August, 1979 the Thesis of John Grenfell Is Approved

Total Page:16

File Type:pdf, Size:1020Kb

August, 1979 the Thesis of John Grenfell Is Approved California State University, Northridge Ecological Aspects of Feeding Behavior of Some Tellinaceans \l (Mollusca: Bivalvia) A thesis submitted in partial satisfaction of the requirements for the degree of ~~ster of Science in Biology by John Kemp Grenfell August, 1979 The Thesis of John Grenfell is approved: Earl Segal committee chairman California State University, Northridge ii ACKNOWLEDGEMENTS I would like to thank Ross Pohlo, the chairman of my oommi ttee, for his help and valuable criticisms of the ini tlal thesis drafts. I am also indebted to Earl Segal and Tony Gaudin for their helpful criticism and advice. I would also like to thank my wife, Carol, without whose help tr~s project would not have been completed. iii TABLE OF CONTENTS Page ACKNOWLEDGEHENTS • • • • • • • • • • • • • • • • • • • • • • • iii LIST OF TA.BLJ<jS • • • • • • • • • • • • • • • • • • • • • • • vi LIST OF FIGURES • • • • • • • • • • • • • • • • • • • • • • • vii LIST OF PLATES • • • • • • • • • • • • • • • • • • • • • • •Viii ABS'ffiACT • • • • • • • • • • • • • • • • • • • • • • • iJc INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • 1 JifA. T.ERIALS AND METHODS • • • • • • • • • • • • • • • • • • • • • 4 Areas of Study • • • • • • • • • • • • • • • • • • • o • 4 Sampling Technique • • • • • • • • • • • • • • • • • • • • 16 Substrate Analyses • • • • • • • • • • • • • • • • • • • • 16 Shell Measurement • • • • • • • • • • • • • • • • • • • • • 19 Mantle Cavity and Stomach Contents • • • • • • • • • • • • 19 Feeding Behavior • • • • • • • • • • • • • • • • • • • • • 19 Statistical Analyses • • • • • • • • • • • • • • • • • • • 19 RESULTS • • • • • • • • • • • • • • • • • • • • • • • 21 Mantle Cavity and Stomach Contents •••••••••••• 21 Behavior of the Inhalent Siphon • • • • • • • • • • • • • • 21 Population Density •••••••••••••••••••• 25 Shell Size • • • • • • • • • • • • • • • • • • • • • • • 29 Substrate Analyses • • • • • • • • • • • • • • • • • • • • 31 DISCUSSION • • • • • • • • • • • • • • • • • • • • • • • 34 Feeding Behavi.or • • • • • • • • • • • • • • • • • • • • • 34 Population Density • • • • • • • • • • • • • • • • • • • • 37 Substrate Analyses • • • • • • • . -· • • • • • • • • • • • 38 Shell Size • • • • • • • • • • • • • • • • • • • • • • • 38 LITERA1URE CITED • • • • • • • • • • • • • • • • • • • • • • • 40 APPENDICES Appendix 1 Dimensions for ~~coma nasuta collected from Mugu Lagoon • • • • • • • • • • • • • • 42 Appendix 2 Dimensions for ~anguinolaria nuttallii collected from Mugu Lagoon • • • • • • • • • 42 iv TABLE OF CONTEN'lli cont. Page Appendix 3 Dimensions for Tagelus californianus and Macoma nasuta collected from Edison Canal • • 43 Appendix 4 Dimensions for Tagelus californianus collected at Back-Bay Newport • • • • • • • • 44 Appendix 5 Dimensions for Macoma secta and Sanguinolaria nuttallii collected from Lower Newport Bay • • • • • • • • • • • 0 • • 45 Appendix 6 Dimensions for ~~coma nasuta, Macoma secta and Florimetis obes~ollected at NewPort Bay-:-. • • • • • • • • • • • • • • • 46 Appendix 7 Regression analyses for Tagelu~ californianus • • • • • • • • • • • • • • • • 47 Appendix 8 Regression analyses for Sa~nol~~ nuttallii • • • • • • • • • • • • • • • • • • 48 Appendix 9 Regression analyses for Macoma nasuta • • • • 49 Appendix 10 Regression analyses for Florimetis obesa • • 50 Appendix 11 Regression analyses for Macoma ~ • • • • 51 v LIST OF TABLES Table Page 1 Stomach contents, siphonal behavior, and feeding type • • • • • • • • • • • • • • 0 • • • • • • • • 22 2 Mean number and t-values for species collected allopatrically and sympatrically per 0.5 m2 ••••••• 26 3 Mean number and t-values for allopatric populations and total number of tellinaceans in sympatric communities per 0.5 m2 •••••••••••••••••• 28 4 Mean length and height and t-values for allopatric and sympatric species •••• • • • • • • ••• 30 5 Slopes of regression lines and t-values comparing the slopes of those lines • • • • • • • • • • • • • • •• 32 6 Sediment size distribution and organic carbon content from the areas of study, percent by weight •••••••• 33 vi LIST OF FIGURES Figures Page 1 Locations of tellinaceans and nature of occurrence • • • 7 2 Morro Bay • • • • • • • • • • • • • • • • • • • • • • • 9 3 Edison Canal • • • • • • • • • • • • •••••••••• 11 4 Mugu Lagoon • • • • • • • • • • • • • • • • • • • • • • 13 5 Newport Bay . ~ . ·- . • • • • • • • • • • 15 6 Types of inhalent siphonal behavior • • • • • • • • • • 24 ~ vii LIST OF PLATES Plate Page 1 Species studied. • • • • • • • • • • • • • • • • • • • • 6 A. Macoma nasuta B. Tagelus californianus c. Macoma secta D. Flarimetis obesa E. Sanguinolari~ nuttallii 2 The quadrat sampler and sieve • • • • • • • • • • • • • 18 viii ABS'ffiACT Ecological Aspects of Feeding Behavior of Some Tellinaceans (Mollusca: Bivalvia) by John Kemp Grenfell Master of Science in Biology August, 1979 The feeding behavior of five species of tellinaceans was studied in four locations in California, USA. The organisms were studied in areas where they occurred sympatrically with other tellinaceans and in other areas where no other tellinaceans ¥tere present., Random samples v1ere taken to determine population densities. Shell sizes were measured to determine if there was any difference due to competition. Each population was examined to ascertain the type of feeding behavior. Feeding behavior was determined from the stomach contents and from the behavior of the inhalent siphon. It was observed that when closely related species occur in the same location they exploit different microhabitats. Some organisms use suspended material as their primary food source, while others ingest deposits. Macoma nasuta is a deposit feeder when not in competition with other tellinaceans, but fed on both deposits and ix - ~ - --------------- suspended material when coexisting with other deposit feeding Tellinacea. There is not any significant change in the population denslty or shell size which can be attributed to differences in feeding behavior. Growth of tellinacean species was the same in different geographical locations. X INTRODUC'llJ:ON The superfamily Tellinacea is a gToup of burrowing bivalves found on the Pacific Coast of North America from Alaska to Panama. Five species within this superfamily were studied. Macoma nasuta (Conrad, 1837) is usually found in quiet waters with muddy substratum about 15 em below the surface, rangi-ng from Alaska to Baja California, Mexico (Abbott, 1954). Macoma secta (Conrad, 1837) is found in bays 15 to 20 em below the surface from Vancouver Island to the Gulf of California (Abbott, 1954). Sanguinolaria nuttallii Conrad, 1837 can be located in estuaries 15 to 25 em oelow the surface from Monterey, California to Baja California (Abbott, 1954). Tagelus californianus (Conrad, 1837) is found on muddy sand flats 15 to 30 em below the surface, from Humboldt Bay, California to Panama (Abbott, 1954). Floriroetis obesa (Deshayes, 1855) is found in clean sand about 15 to 25 em below the surface, from Point Conception, California to Magdalena Bay, Baja California (McLean, 1969). According to Yonge (1949) all Tellinacea are deposit feeders. More recently Bradfield and Newell (1961), Holme (1961), Purchon (1963), Wade (1965), Pohlo (1966, 1967, 1969, 1972, 1973), Mauer (1967), .and Reid and Reid (1969) showed some members of the Tellinacea are suspension feeders. Both Macoma nasuta and Macoma secta are considered to be deposit feeders, while Taeelus califorruanus and Sanguinolaria nuttallii are considered to be suspension feeders (Pohlo, 1969, 1972, 1973). However Florimetis obesa may function as both a suspension and deposit feeder (Pohlo, 1973). 1 ,.., .::. In suspension feeders, the animal holds the inhalent siphon at or near the surface often in a conical depression and at times extends it several centimeters above the substratum. At no time, however, is the siphon seen actively inhaling the deposits. The stomach contents reflect the siphonal behavior. Sand grains and nutrient particles in the stomach are small, averaging 50 fl• Nutrients are composed of bacteria, flagellates, small dinoflagellates, diatoms and debris (Reid and Reid, 1969). In deposit feeders, the inhalent siphon rests on the substratum, moving aro1tnd continuously, periodically pressing its aperture down on the sand inhaling small amounts of the surface matter (Yonge, 1949, and Reid and Reid, 1969). Stomach contents consist of surface diatoms, debris, and bacterial colonies living on large sand grains (Reid and Reid, 1969). In this study allopatric refers to the presence of only one tellinacean species, while sympatric refers to the coexistence of two or more tellinaceans. 'l'ellinacean species have been observed coexisting (Pohle, personal communication). If the sympatric species are all deposit or all suspension feeders, does this constitute niche overlap? Pianka (1978) maintains that, "niche overlap occurs when two organismic units use the same resources or other environmental variables.". If resources are not in short supply it is possible that two species may coexist, using the same resource. Hutchinson (1957) proposed that a species population could be described or characterized by its position along several dimensions, such as temperature, prey size and food source. He treated niche overlap in a simple way: he 3 made the assumption that the environment was saturated and that competition and exclusion must occur. The Gause (1934) principle states that species cannot coexist for long if they use the same resources.
Recommended publications
  • INFORMATION to USERS the Most Advanced Technology Has Been
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D.
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
    Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • Biodiversidad Barra.Pdf
    BIODIVERSIDAD DE BARRA DE POTOSÍ, GUERRERO, MÉXICO. Hacia una interacción entre conservación y turismo barra_potosi(2a_ed).indd 1 06/05/20 9:26 barra_potosi(2a_ed).indd 2 06/05/20 9:26 BIODIVERSIDAD DE BARRA DE POTOSÍ, GUERRERO, MÉXICO. Hacia una interacción entre conservación y turismo Alejandro Meléndez Herrada | Aurora Chimal Hernández Ana Luisa Figueroa Fernández | Falco Manuel García González Antonio Isain Contreras Rodríguez | Elisa Vázquez Suaste UNIVERSIDAD AUTÓNOMA METROPOLITANA Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UnidadRector Xochimilco General Dr. Eduardo Abel Peñalosa Castro Secretario General Dr. José Antonio de los Reyes Heredia UNIVERSIDAD AUTÓNOMA METROPOLITANA-XOCHIMILCO Rector Dr. Fernando de León González Secretaria Dra. Claudia Mónica Salazar Villava DIVISIÓN DE CIENCIAS BIOLÓGICAS Y DE LA SALUD barra_potosi(2a_ed).indd 3 06/05/20 9:26 Directora Mtra. María Elena Contreras Garfias Secretario Académico Dr. Luis Amado Ayala Pérez Responsable del Programa Editorial Mtra. Zyanya Patricia Ruiz Chapoy Comité Editorial Dr. Edgar Carlos Jarillo Soto Mtro. Felipe Mendoza Pérez Dr. Jorge Esteban Miranda Calderón Biól. José Alfredo Arévalo Ramírez Dr. José Antonio Herrera Barragán Dr. José Arturo Granados Cosme Dr. José Francisco Cervantes Mayagoitia Dra. Patricia Castilla Hernández “Biodiversidad de Barra de Potosí, Guerrero, México. Hacia una interacción entre conservación y turismo” Primera edición: 2019 ISBN: 978-607-28-1628-2 Fotos de portada: Alejandro Meléndez y Falco M. García D.R. © UNIVERSIDAD AUTÓNOMA METROPOLITANA Unidad Xochimilco Calzada Del Hueso 1100 Col. Villa Quietud, Alcaldía Coyoacán C.P. 04960, Ciudad de México, Tel.: 5483 7000 ext. 3783 Impreso y hecho en México UNIVERSIDAD AUTÓNOMA METROPOLITANA Casa abierta al tiempo UNIVERSIDAD AUTÓNOMA METROPOLITANA UnidadRector Xochimilco General Dr.
    [Show full text]
  • San Diego, California
    i^e, 0 -UJ £ , TRANSACTIONS OF THE SAN DIEGO SOCIETY OF NATURAL HISTORY VOLUME XII. No. 10, PP. 181-205, 1 MAP, PLATE 13 UPPER PLEISTOCENE MOLLUSCA FROM POTRERO CANYON, PACIFIC PALISADES, CALIFORNIA BY JAMES W. VALENTINE Department of Geology University of California, Los Angeles SAN DIEGO, CALIFORNIA PRINTED FOR THE SOCIETY JULY 2, 1956 LIBRARY LOS t\>\thlS.S COUNTY MUSEUM, hXiK v^TJOM ,?K COMMITTEE ON PUBLICATION LAURENCE M. KLAUBER, Chairman JOSHUA L. BAILY CHARLES C. HAINES CARL L. HUBBS JOHN A. COMSTOCK, Editor TABLE OF CONTENTS Index map of Pacific Palisades 184 Introduction Previous work Present work 187 Acknowledgments 187 Stratigraphy of the terrace deposits 188 Paleoecology 189 Habitat 189 Temperature 190 Inferred depositional environment 192 Age and faunal affinities 192 Checklist of fossils 194 Key 194 Systematic checklist 194 References 202 Plate 13 205 FIGURE 1. Index map of a portion of Pacific Palisades, California, showing the locality from which the Clark collection was recovered (UCLA Loc. no. 3225) and its relation to the shoreline during maximum sea stand on the Dume terrace platform. UPPER PLEISTOCENE MOLLUSCA FROM POTRERO CANYON, PACIFIC PALISADES, CALIFORNIA BY JAMES W. VALENTINE INTRODUCTION Fossiliferous marine terrace sands of Upper Pleistocene age are exposed near the head of Potrero Canyon, Pacific Palisades, California (figure 1). Tens of thousands of mollusks from this deposit, collected over a period of years by Dr. F. C. Clark, were acquired by the Depart- ment of Geology, University of California, Los Angeles, in January, 1943. The preparation of homesites and other construction in Potrero Canyon has caused removal or burial of the most fossiliferous portions of the terrace sands, so that Clark's original locality is destroyed, and his collection cannot now be duplicated.
    [Show full text]
  • Spatial and Temporal Examination of Bivalve Communities in Several Estuaries of Southern California and Northern Baja California, MX
    RESEARCH ARTICLE Spatial and Temporal Examination of Bivalve Communities in Several Estuaries of Southern California and Northern Baja California, MX Anai Novoa1☯*, Theresa S. Talley2☯, Drew M. Talley1☯, Jeffrey A. Crooks3‡, Nathalie B. Reyns1‡ 1 Department of Environmental and Ocean Sciences, University of San Diego, San Diego, California, United States of America, 2 Department of California Sea Grant Extension Program, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America, 3 Department of Tijuana River National Estuarine Research Reserve, Imperial Beach, California, United States of America ☯ These authors contributed equally to this work. ‡ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Novoa A, Talley TS, Talley DM, Crooks JA, Reyns NB (2016) Spatial and Temporal Examination A combination of historical bivalve surveys spanning 30–50 years and contemporary sam- of Bivalve Communities in Several Estuaries of Southern California and Northern Baja California, MX. pling were used to document the changes in bivalve community structure over time at four PLoS ONE 11(2): e0148220. doi:10.1371/journal. southern California and one northern Baja California estuaries. While there are limitations to pone.0148220 the interpretation of historic data, we observed generally similar trends of reduced total Editor: Erik V. Thuesen, The Evergreen State bivalve species richness, losses of relatively large and/or deeper-dwelling natives, and College, UNITED STATES gains of relatively small, surface dwelling introduced species across the southern California Received: June 24, 2015 estuaries, despite fairly distinct bivalve communities. A nearly 50-year absence of bivalves Accepted: January 14, 2016 from two wetlands surveyed in a Baja California estuary continued.
    [Show full text]
  • Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments
    EPA/600/R-15/176 ERASC-015F October 2015 DETERMINATION OF THE BIOLOGICALLY RELEVANT SAMPLING DEPTH FOR TERRESTRIAL AND AQUATIC ECOLOGICAL RISK ASSESSMENTS Ecological Risk Assessment Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH NOTICE This document has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Cover art on left-hand side is an adaptation of illustrations in two Soil Quality Information Sheets published by the USDA, Natural Resources Conservation Service in May 2001: 1) Rangeland Sheet 6, Rangeland Soil Quality—Organic Matter, and 2) Rangeland Sheet 8, Rangeland Soil Quality—Soil Biota. Cover art on right-hand side is an adaptation of an illustration from Life in the Chesapeake Bay, by Alice Jane Lippson and Robert L. Lippson, published by Johns Hopkins University Press, 2715 North Charles Street, Baltimore, MD 21218. Preferred Citation: U.S. EPA (U.S. Environmental Protection Agency). 2015. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments. National Center for Environmental Assessment, Ecological Risk Assessment Support Center, Cincinnati, OH. EPA/600/R-15/176. ii TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................
    [Show full text]
  • Marine Reserves Enhance Abundance but Not Competitive Impacts of a Harvested Nonindigenous Species
    Ecology, 86(2), 2005, pp. 487–500 ᭧ 2005 by the Ecological Society of America MARINE RESERVES ENHANCE ABUNDANCE BUT NOT COMPETITIVE IMPACTS OF A HARVESTED NONINDIGENOUS SPECIES JAMES E. BYERS1 Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington 98250 USA Abstract. Marine reserves are being increasingly used to protect exploited marine species. However, blanket protection of species within a reserve may shelter nonindigenous species that are normally affected by harvesting, intensifying their impacts on native species. I studied a system of marine reserves in the San Juan Islands, Washington, USA, to examine the extent to which marine reserves are invaded by nonindigenous species and the con- sequences of these invasions on native species. I surveyed three reserves and eight non- reserves to quantify the abundance of intertidal suspension-feeding clam species, three of which are regionally widespread nonindigenous species (Nuttallia obscurata, Mya arenaria, and Venerupis philippinarum). Neither total nonindigenous nor native species’ abundance was significantly greater on reserves. However, the most heavily harvested species, V. philippinarum, was significantly more abundant on reserves, with the three reserves ranking highest in Venerupis biomass of all 11 sites. In contrast, a similar, harvested native species (Protothaca staminea) did not differ between reserves and non-reserves. I followed these surveys with a year-long field experiment replicated at six sites (the three reserves and three of the surveyed non-reserve sites). The experiment examined the effects of high Venerupis densities on mortality, growth, and fecundity of the confamilial Protothaca, and whether differences in predator abundance mitigate density-dependent effects. Even at densities 50% higher than measured in the field survey, Venerupis had no direct effect on itself or Protothaca; only site, predator exposure, and their interaction had significant effects.
    [Show full text]
  • Tagelus Dombeii (Lamarck, 1818): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 18: 31-33 (2010) Tagelus dombeii (Lamarck, 1818): antecedentes de la especie Nicolás H. Mendiz Rivera Instituto de Ciencia y Tecnología, Universidad Arturo Prat, Puerto Montt, Chile. E-mail: [email protected] Sistemática Clase Bivalvia Linnaeus, 1758 dependiente de sustrato arenoso para sobrevivir Orden Tellinacea Blainville, 1814 (Stuardo et al ., 1981; Acuña, 1995). El pie y Familia Solecurtidae d`Orbigny, 1846 concha alargada le permiten al animal enterrarse Género Tagelus Spengler, 1794 rápidamente en el sustrato, llegando hasta los 17,5 cm de profundidad media de enterramiento (Lardies et al ., 2001). Las valvas poseen una Sinonimia coloración blanco violáceo, con dos rayos que par- De acuerdo a Villarroel y Stuardo (1977) y ten desde el umbo hasta la zona ventral posterior Guzmán et al . (1988): (Villarroel y Estuardo, 1977). El umbo, central al eje antero-posterior, presenta líneas de crecimiento Tagelus (Tagelus ) dombeii (Lamarck, 1818) concéntricas. El delgado periostraco es de color Solen dombeii Lamarck, 1818 café amarillento a oscuro y su charnela se caracte- Solecurtus dombeii Reeve, 1847 riza por estar compuesta de dos dientes cardinales, Solecurtus dombeyi d`Orbigny, 1846 los de la valva derecha siendo más grandes y altos. Tagelus (Mesopleura ) politus Carpenter, 1857 Solecutus coquimbensis Sowerby, 1874 En Chile, Tagelus dombeii es conocido con Tagelus (Mesopleura ) dombeyi Dall, 1909 el nombre vulgar de navajuela, quivi o berberecho Tagelus longisinuatus Pilsbry y Lowe, 1932 (Osorio et al ., 1979; Guzmán et al , 1998; Rojas, Solenocurtellus dombeyi Cacelles y Williamson, 2004). 1951 Tagelus dombeii Scot-Ryen, 1959; Osorio y Bahamonde, 1968 Distribución Tagelus (Tagelus ) dombeii Olson, 1961; Keen, Tagelus dombeii se distribuye desde Tumbes (03° 1971; Alamo y Valdivieso, 1987 34' S, 80° 27' O), Perú hasta el Estero Elefante (46° 34' S, 73° 35' O), Chile (Reid y Osorio, 2000).
    [Show full text]