest Calendars........................................................................................................................................................11 Household Surveys: Interviews
Recommended publications
  • Ecological Distribution of Spawning Sockeye Salmon in Three Lateral Streams, Brooks Lake, Alaska David Townsend Hoopes Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Ecological distribution of spawning sockeye salmon in three lateral streams, Brooks Lake, Alaska David Townsend Hoopes Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Hoopes, David Townsend, "Ecological distribution of spawning sockeye salmon in three lateral streams, Brooks Lake, Alaska " (1962). Retrospective Theses and Dissertations. 2052. https://lib.dr.iastate.edu/rtd/2052 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62-4154 microfilmed exactly as received HOOPES, David Townsend, 1932— ECO LOGICAL DISTRIBUTION OF SPAWNING SOCKEYE SALMON IN THREE LATERAL STREAMS, BROOKS LAKE, ALASKA. Iowa State University of Science and Technology Ph.D., 1962 Zoology University Microfilms, Inc., Ann Arbor, Michigan ECOLOGICAL DISTRIBUTION OF SPAWNING SOGKEYE SALMON IN THREE LATERAL STREAMS, BROOKS LAKE, ALASKA by. David Townsend Hoopes A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY c , Major Subject: Fishery Biology Approved
    [Show full text]
  • Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska)
    National Park Service U.S. Department of the Interior Natural Resources Program Center Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska) Natural Resource Technical Report NPS/NRWRD/NRTR—2007/372 Cover photo: Glacier emerging from the slopes of Mt Douglas toward the Katmai coastline. August 2005. Photo: S.Nagorski 2 Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska) Natural Resource Technical Report NPS/NRWRD/NRTR-2007/372 Sonia Nagorski Environmental Science Program University of Alaska Southeast Juneau, AK 99801 Ginny Eckert Biology Program University of Alaska Southeast Juneau, AK 99801 Eran Hood Environmental Science Program University of Alaska Southeast Juneau, AK 99801 Sanjay Pyare Environmental Science Program University of Alaska Southeast Juneau, AK 99801 This report was prepared under Task Order J9W88050014 of the Pacific Northwest Cooperative Ecosystem Studies Unit (agreement CA90880008) Water Resources Division Natural Resource Program Center 1201 Oakridge Drive, Suite 250 Fort Collins, CO 80525 June 2007 U.S. Department of Interior Washington, D.C. 3 The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the audience, and is designed and published in a professional manner. The Natural Resource Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission.
    [Show full text]
  • Ecology and Conservation of Mudminnow Species Worldwide
    FEATURE Ecology and Conservation of Mudminnow Species Worldwide Lauren M. Kuehne Ecología y conservación a nivel mundial School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195 de los lucios RESUMEN: en este trabajo, se revisa y resume la ecología Julian D. Olden y estado de conservación del grupo de peces comúnmente School of Aquatic and Fishery Sciences, University of Washington, Box conocido como “lucios” (anteriormente conocidos como 355020, Seattle, WA 98195, and Australian Rivers Institute, Griffith Uni- la familia Umbridae, pero recientemente reclasificados en versity, QLD, 4111, Australia. E-mail: [email protected] la Esocidae) los cuales se constituyen de sólo cinco espe- cies distribuidas en tres continentes. Estos peces de cuerpo ABSTRACT: We review and summarize the ecology and con- pequeño —que viven en hábitats de agua dulce y presentan servation status of the group of fishes commonly known as movilidad limitada— suelen presentar poblaciones aisla- “mudminnows” (formerly known as the family Umbridae but das a lo largo de distintos paisajes y son sujetos a las típi- recently reclassified as Esocidae), consisting of only five species cas amenazas que enfrentan las especies endémicas que distributed on three continents. These small-bodied fish—resid- se encuentran en contacto directo con los impactos antro- ing in freshwater habitats and exhibiting limited mobility—often pogénicos como la contaminación, alteración de hábitat occur in isolated populations across landscapes and are subject e introducción de especies no nativas. Aquí se resume el to conservation threats common to highly endemic species in conocimiento actual acerca de la distribución, relaciones close contact with anthropogenic impacts, such as pollution, filogenéticas, ecología y estado de conservación de cada habitat alteration, and nonnative species introductions.
    [Show full text]
  • Alaska Park Science 19(1): Arctic Alaska Are Living at the Species’ Northern-Most to Identify Habitats Most Frequented by Bears and 4-9
    National Park Service US Department of the Interior Alaska Park Science Region 11, Alaska Below the Surface Fish and Our Changing Underwater World Volume 19, Issue 1 Noatak National Preserve Cape Krusenstern Gates of the Arctic Alaska Park Science National Monument National Park and Preserve Kobuk Valley Volume 19, Issue 1 National Park June 2020 Bering Land Bridge Yukon-Charley Rivers National Preserve National Preserve Denali National Wrangell-St Elias National Editorial Board: Park and Preserve Park and Preserve Leigh Welling Debora Cooper Grant Hilderbrand Klondike Gold Rush Jim Lawler Lake Clark National National Historical Park Jennifer Pederson Weinberger Park and Preserve Guest Editor: Carol Ann Woody Kenai Fjords Managing Editor: Nina Chambers Katmai National Glacier Bay National National Park Design: Nina Chambers Park and Preserve Park and Preserve Sitka National A special thanks to Sarah Apsens for her diligent Historical Park efforts in assembling articles for this issue. Her Aniakchak National efforts helped make this issue possible. Monument and Preserve Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at https://www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Below the Surface: Fish and Our Changing Environmental DNA: An Emerging Tool for Permafrost Carbon in Stream Food Webs of Underwater World Understanding Aquatic Biodiversity Arctic Alaska C.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Alaska Blackfish on the Kenai by Matt Bowser
    Refuge Notebook • Vol. 20, No. 42 • October 26, 2018 Alaska blackfish on the Kenai by Matt Bowser An Alaska blackfish from a stream in Kenai (credit: Lucas Byker, ADF&G). Recently I stopped by a shallow, scuzzy pond by ified esophagus. This ability to breath air allows them Candlelight Drive in Kenai to look for Alaska black- to thrive in shallow, weedy, mucky wetlands where fish. I had heard that they had been found inthe other fish would die due to lack of oxygen. Blackfish stream that runs through the Kenai Golf Course down- reportedly can burrow into wetland moss when water stream of this little pond. The fish were not hard to levels drop temporarily, surviving as long as they re- find. As I walked along the squishy shore, a few 6- main moist. In winter, blackfish sometimes breathe air inch long blackfish darted from the shoreline. One through holes in the ice made by muskrats. dove into the mud by the shore, a typical behavior for The cold-hardiness of Alaska blackfish is leg- this remarkable species. endary, with multiple reports of these fish apparently The Alaska blackfish is the only air-breathing fish coming back to life after having been frozen. Subse- in the arctic and one of only three fish species in the quent studies demonstrated that blackfish cannot sur- world that obtain atmospheric oxygen through a mod- vive being completely frozen. Nonetheless, they are 84 USFWS Kenai National Wildlife Refuge Refuge Notebook • Vol. 20, No. 42 • October 26, 2018 extremely hardy and can remain active under the ice Jeff Breakfield found Alaska blackfish in the Cityof in oxygen-poor lakes and ponds where other fish may Kenai.
    [Show full text]
  • Cardiophysiological Responses of the Air-Breathing Alaska Blackfish to Cold Acclimation and Chronic Hypoxic Submergence at 5°C Jonathan A
    © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb225730. doi:10.1242/jeb.225730 RESEARCH ARTICLE Cardiophysiological responses of the air-breathing Alaska blackfish to cold acclimation and chronic hypoxic submergence at 5°C Jonathan A. W. Stecyk1,‡, Christine S. Couturier1,*, Denis V. Abramochkin2,3,4,*, Diarmid Hall1, Asia Arrant-Howell1, Kerry L. Kubly1, Shyanne Lockmann1, Kyle Logue1, Lenett Trueblood1, Connor Swalling1, Jessica Pinard1 and Angela Vogt1 ABSTRACT 2016). Consequently, in winter, cardiac physiology must be The Alaska blackfish (Dallia pectoralis) remains active at cold adjusted to accommodate the cold temperature-driven effects on temperatures when experiencing aquatic hypoxia without air access. contractility, blood viscosity and associated vascular resistance to To discern the cardiophysiological adjustments that permit this ensure the efficient transport of respiratory gases, nutrients, waste behaviour, we quantified the effect of acclimation from 15°C to 5°C in products and signalling molecules of the endocrine system among normoxia (15N and 5N fish), as well as chronic hypoxic submergence tissues via the circulatory system (Young and Egginton, 2011). In (6–8 weeks; ∼6.3–8.4 kPa; no air access) at 5°C (5H fish), on in vivo addition, in winter, cardiac electrical excitability must be adjusted to coincide with temperature-dependent reductions in heart rate ( fH), and spontaneous heart rate ( fH), electrocardiogram, ventricular action potential (AP) shape and duration (APD), the background inward while maintaining cardiac excitability and protecting against cardiac + arrhythmias that can be induced by cold temperature and oxygen rectifier (IK1) and rapid delayed rectifier (IKr)K currents and ventricular gene expression of proteins involved in excitation–contraction deprivation (Vornanen, 2017).
    [Show full text]
  • Trophic Ecology of Introduced Populations of Alaska Blackfish (Dallia Pectoralis) in the Cook Inlet Basin, Alaska
    Environ Biol Fish DOI 10.1007/s10641-016-0497-6 Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska Dona M. Eidam & Frank A. von Hippel & Matthew L. Carlson & Dennis R. Lassuy & J. Andrés López Received: 19 October 2015 /Accepted: 9 June 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Introduced non-native fishes have the poten- characterize the diet of Alaska blackfish at three Cook tial to substantially alter aquatic ecology in the intro- Inlet Basin sites, including a lake, a stream, and a duced range through competition and predation. The wetland. We analyze stomach plus esophageal contents Alaska blackfish (Dallia pectoralis) is a freshwater fish to assess potential impacts on native species via compe- endemic to Chukotka and Alaska north of the Alaska tition or predation. Alaska blackfish in the Cook Inlet Range (Beringia); the species was introduced outside of Basin consume a wide range of prey, with major prey its native range to the Cook Inlet Basin of Alaska in the consisting of epiphytic/benthic dipteran larvae, gastro- 1950s, where it has since become widespread. Here we pods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Electronic supplementary material The online version of this Alaska blackfish may affect native fish populations via article (doi:10.1007/s10641-016-0497-6) contains supplementary competition. Fish ranked third in prey importance for material, which is available to authorized users.
    [Show full text]
  • Ring of Fire Proposed RMP and Final EIS- Volume 1 Cover Page
    U.S. Department of the Interior Bureau of Land Management N T OF M E TH T E R A IN P T E E D R . I O S R . U M 9 AR 8 4 C H 3, 1 Ring of Fire FINAL Proposed Resource Management Plan and Final Environmental Impact Statement and Final Environmental Impact Statement and Final Environmental Management Plan Resource Proposed Ring of Fire Volume 1: Chapters 1-3 July 2006 Anchorage Field Office, Alaska July 200 U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMMENT 6 Volume 1 The Bureau of Land Management Today Our Vision To enhance the quality of life for all citizens through the balanced stewardship of America’s public lands and resources. Our Mission To sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/AK/PL-06/022+1610+040 BLM File Photos: 1. Aerial view of the Chilligan River north of Chakachamna Lake in the northern portion of Neacola Block 2. OHV users on Knik River gravel bar 3. Mountain goat 1 4. Helicopter and raft at Tsirku River 2 3 4 U.S. Department of the Interior Bureau of Land Management Ring of Fire Proposed Resource Management Plan and Final Environmental Impact Statement Prepared By: Anchorage Field Office July 2006 United States Department of the Interior BUREAU OF LAND MANAGEMENT Alaska State Office 222 West Seventh Avenue, #13 Anchorage, Alaska 995 13-7599 http://www.ak.blm.gov Dear Reader: Enclosed for your review is the Proposed Resource Management Plan and Final Environmental Impact Statement (Proposed RMPIFinal EIS) for the lands administered in the Ring of Fire by the Bureau of Land Management's (BLM's) Anchorage Field Office (AFO).
    [Show full text]
  • Freshwater Fish – Introduction
    Appendix 4, Page 89 Freshwater Fish – Introduction Freshwater fish species play an important role in the social and economic fabric of Alaska. Many are important for subsistence. Recreational and commercial fishing for many species, such as Arctic char, pike, rainbow trout, Dolly Varden, sheefish, and the 5 species of Pacific salmon, account for millions of dollars in commerce annually in Alaska. However, Alaska’s “nongame” fish species—species that are not recreationally or commercially harvested—play a crucial role in aquatic ecosystems and, through predation by terrestrial, avian, and marine species, in other ecosystems as well. Some freshwater fish species constitute an important element of the food chain for many other species including species of potential conservation concern, such as loons and beluga whales. In April 2004, ADF&G convened a diverse group of freshwater fish experts and asked these scientists to develop a short list of species and/or species groups to feature in the CWCS, including specific conservation actions that could be started in the next decade. The group reviewed a complete list of freshwater and anadromous candidate species that excluded species routinely harvested in sport or commercial fisheries in Alaska. By mutual agreement, the group then excluded species (e.g., sturgeon) that occur only incidentally in Alaska. The experts compared the status of the remaining 25 species against 15 criteria; these included the 11 “species selection criteria” listed in Section II(D), plus other criteria the group generated, including whether a species is used by humans, is important prey for another “at-risk” species, or is of demonstrated special scientific importance.
    [Show full text]
  • Traditional Ecological Knowledge and Contemporary Subsistence Harvest of Non-Salmon Fish in the Koyukuk River Drainage, Alaska
    Traditional Ecological Knowledge and Contemporary Subsistence Harvest of Non-Salmon Fish in the Koyukuk River Drainage, Alaska by David B. Andersen1, Caroline L. Brown2, Robert J. Walker2 and Kimberly Elkin3 Technical Paper No. 282 1Research North° 2Alaska Department of Fish and Game 3Tanana Chiefs Conference Fairbanks, Alaska Division of Subsistence Fairbanks, Alaska May 2004 TABLE OF CONTENTS TABLE OF CONTENTS................................................................................................................. i ABSTRACT.................................................................................................................................... v INTRODUCTION .......................................................................................................................... 1 OBJECTIVES................................................................................................................................. 7 METHODS ..................................................................................................................................... 8 Collection of TEK ........................................................................................................................ 8 Collection of Harvest Data........................................................................................................ 13 Sampling Goals ...................................................................................................................... 14 Pre-fieldwork Training Session.............................................................................................
    [Show full text]
  • Post-Glacial Dispersal Patterns of Northern Pike Inferred from an 8800 Year Old Pike (Esox Cf
    Quaternary Science Reviews 120 (2015) 118e125 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Short communication Post-glacial dispersal patterns of Northern pike inferred from an 8800 year old pike (Esox cf. lucius) skull from interior Alaska * Matthew J. Wooller a, b, , Benjamin Gaglioti a, Tara L. Fulton c, Andres Lopez b, d, Beth Shapiro c a Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA b School of Fisheries and Ocean Sciences, Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA c UCSC Paleogenomics Lab., University of California Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA d University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA article info abstract Article history: The biogeography of freshwater fish species during and after late-Pleistocene glaciations relate to how Received 20 January 2015 these species are genetically organized today, and the management of these often disjunct populations. Received in revised form Debate exists concerning the biogeography and routes of dispersal for Northern pike (Esox lucius) after 21 April 2015 the last glaciation. A hypothesis to account for the relatively low modern genetic diversity for E. lucius is Accepted 26 April 2015 post-glacial radiation from refugia, including lakes from within the un-glaciated portions of eastern Available online 27 May 2015 Beringia. We report the remains of a Northern pike (E. cf. lucius) skull, including bones, teeth, bone collagen and ancient DNA. The remains were preserved at a depth of between 440 and 446 cm in a Keywords: Northern pike 670 cm long core of sediment from Quartz Lake, which initiated at ~11,200 cal yr BP in interior Alaska.
    [Show full text]