Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2021 Undergraduate Research Abstract Booklet
1 | P a g e Table of Contents FOREWORD ................................................................................................................................................... 4 Abidemi Awojuyigbe ..................................................................................................................................... 5 Aijalon Shantavia........................................................................................................................................... 6 Aminata Diagne ............................................................................................................................................. 8 The Exploration of BRAF Gene .................................................................................................................... 10 Araceli Estrada Martinez ............................................................................................................................. 10 Ashlee Young ............................................................................................................................................... 11 Ayanna D. Montegut ................................................................................................................................... 12 Brandon Bernäl ........................................................................................................................................... 13 Caleb Riggins .............................................................................................................................................. -
Local Immune Regulation in Human Pregnancy with Focus on Decidual Macrophages
Linköping University Medical Dissertations No. 1016 Local immune regulation in human pregnancy with focus on decidual macrophages Charlotte Gustafsson Division of Clinical Immunology and Division of Obstetrics and Gynecology Department of Clinical and Experimental Medicine Faculty of Health Sciences, Linköping University SE-581 85 Linköping, Sweden Linköping 2007 © Charlotte Gustafsson 2007 Cover picture printed with permission from Articulate Graphics; www.articulategraphics.com Published articles have been reprinted with permission of respective copyright holder. Paper I © 2002 Blackwell Munksgaard Paper II © 2003 Blackwell Munksgaard Paper IV © 2006 Elsevier Ireland Ltd ISBN 978-91-85895-85-4 ISSN 0345-0082 Printed by LiU-Tryck, Linköping, Sweden, 2007 "There are no facts, only interpretations." Friedrich Nietzsche ABSTRACT During pregnancy, the woman carries a fetus partly foreign to her immune system, because of the expression of paternal antigens. Despite this, the fetus is normally tolerated and not rejected, as is often the case with organs in allogeneic transplantations. Systemic changes in maternal blood occur during pregnancy but, perhaps of greater importance, are changes in tissues locally in the uterus. The pregnant uterine endometrium, the decidua, is infiltrated by large numbers of leukocytes, mainly natural killer (NK) cells but also macrophages and T lymphocytes. Further, various cytokines are known to be secreted at the fetomaternal interface. However, the functions of these cells and the cytokine networks are not fully understood. The aim of this thesis was to investigate the local immune balance in normal human pregnancy decidua, both in the early phase of pregnancy and at parturition. First trimester decidual mononuclear cells, NK cells and macrophages were all shown to secrete IFN-γ, IL-4 and IL-10, as detected by ELISPOT. -
From Trophoblast to Human Placenta
From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst. -
First Trimester Embryonic Nutrition
First trimester embryonic nutrition Graham J Burton Centre for Trophoblast Research Department of Physiology, Development and Neuroscience Aims • To demonstrate that during the embryonic phase of development the human conceptus is supported by histiotrophic nutrition from the endometrial glands • To present evidence that the yolk sac is important for the uptake of nutrients during embryogenesis • To propose that the histiotrophic form of nutrition may protect the embryo from oxygen free radical mediated teratogenesis Human pregnancy is traditionally separated in to the embryonic and fetal periods Embryonic Fetal LMP Fert. 10 20 30 40 weeks Organization of the body plan, Growth and maturation differentiation of the major organs The teratogenic risk is greatest during the embryonic phase of development Sadler • Each organ system has a critical period depending on the timing of differentiation • It is critical that the intrauterine environment is stable during the period of embryogenesis The two sequential modes of nutrition for the conceptus The human uterus has approximately 15 endometrial glands per mm 2 • Nutrition of the conceptus is initially histiotrophic in all species - the uptake of oviductal and uterine secretions by the trophoblast • Later, in all mammals it switches to haemotrophic nutrition - exchange between the maternal and fetal circulations within the placenta Histiotrophic nutrition in early pregnancy WA Allen Endometrium Conceptus ‘Uterine milk’ Endoscopic view of a horse conceptus at approximately day 35 of pregnancy -
Single-Cell Transcriptomics of the Human Placenta: Inferring the Cell Communication Network of the Maternal-Fetal Interface
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface Mihaela Pavličev,1,2 Günter P. Wagner,3,4,5,6 Arun Rajendra Chavan,3 Kathryn Owens,7 Jamie Maziarz,3 Caitlin Dunn-Fletcher,2 Suhas G. Kallapur,1,2 Louis Muglia,1,2 and Helen Jones7,8 1Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA; 3Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA; 4Yale Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA; 5Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, Yale University, New Haven, Connecticut 06510, USA; 6Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA; 7Center for Fetal Cellular and Molecular Therapy, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 8Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome by assessing the gene expression of receptor-ligand pairs across cell types. -
Histological Expression of Metallothionein in the Developing Rat Placenta
J Toxicol Pathol 2008; 21: 223–227 Original Histological Expression of Metallothionein in the Developing Rat Placenta Satoshi Furukawa1, Koji Usuda1, Masayoshi Abe1, Seigo Hayashi1, and Izumi Ogawa1 1Biological Research Laboratories, Nissan Chemical Industries, Ltd., 1470 Shiraoka, Minamisaitama, Saitama 349–0294, Japan Abstract: In order to clarify the metallothionein (MT) localization in the developing placenta, we histologically investigated the sequential MT expression in placentas and fetal livers using pregnant rats during gestation days (GDs) 9 – 21. The placentas were sampled and weighed on GDs 9, 11, 13, 15, 17, 19 and 21. In the early post implantation period, the expression of MT was slightly detected in the yolk sac and the primary decidual zone around the embryo. MT was then mainly present in the deciduas parietalis and yolk sac. After the deciduas parietalis ruptured, MT was subsequently detected in the yolk sac and deciduas basalis. MT continued to be detected in the yolk sac until GD 21, but it was reduced in the deciduas basalis in accordance with development of the fetal liver with elevated MT expression. In conclusion, the main expression site of MT changes from the maternal placenta to the fetal placenta, and then to the fetal liver in accordance with the fetal development. However, we speculate that the MT-positive cells in the placenta are positioned between the maternal and embryonic environments throughout the gestation period and always surround the embryo/fetus. (J Toxicol Pathol 2008; 21: 223–227) Key words: fetus, liver, metallothionein, placenta, rat Introduction fetal blood2. On the other hand, cadmium is known to accumulate in the placenta and induces cellular damage, Metallothionein (MT) is a family of cysteine-rich, low which can result in teratogenic or embryotoxic effects3. -
Unravelling Genetic Variation Underlying De Novo-Synthesis Of
www.nature.com/scientificreports OPEN Unravelling genetic variation underlying de novo-synthesis of bovine milk fatty acids Received: 18 July 2017 Tim Martin Knutsen1, Hanne Gro Olsen1, Valeria Tafntseva2, Morten Svendsen3, Accepted: 18 January 2018 Achim Kohler2, Matthew Peter Kent1 & Sigbjørn Lien1 Published: xx xx xxxx The relative abundance of specifc fatty acids in milk can be important for consumer health and manufacturing properties of dairy products. Understanding of genes controlling milk fat synthesis may contribute to the development of dairy products with high quality and nutritional value. This study aims to identify key genes and genetic variants afecting de novo synthesis of the short- and medium- chained fatty acids C4:0 to C14:0. A genome-wide association study using 609,361 SNP markers and 1,811 animals was performed to detect genomic regions afecting fatty acid levels. These regions were further refned using sequencing data to impute millions of additional genetic variants. Results suggest associations of PAEP with the content of C4:0, AACS with the content of fatty acids C4:0-C6:0, NCOA6 or ACSS2 with the longer chain fatty acids C6:0-C14:0, and FASN mainly associated with content of C14:0. None of the top-ranking markers caused amino acid shifts but were mostly situated in putatively regulating regions and suggested a regulatory role of the QTLs. Sequencing mRNA from bovine milk confrmed the expression of all candidate genes which, combined with knowledge of their roles in fat biosynthesis, supports their potential role in de novo synthesis of bovine milk fatty acids. Bovine milk is an important source of many nutrients including proteins, fat, minerals, vitamins and bioactive lipid components. -
PAEP Antibody Cat
PAEP Antibody Cat. No.: 57-832 PAEP Antibody PAEP Antibody immunohistochemistry analysis in formalin fixed and paraffin embedded human uterus tissue followed by peroxidase conjugation of the secondary antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This PAEP antibody is generated from rabbits immunized with a KLH conjugated synthetic IMMUNOGEN: peptide between 73-101 amino acids from the Central region of human PAEP. TESTED APPLICATIONS: IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 PREDICTED MOLECULAR 21 kDa WEIGHT: September 30, 2021 1 https://www.prosci-inc.com/paep-antibody-57-832.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PAEP Glycodelin, GD, Placental protein 14, PP14, Pregnancy-associated endometrial alpha-2 ALTERNATE NAMES: globulin, PAEG, PEG, Progestagen-associated endometrial protein, Progesterone- associated endometrial protein, PAEP ACCESSION NO.: P09466 PROTEIN GI NO.: 130701 GENE ID: 5047 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References This gene is a member of the kernel lipocalin superfamily whose members share relatively low sequence similarity but have highly conserved exon/intron structure and three- dimensional protein folding. -
Development of a Proteomic Assay for Menstrual Blood, Vaginal Fluid and Species Identification Author(S): Donald Siegel, Ph.D
The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource: Document Title: Development of a Proteomic Assay for Menstrual Blood, Vaginal Fluid and Species Identification Author(s): Donald Siegel, Ph.D. Document Number: 251932 Date Received: August 2018 Award Number: 2010-DN-BX-K192 This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs’ National Criminal Justice Reference Service. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Development of a Proteomic Assay for Menstrual Blood, Vaginal Fluid and Species Identification Final Draft Technical Report NIJ Grant 2010-DN-BX-K192 Principal Investigator: Donald Siegel, Ph.D. Principal Scientist Office of Chief Medical Examiner 421 East 26th Street New York, NY 10016 Tel: 212-323-1434 Fax: 212-323-1560 Email: [email protected] Web: www.nyc.gov/ocme This resource was prepared by the author(s) using Federal funds provided by the U.S. Department of Justice. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Final Draft Technical Report NIJ Grant 2010-DN-BX-K192 Development of a Proteomic Assay for Menstrual Blood, Vaginal Fluid and Species Identification TABLE OF CONTENTS ABBREVIATIONS……………………………………………………………………………………………………………………..4 -
Genomics of Bovine Milk Fat Composition
Philosophiae Doctor (PhD), Thesis 2018:19 (PhD), Doctor Philosophiae Norwegian University of Life Sciences Faculty of Biosciences Philosophiae Doctor (PhD) Thesis 2018:19 Tim Martin Tim Knutsen Genomics of bovine milk fat composition Genetisk karakterisering av fettsyresammensetning i melk Tim Martin Knutsen !" # $ % &%' " ()*+, - )*+,.+/ 0""+,/1231*) 0"$/4,2,)25452+1//2* 2 Acknowledgements The work presented here has been part of the project “Genome-based improvement of bovine milk fatty acids”. The project was coordinated by the Norwegian University of Life Sciences (NMBU) and was a collaboration between NMBU, GENO SA and TINE SA. The project was funded by The Norwegian Research Council. To my dear supervisors. Sigbjørn, you are constantly supportive, work relentlessly for what you believe in, and it has been an honour to learn from you. Hanne Gro, thanks for the endless hours we have spent discussing this project, your critical sense, and your treasured help in the writing process. Torfinn, thanks for your out-of-this-world-value-for-money bioinformatics coaching and advice. And Matthew, thanks for all your hours polishing my writing, your enthusiasm for cool sequencing technologies and your wonderful sense of humour. My sincere thanks to all others who have contributed to this work, especially Achim Kohler, Valeria Tafinseva and Morten Svendsen for enabling the fatty acid GWAS with your mathematical wizardry. I also want to express my gratitude to Arne Gvusland for your critical comments to an early draft of this thesis, and for time after time dragging me out to jog at times when I really needed it. Seven years ago, late for my appointment, I stumbled into Sigbjørn’s office to discuss possible master projects. -
The Function of the Decidual Cell
the function of the decidual cell. 265 the function of the decidual cell. % W. E. Fothergill, M.A., B.Sc., M.D., Manchester. when stroma of the uterine mucous membrane, little to the eye o shape > faltered by pregnancy, presents 01 o\ a multitude of small cells, round 1?pt beyond ? and but little cell pro op , conspicuous nuclei ^ j?. of the uterine mu 'odified pregnancy, the stroma ?veatly by ce s a S ? different for many of the G P' appearance, Their are arSed and infinitely in shape. 1 they vary nuc e ' an(l with clear outline and . vesicular, ai ,vi?.e P . ^e their cell is abundant and gianu Ce> protoplasm of cas These are well seen in sections changes 1 m ^-on for m these *n oases of ectopic gestation, ofe^terusthe b) c uterine decidua goes on uncomplicated lQetal structures. the eonnec ^ has this of t; been maintained that enlargement of the uterine mucosa occurs only during gestation. d " ^ccdlsthat the so-called decidual cell" is according yp been rtrongyj, of This view, however, nas or?mC P^gnancy. ce Pposed; for cells from decidual indistinguishable morbid condit in the uterine mucosa in various is now ' membrane bv the formation of a decidual . s?nie to be from pregnancy possible, apart thateitieint t le this as it the fact remains, of fulC' may, ^ pfnsfant C6lls in of the Uterin6 mUC?Sa feat the stroma . ?? ??????? ? n ? ^le decidual cells in normal gestation wsaaat, my evp in work.work >>was called tQ the point while engaged moles and placenpathologi^l p UoK investigating fleshy the decidual cells^ awGd thafc> under certain circumstances, to an active in the changes play part i o foetus. -
Serum Biomarkers of Tubal Ectopic Pregnancy: Current Candidates and Future Possibilities
REPRODUCTIONREVIEW Serum biomarkers of tubal ectopic pregnancy: current candidates and future possibilities Joanna Cartwright, W Colin Duncan, Hilary O D Critchley and Andrew W Horne Division of Reproductive and Developmental Sciences, Simpson Centre for Reproductive Health, The University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SB, UK Correspondence should be addressed to A W Horne; Email: [email protected] Abstract Ectopic pregnancy remains a considerable cause of maternal morbidity and mortality worldwide. Currently, it is diagnosed using a combination of transvaginal ultrasound and serial serum b-human chorionic gonadotrophin levels. Diagnosis is often delayed and these tests are time-consuming and costly, both psychologically to the patient and financially to health services. The development of a biomarker that can differentiate a tubal ectopic from an intrauterine implantation is therefore important. In the pre-genomic era, a one-by-one scientific approach has revealed over 20 candidate biomarkers that could be used as a test to diagnose ectopic pregnancy although at present their clinical utility is very limited. These biomarkers cluster into themes: markers of abnormal embryo/trophoblast growth, markers of abnormal corpus luteum function, markers of a growing pregnancy in the Fallopian tube, markers of inflammation and peritoneal irritation, and uterine markers of normal implantation. It is likely that this thematic approach will facilitate the identification of newer biomarkers using