Final Copy 2020 09 29 Dicks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins -
Lower Extremity Deep Venous Thrombosis
SECTION 5 Vascular System CHAPTER 34 Lower Extremity Deep Venous Thrombosis Ariel L. Shiloh KEY POINTS • Providers can accurately detect lower extremity deep venous thrombosis with point-of- care ultrasound after limited training. • Compression ultrasound exams are as accurate as traditional duplex and triplex vascular ultrasound exams. • Compression ultrasound exam at only two sites, the common femoral vein and popliteal vein, permits rapid and accurate assessment of deep venous thrombosis. Background care providers can perform lower extremity compression ultrasonography exams rapidly Venous thromboembolic disease (VTE) is a and with high diagnostic accuracy to detect common cause of morbidity and mortality in DVT. 7–13 A meta-analysis of 16 studies showed hospitalized patients and is especially preva- that point-of-care ultrasound can accurately lent in critically ill patients.1–3 Approximately diagnose lower extremity DVTs with a pooled 70% to 90% of patients with an identified source sensitivity of 96% and specificity of 97%.14 of pulmonary embolism (PE) have a proxi- Traditional vascular studies, the duplex mal lower extremity deep venous thrombosis and triplex exams, use a combination of (DVT). Conversely, 40% to 50% of patients two-dimensional (2D) imaging with compres- with a proximal DVT have a concurrent pul- sion along with the use of color and/or spectral monary embolism at presentation, and simi- Doppler ultrasound. More recent studies have larly, in only 50% of patients presenting with a demonstrated that 2D compression ultrasound PE can a DVT be found.4–6 exams alone yield similar accuracy as tradi- Point-of-care ultrasound is readily available tional duplex or triplex vascular studies.9,11,15–17 as a diagnostic tool for VTE. -
Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................ -
Anatomy Review: Blood Vessel Structure & Function
Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction • The blood vessels of the body form a closed delivery system that begins and ends at the heart. Page 2. Goals • To describe the general structure of blood vessel walls. • To compare and contrast the types of blood vessels. • To relate the blood pressure in the various parts of the vascular system to differences in blood vessel structure. Page 3. General Structure of Blood Vessel Walls • All blood vessels, except the very smallest, have three distinct layers or tunics. The tunics surround the central blood-containing space - the lumen. 1. Tunica Intima (Tunica Interna) - The innermost tunic. It is in intimate contact with the blood in the lumen. It includes the endothelium that lines the lumen of all vessels, forming a smooth, friction reducing lining. 2. Tunica Media - The middle layer. Consists mostly of circularly-arranged smooth muscle cells and sheets of elastin. The muscle cells contract and relax, whereas the elastin allows vessels to stretch and recoil. 3. Tunica Adventitia (Tunica Externa) - The outermost layer. Composed of loosely woven collagen fibers that protect the blood vessel and anchor it to surrounding structures. Page 4. Comparison of Arteries, Capillaries, and Veins • Let's compare and contrast the three types of blood vessels: arteries, capillaries, and veins. • Label the artery, capillary and vein. Also label the layers of each. • Arteries are vessels that transport blood away from the heart. Because they are exposed to the highest pressures of any vessels, they have the thickest tunica media. -
Blood Vessels: Part A
Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand -
Difference Between Vein and Venule Key Difference - Vein Vs Venule
Difference Between Vein and Venule www.differencebetween.com Key Difference - Vein vs Venule The veins are the blood vessels that carry blood towards the heart. It always has a low blood pressure. Except the pulmonary and the umbilical veins, all the remaining veins carry the deoxygenated blood. On the contrary, the arteries carry blood away from the heart. The veins have valves in them to prevent the black flow of blood and to maintain unidirectional blood flow. They are less muscular, larger and are located closer to the skin. Venules are very smaller veins. They are the ones that collect blood from the capillaries. The collected blood will be directed to the larger and medium veins where the blood is transported towards the heart again. Many venules unite to form larger veins. The key difference between Vein and Venule is, the vein is a larger blood vessel that carries blood towards the heart while, the venule is a smaller minute blood vessel that drains blood from capillaries to the veins. What is a Vein? The veins are larger blood vessels present in throughout the body. The main function of veins is to carry oxygen-poor blood back into the heart. Veins are classified into some categories such as, superficial veins, pulmonary veins, deep veins, perforator veins, communicating veins and systematic veins. The wall of the vein is thinner and less elastic than the wall of an artery. The walls of the veins consist three layers of tissues which are named as tunica externa, tunica media, and tunica intima. Veins also have larger and irregular lumen. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Peripheral Vascular Disease (PVD) Fact Sheet
FACT SHEET FOR PATIENTS AND FAMILIES Peripheral Vascular Disease (PVD) What is peripheral vascular disease? Vascular disease is disease of the blood vessels (arteries and veins). Peripheral vascular disease (PVD) affects The heart receives blood, the areas that are “peripheral,” or outside your heart. sends it to The most common types of PVD are: the lungs to get oxygen, • Carotid artery disease affects the arteries and pumps that carry blood to your brain. It occurs when it back out. one or more arteries are narrowed or blocked by plaque, a fatty substance that builds up inside artery walls. Carotid artery disease can increase Veins carry Arteries carry your risk of stroke. It can also cause transient blood to your oxygen-rich [TRANZ-ee-ent] ischemic [iss-KEE-mik] attacks (TIAs). heart to pick blood from up oxygen. your heart TIAs are temporary changes in brain function to the rest of that are sometimes called “mini-strokes.” your body. • Peripheral arterial disease (PAD) often affects the arteries to your legs and feet. It is also caused by Healthy blood vessels provide oxygen plaque buildup, and can for every part of your body. cause pain that feels like a dull cramp or heavy tiredness in your hips or legs when • Venous insufficiency affects the veins, usually you exercise or climb stairs. in your legs or feet. Your veins have valves that This pain is sometimes Damaged Healthy keepvalve blood fromvalve flowing backward as it moves called claudication. If PAD toward your heart. If the valves stop working, blood worsens, it can cause cold Plaque can build backs up in your body, usually in your legs. -
Embryology and Development of Salivary Gland 1
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020 Embryology and development of salivary gland 1. Dr. Sangeetha Priya.P,Dr.N.Anitha, Dr.E.Rajesh, Dr.K.M.K.Masthan Professor, Department of Oral Pathology and Microbiology Sree Balaji Dental College and Hospital Bharath Institute of Higher Education and Research ABSTRACT: Saliva is the mixed glandular secretion which constantly bathes the teeth and the oral mucosa. It is constituted by the secretions of the three paired major salivary glands; the parotid, submandibular and sublingual . Salivary glands are complex in nature. They could be either tubulo acinar, merocrine or exocrine glands secreting mainly saliva. Salivary gland is one of the main soft tissue structures in the maxillofacial area. This review article illustrates the processes that lead to the development,embryology of the salivary glands and how this relates to the adult anatomy. KEY WORDS: salivary gland embryology, salivary gland development, salivary gland anatomy INTRODUCTION: A gland consists of specialized type of cells, wherein they produce products which are used elsewhere in the body. Salivary glands are complex, tubulo acinar, exocrine or merocrine glands secreting mainly saliva. Saliva is the product of the major and minor salivary gland dispersed throughout the oral cavity. It is a complex mixture of organic, inorganic components and water, carrying out several functions. There are three pairs of major salivary glands namely parotid, sub mandibular and sublingual glands in addition to numerous minor salivary glands in the oral cavity1. Together these glands produce saliva, which contains digestive enzymes, antibodies, growth factors, and coating substances essential for eating, speaking, tasting, and oral hygiene2,3. -
Anatomy of the Large Blood Vessels-Veins
Anatomy of the large blood vessels-Veins Cardiovascular Block - Lecture 4 Color index: !"#$%&'(& !( "')*+, ,)-.*, $()/ Don’t forget to check the Editing File !( 0*"')*+, ,)-.*, $()/ 1$ ($&*, 23&%' -(0$%"'&-$(4 *3#)'('&-$( Objectives: ● Define veins, and understand the general principles of venous system. ● Describe the superior & inferior Vena Cava and their tributaries. ● List major veins and their tributaries in the body. ● Describe the Portal Vein. ● Describe the Portocaval Anastomosis Veins ◇ Veins are blood vessels that bring blood back to the heart. ◇ All veins carry deoxygenated blood. with the exception of the pulmonary veins(to the left atrium) and umbilical vein(umbilical vein during fetal development). Vein can be classified in two ways based on Location Circulation ◇ Superficial veins: close to the surface of the body ◇ Veins of the systemic circulation: NO corresponding arteries Superior and Inferior vena cava with their tributaries ◇ Deep veins: found deeper in the body ◇ Veins of the portal circulation: With corresponding arteries Portal vein Superior Vena Cava ◇Formed by the union of the right and left Brachiocephalic veins. ◇Brachiocephalic veins are formed by the union of internal jugular and subclavian veins. Drains venous blood from : ◇ Head & neck ◇ Thoracic wall ◇ Upper limbs It Passes downward and enter the right atrium. Receives azygos vein on its posterior aspect just before it enters the heart. Veins of Head & Neck Superficial veins Deep vein External jugular vein Anterior Jugular Vein Internal Jugular Vein Begins just behind the angle of mandible It begins in the upper part of the neck by - It descends in the neck along with the by union of posterior auricular vein the union of the submental veins. -
Incidence of Deep Venous Thrombosis and Stratification of Risk Groups in A
ORIGINAL ARTICLE Incidence of deep venous thrombosis and stratification of risk groups in a university hospital vascular surgery unit Incidência de trombose venosa profunda e estratificação dos grupos de risco em serviço de cirurgia vascular de hospital universitário 1 1 1 2 Alberto Okuhara *, Túlio Pinho Navarro , Ricardo Jayme Procópio , José Oyama Moura de Leite Abstract Background: There is a knowledge gap with relation to the true incidence of deep vein thrombosis among patients undergoing vascular surgery procedures in Brazil. This study is designed to support the implementation of a surveillance system to control the quality of venous thromboembolism prophylaxis in our country. Investigations in specific institutions have determined the true incidence of deep vein thrombosis and identified risk groups, to enable measures to be taken to ensure adequate prophylaxis and treatment to prevent the condition. Objective: To study the incidence of deep venous thrombosis in patients admitted to hospital for non-venous vascular surgery procedures and stratify them into risk groups. Method: This was a cross-sectional observational study that evaluated 202 patients from a university hospital vascular surgery clinic between March 2011 and July 2012. The incidence of deep venous thrombosis was determined using vascular ultrasound examinations and the Caprini scale. Results: The mean incidence of deep venous thrombosis in vascular surgery patients was 8.5%. The frequency distribution of patients by venous thromboembolism risk groups was as follows: 8.4% were considered low risk, 17.3% moderate risk, 29.7% high risk and 44.6% were classified as very high risk. Conclusion: The incidence of deep venous thrombosis in vascular surgery patients was 8.5%, which is similar to figures reported in the international literature. -
Epithelium 2 : Glandular Epithelium Histology Laboratory -‐ Year 1, Fall Term Dr
Epithelium 2 : Glandular Epithelium Histology Laboratory -‐ Year 1, Fall Term Dr. Heather Yule ([email protected]) October 21, 2014 Slides for study: 75 (Salivary Gland), 355 (Pancreas Tail), 48 (Atrophic Mammary Gland), 49 (Active Mammary Gland) and 50 (Resting Mammary Gland) Electron micrographs for : study EM: Serous acinus in parotid gland EM: Mucous acinus in mixed salivary gland EM: Pancreatic acinar cell Main Objective: Understand key histological features of glandular epithelium and relate structure to function. Specific Objectives: 1. Describe key histological differences between endocrine and exocrine glands including their development. 2. Compare three modes of secretion in glands; holocrine, apocrine and merocrine. 3. Explain the functional significance of polarization of glandular epithelial cells. 4. Define the terms parenchyma, stroma, mucous acinus, serous acinus and serous a demilune and be able to them identify in glandular tissue. 5. Distinguish exocrine and endocrine pancreas. 6. Compare the histology of resting, lactating and postmenopausal mammary glands. Keywords: endocrine gland, exocrine gland, holocrine, apocrine, merocrine, polarity, parenchyma, stroma, acinus, myoepithelial cell, mucous gland, serous gland, mixed or seromucous gland, serous demilune, exocrine pancreas, endocrine pancreas (pancreatic islets), resting mammary gland, lactating mammary gland, postmenopausal mammary gland “This copy is made solely for your personal use for research, private study, education, parody, satire, criticism, or review