How to Get Here Music Requested Donation R Bamboo Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genera of Bambusoideae (Gramineae) in the Southeastern United States Gordon C
Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 1988 The genera of Bambusoideae (Gramineae) in the southeastern United States Gordon C. Tucker Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Tucker, Gordon C., "The eg nera of Bambusoideae (Gramineae) in the southeastern United States" (1988). Faculty Research & Creative Activity. 181. http://thekeep.eiu.edu/bio_fac/181 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. TUCKER, BAMBUSOIDEAE 239 THE GENERA OF BAMBUSOIDEAE (GRAMINEAE) IN THE SOUTHEASTERN UNITED STATESu GoRDON C. T ucKER3 Subfamily BAMBUSOIDEAE Ascherson & Graebner, Synop. Mitteleurop. Fl. 2: 769. 1902. Perennial or annual herbs or woody plants of tropical or temperate forests and wetlands. Rhizomes present or lacking. Stems erect or decumbent (some times rooting at the lower nodes); nodes glabrous, pubescent, or puberulent. Leaves several to many, glabrous to sparsely pubescent (microhairs bicellular); leaf sheaths about as long as the blades, open for over tf2 their length, glabrous; ligules wider than long, entire or fimbriate; blades petiolate or sessile, elliptic to linear, acute to acuminate, the primary veins parallel to-or forming an angle of 5-10• wi th-the midvein, transverse veinlets numerous, usually con spicuous, giving leaf surface a tessellate appearance; chlorenchyma not radiate (i.e., non-kranz; photosynthetic pathway C.,). -
Growth Characteristics of Dwarf Bamboo Distributed in the Northern Part of Japan 187 Widely [1, 8]
DOI: 10.5772/intechopen.68541 Provisional chapter Chapter 11 Growth Characteristics of Dwarf Bamboo Distributed in Growththe Northern Characteristics Part of Japan of Dwarf Bamboo Distributed in the Northern Part of Japan Masazumi Kayama and Takayoshi Koike Masazumi Kayama and Takayoshi Koike Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68541 Abstract Dwarf bamboo is a dominant forest floor species, especially in the northern part of Japan. Sasa kurilensis, Sasa senanensis and Sasa nipponica are widely distributed in this region. Growth characteristics of these three Sasa species are also different: leaf longevity ofS. kuri- lensis is 3–5 years. In contrast, leaf longevity of S. senanensis and S. nipponica are 2 years and <1 year, respectively. We predicted that ecophysiological characteristics of the three Sasa species would reflect their leaf longevity; however, their characteristics were still not well analysed. We examined ecophysiological parameters of the three Sasa species grown under the same environment. Net photosynthetic rate at light saturation (Psat) and nitrogen concen- tration (N) of S. nipponica showed high values after flushing. However, culms of S. nipponica were dropped after overwintering, and Psat of the 2-year-old leaves drastically decreased. Meanwhile, Psat of the current leaves of S. kurilensis was lower than the other two species. However, Psat of 2-year-old leaves of S. kurilensis still maintained a relatively high value. Psat of the current leaves of S. senanensis was higher than that of S. kurilensis even though N was the same. -
NJ Native Plants - USDA
NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana -
Ornamental Grasses for the Midsouth Landscape
Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential. -
Non-Native Invasive Plants of the City of Alexandria, Virginia
March 1, 2019 Non-Native Invasive Plants of the City of Alexandria, Virginia Non-native invasive plants have increasingly become a major threat to natural areas, parks, forests, and wetlands by displacing native species and wildlife and significantly degrading habitats. Today, they are considered the greatest threat to natural areas and global biodiversity, second only to habitat loss resulting from development and urbanization (Vitousek et al. 1996, Pimentel et al. 2005). The Virginia Department of Conservation and Recreation has identified 90 non-native invasive plants that threaten natural areas and lands in Virginia (Heffernan et al. 2014) and Swearingen et al. (2010) include 80 plants from a list of nearly 280 non-native invasive plant species documented within the mid- Atlantic region. Largely overlapping with these and other regional lists are 116 species that were documented in the City of Alexandria, Virginia during vegetation surveys and natural resource assessments by the City of Alexandria Dept. of Recreation, Parks, and Cultural Activities (RPCA), Natural Lands Management Section. This list is not regulatory but serves as an educational reference informing those with concerns about non-native invasive plants in the City of Alexandria and vicinity, including taking action to prevent the further spread of these species by not planting them. Exotic species are those that are not native to a particular place or habitat as a result of human intervention. A non-native invasive plant is here defined as one that exhibits some degree of invasiveness, whether dominant and widespread in a particular habitat or landscape or much less common but long-lived and extremely persistent in places where it occurs. -
Invasive Plant List
NON-NATIVE INVASIVE PLANTS OF ARLINGTON COUNTY, VIRGINIA While up to 40% of the plants found in a typical urban environment are non-native species, a relatively small number of these “alien” plants are known to represent an ecological threat to the natural environment (parks, woodlands, and backyards). Known as “invasive species”, these non-natives will spread from urban plantings into natural areas, eliminate native species, alter natural plant communities, and degrade the environment. The following plants have been documented as invasive species in Arlington. Known invasive plant species should not be planted as part of any Arlington County sponsored project. This list will be periodically reviewed by the Invasive Plant Coordinator (DPR) and updated by Version (date). Invasive Plant Species List Acer spp.: campestre, tataricum var. ginnala Hedge, Amur maple Threat Acer spp.: palmatum, plantanoides, pseudoplatanus Japanese, Norway, Sycamore maple Invasive Actinidia arguta Hardy kiwi Threat Aegopodium podagraria Goutweed Invasive Agrostis capillaris Colonial bent-grass Invasive Ailanthus altissima Tree of Heaven Invasive Akebia quinata Five-leaved akebia Invasive Albizia julibrissin Mimosa Invasive Aldrovanda vesiculosa* Waterwheel Threat Alliaria petiolata Garlic mustard Invasive Alternanthera philoxeroides Alligator weed Invasive Ampelopsis brevipedunculata Porcelainberry Invasive Aralia elata Japanese angelica tree Invasive Artemisia vulgaris Mugwort Invasive Arthraxon hispidus var. hispidus Hairy jointgrass Invasive Arum italicum -
Invasive Plant Species List Acer Spp.: Campestre, Tataricum Var
NON-NATIVE INVASIVE PLANTS OF ARLINGTON COUNTY, VIRGINIA While up to 40% of the plants found in a typical urban environment are non -native species, a relatively small number of these “alien” plants are known to represent an ecological threat to the natural environment (parks, woodlands, and backyards). Known as “invasive species”, these non -natives will spread from urban plantings into natural areas, eliminate native species, alter natural plant communities, and degrade the environment. The followin g plants have been documented as invasive species in Arlington. Known invasive plant species should not be planted as part of any Arlington County sponsored project. This list will be periodically reviewed by the Invasive Plant Coordinator ( DPR ) and update d by Version (date). Invasive Plant Species List Acer spp.: campestre, tataricum var. ginnala Hedge, Amur maple Threat Acer spp.: palmatum, plantanoides, pseudoplatanus Japanese, Norway, Sycamore maple Invasive Actinidia arguta Hardy kiwi Threat Aegopodium podagraria Goutweed Invasive Ailanthus altissima Tree of Heaven Invasive Akebia quinata Five-leaved akebia Invasive Albizia julibrissin Mimosa Invasive Alliaria petiolata Garlic mustard Invasive Alternanthera philoxeroides Alligator weed Invasive Ampelopsis brevipedunculata Porcelainberry Invasive Aralia elata Japanese angelica tree Invasive Artemisia vulgaris Mugwort Invasive Arthraxon hispidus Hairy jointgrass Invasive Arum italicum Italian arum Invasive Arundo donax Giant reed Invasive Bambusa spp.: vulgaris Exotic, common bamboo -
Bamboo: an Underutilized Resource with Extensive Application Possibilities
Bamboo: An Underutilized Resource with Extensive Application Possibilities Melanie Harrison-Dunn1 and Michael Hotchkiss2 1 USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA 2 USDA, ARS, Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA The USDA Collection The USDA Temperate Bamboo Collection was first Introduction established in Savannah, Georgia in 1919. Its humble Bamboo comprises a diverse set of ~115 genera with beginnings began as a small one acre grove of Japanese Uses of Bamboo ~1070 species within the Poaceae family. Although Timber Bamboo (Phyllostachys bambusoides). The station morphologically similar to other grasses in several aspects, was then known as the Barbour Lathrop Plant Introduction • Bioenergy crop bamboo has distinct features such as woody culms and broad Station. The collection grew over the next few decades • Textiles (eg. flooring, veneers, plywood, etc) leaves that distinguish it from other grasses. Bamboo into a valuable collection increasing in number of genera • Fabric (comparable to silk) naturally occurs in both tropical and temperate climates with and species. The bamboo was moved to the Southeastern • Forage the majority of species being tropical in origin. There are two Fruit and Tree Nut Station in Byron, Georgia between 1976 • Ornamental main types of bamboo based on the growing habit of the and 1980. • Edible shoots rhizomes - sympodial and monopodial. In sympodial species • Musical instruments (runners), the rhizomes are long and thin and spread out The collection in Byron is maintained by the USDA Plant • Bows and arrows rapidly. In monopodial species (clumpers), the rhizomes are Genetic Resources Conservation Unit which is a part of • Common household items (eg. -
1 503-647-2700 Front Page- Need Hi
front page- need Hi res closeup www.bamboogarden.com 1 503-647-2700 Forward by Ted Meredith Bamboo Garden is very special. Founded in 1984, Bamboo Garden has a diverse collection of more than 300 bamboo species and forms on 20 pastoral acres near North Plains, Oregon. Here mature bamboo groves are cast in a beautiful natural setting of rolling hills, ponds, mountain stream, and wooded backdrop. Customers of the nursery are offered golf cart tours of the extensive grounds. Europe has a number of splendid bamboo gardens, and a few very famous ones that are connected with a bamboo nursery, where one can see many species of bamboo in mature natural groves and then have the opportunity to purchase the same bamboos for one’s own garden. America now has an equivalent in the Bamboo Garden. Owner Ned Jaquith, an ardent bamboo enthusiast, has introduced countless people to the world of bamboo and served as a mentor to countless more---myself included. Nothing seems to please Ned more than introducing another person to bamboo. His welcom- ing enthusiasm carries through to the Bamboo Gar- den’s knowledgeable staff, who are adept at discuss- ing bamboos with experts and novices alike. Nursery manager Noah Bell oversees the operation, includ- ing nursery, office, and sales. Maintenance foreman Reveriano Ramirez directs bamboo propagation and care. Bamboo Garden is an impressive operation with many fine people in key roles working to make it so. Like Bamboo Garden, the Bamboo Garden catalog is something special too. The bamboos are beautifully photographed and described (Noah and Ned did most of the photography themselves) with clear illustra- tions that show how to maintain bamboo (credit to Charissa Brock for illustrations and layout design) . -
Internode Morphometrics and Allometry of Tonkin Cane Pseudosasa Amabilis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Received: 1 July 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3483 ORIGINAL RESEARCH Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis Liang Cheng1 | Cang Hui2 | Gadi V. P. Reddy3 | Yu-Long Ding1 | Pei-Jian Shi1 1Department of New Energy Science and Technology, Bamboo Research Institute, Abstract Nanjing Forestry University, Nanjing, Jiangsu, Pseudosasa amabilis (McClure) (Poales: Gramineae) is a typical bamboo species natu- China rally distributed in large area of south China and famous for its culm strength. Although 2Centre for Invasion Biology, Department of Mathematical Sciences, African Institute bamboos were found to share the same development rule, the detailed internode mor- for Mathematical Sciences, Stellenbosch phology of bamboo culm was actually not fully expressed. We explored internode University, Matieland, South Africa morphology of P. amabilis using 11 different physical parameters in different dimen- 3Western Triangle Agricultural Research Centre, Montana State University, Conrad, sions (1–4). As Taylor’s power law (TPL) is generally applicable to describe relationship MT, USA between mean and variance of population density, here we used TPL to evaluate the Correspondence differences between internodes, and further, the relationship between dimension and Pei-Jian Shi, Department of New Energy TPL. Results showed that length (L), hollow radius (HR), hollow area (HA), hollow Science and Technology, Bamboo Research Institute, Nanjing Forestry University, Nanjing, cylinder volume (HCV), total cylinder volume (TCV), density (De), and weight (W) Jiangsu, China. all presented positive skewed distribution in varying degrees. -
New Jersey Strategic Management Plan for Invasive Species
New Jersey Strategic Management Plan for Invasive Species The Recommendations of the New Jersey Invasive Species Council to Governor Jon S. Corzine Pursuant to New Jersey Executive Order #97 Vision Statement: “To reduce the impacts of invasive species on New Jersey’s biodiversity, natural resources, agricultural resources and human health through prevention, control and restoration, and to prevent new invasive species from becoming established.” Prepared by Michael Van Clef, Ph.D. Ecological Solutions LLC 9 Warren Lane Great Meadows, New Jersey 07838 908-637-8003 908-528-6674 [email protected] The first draft of this plan was produced by the author, under contract with the New Jersey Invasive Species Council, in February 2007. Two subsequent drafts were prepared by the author based on direction provided by the Council. The final plan was approved by the Council in August 2009 following revisions by staff of the Department of Environmental Protection. Cover Photos: Top row left: Gypsy Moth (Lymantria dispar); Photo by NJ Department of Agriculture Top row center: Multiflora Rose (Rosa multiflora); Photo by Leslie J. Mehrhoff, University of Connecticut, Bugwood.org Top row right: Japanese Honeysuckle (Lonicera japonica); Photo by Troy Evans, Eastern Kentucky University, Bugwood.org Middle row left: Mile-a-Minute (Polygonum perfoliatum); Photo by Jil M. Swearingen, USDI, National Park Service, Bugwood.org Middle row center: Canadian Thistle (Cirsium arvense); Photo by Steve Dewey, Utah State University, Bugwood.org Middle row right: Asian -
New Cyperaceae and Poaceae Records from Alabama
Diamond, A.R. 2013. New Cyperaceae and Poaceae records from Alabama. Phytoneuron 2013-75: 1–18. Published 27 September 2013. ISSN 2153 733X NEW CYPERACEAE AND POACEAE RECORDS FROM ALABAMA ALVIN R. DIAMOND Department of Biological and Environmental Sciences Troy University, Troy, Alabama 36082 [email protected] ABSTRACT Seven species of vascular plants are reported as new to Alabama, three species excluded from the Annotated Checklist of the Vascular Plants of Alabama , and the Alabama Plant Atlas are documented as definite escapes, and new county records are included for two uncommon species. Those species reported as new for the state are Cyperus reflexus, Eustachys caribaea, Eustachys distichophylla, Polypogon interruptus, Phyllostachys nigra var. nigra, Phyllostachys nigra var. henonis, Phyllostachys sulphurea var. viridis, and Pseudosasa japonica . Phyllostachys aureosulcata, P. bambusoides, and P. meyeri are confirmed as escaped and naturalized in the state. New county records are reported for Coelorachis tuberculosa and Rottboellia cochinchinensis. KEY WORDS: Alabama, Cyperaceae, Poaceae, new distribution records New records for native and non-native grass and sedge species have accumulated for Alabama as a result of field studies. A complete set of the voucher specimens unless otherwise noted is housed at TROY, UWAL, and VDB. County and state records were determined using the Alabama Plant Atlas (Kral et al. 2013), the North American Plant Atlas (BONAP 2011), and searches of literature. Coelorachis tuberculosa (Nash) Nash (Poaceae) Voucher: USA . Alabama . Escambia Co. : Dry depression pond on W side of Conecuh National Forest Road 311, 4/5 mi S of Forest Service Road 305; 31.093373° -86.753236°, 20 Nov 2008, Diamond with P.C.