Perciformes, Cichlidae) of East Africa, Based on Scale and Squamation Characters

Total Page:16

File Type:pdf, Size:1020Kb

Perciformes, Cichlidae) of East Africa, Based on Scale and Squamation Characters Journal of Fish Biology (1993) 42, 903-946 A phyletic study on lacustrine haplochromine fishes (Perciformes, Cichlidae) of East Africa, based on scale and squamation characters E. L i p p i t s c h Steingrabenweg 26, A-8044 Graz, Austria (.Received 10 August 1992, Accepted 13 October 1992) Phyletic relations within the haplochromine cichlids of East Africa were investigated vising scale and squamation characters. Within the L. Victoria-Edward-Kivu species flock most of the genera proposed in Greenwood’s revision could be confirmed by this approach. In addition the genera could be interrelated phylogenetically. They form two distinct superlineages comprising several genera each. The genus Axtatoiilapia as conceived by Greenwood is diphyletic. The fluviatile members of the genus form the sister taxon of the L. Victoria-Edward-Kivu flock, while the rest are a subgroup of that flock. The flock seems to be of monophyletic origin. Key words: scale morphology; squamation; phylogenetic relationships; haplochromine fishes; Cichlidae. I. INTRODUCTION When in his classic paper of 1920 C. T. Regan expressed his opinion on Haplochromis, being the ‘ largest African genus ’ (Regan, 1920), he determined the direction for the next 60 years of systematics in East African cichlids. That genus, introduced by Hilgendorf (1888) as a subgenus of Chromis to accommodate a Lake Victoria species with peculiar dentition, became a dumping ground for over 300 species from all over the continent. Regan’s authority prevented any large-scale revision of the complex until 1979. This is the more astonishing as no formal diagnosis for the genus was available, and the only apomorph character uniting the whole assembly (the structure of the pharyngeal apophysis) is found in a number of other genera as well. In two papers, Greenwood (1979, 1980) undertook a ‘ revision of the Haplochromis generic concept omitting, however, the Lake Malawi species. He divided the whole haplochromine assemblage into more than 20 lineages, to which he assigned generic (or, in a few cases, subgeneric) rank. This action was met with considerable reservation among ichthyologists working in the field, even though Greenwood’s competence could not be doubted. The reason for non-acceptance of Greenwood’s revision seems to be at least four-fold. Besides a natural reluctance to give up the convenient catch-all classification, Greenwood’s case was weakened by his own evidence. Only a few years earlier (Greenwood, 1974) he had presented an intrageneric classification of Haplochromis that differed considerably from his later revision, and he had argued in favour of the monophyletic origin of the assemblage. Furthermore it was virtually impossible to assign newly discovered species to Greenwood’s genera on the basis of his key characters (Snoeks et al., 1990; De Vos et ah, 1990). And finally, it seemed impractical to follow a revision excluding the Lake Malawi fishes. 903 0022- II12/93/060903 + 44 $08.00/0 © 1993 The Fisheries Society of the British Isles 904 E. LIPPITSCH In the meantime the L. Malawi haplochromines have been revised (Eccles & Trewavas, 1989), separating all the taxa from Haplochromis and re-establishing or newly describing some two dozen genera. In addition new techniques like protein and enzyme studies (Sage et al., 1984; Verheyen et al., 1985, 1989) or DNA sequencing (Meyer et al., 1990) have revealed close similarities within the L. Victoria-Edward-Kivu assemblage, but significant differences with the L. Malawi taxa. These biochemical methods have proven valuable especially on a higher systematic level. However, while the L. Victoria ‘ species flock ’ contains at least 200 species, only 15 out of 803 positions in two segments of mitochondrial DNA turned out to be variable, the mean number of differences between species being only three (Meyer et al., 1990). This shows that at present investigations on relationships within the assemblage have still to be done by morphological methods. The species considered are rather uniform, however, also with respect to the usual morphological characters. The apomorphic characters worked out by Greenwood (1979,1980) are mainly associated with the trophic apparatus, but it is well-known that those characters are strongly subJect to selection pressure and ecophenotypic effects. Thus, even if apomorphic similarities can be found, it is extremely difficult to assert their synapomorphic status. As Greenwood (1980) expressed it: ‘ Clearly, if sister groups are to be identified,... there is need for... the use of characters other than strictly anatomical ones ’. In previous papers (Lippitsch, 1989, 1990, 1991, 1992) the potential of scale and squamation characters for cichlid systematics have been investigated. The results indicate that there exist a large number of useful characters, that these characters are strongly determined genetically with little intraspecific variation, that many of them are independent from each other, and that their distribution within the Cichlidae is obviously governed by phyletic relationships. The present work investigates scale and squamation characters among haplochromines from the L. Victoria-Edward-Kivu assemblage, assesses character states and polarity, and presents phyletic hypotheses concerning relationships between taxa within the assemblage and those with outside groups. II. MATERIAL AND METHODS This paper investigates only the strictly lacustrine taxa revised by Greenwood (1980). Nevertheless, the choice of species to be studied was made to cover fully the supposed lineages ranked as genera or subgenera in Greenwood’s revision (Greenwood, 1979, 1980) including the fluviatile ones except for Chetia and Pharyngochromis. At least the type species of each genus or subgenus was studied, with the exception of Ctenochromis where the type species (C. pectoralis Pfeffer 1893) was not available for inspection. One or more additional species were included from most of the genera, and a number of species from other genera, especially from L. Malawi, were studied. So a reasonable basis (59 species out of an estimated 250 from genera present in Lakes Victoria, Edward and Kivu and 30 outside species) is available for assessing the distribution of character states and drawing phyletic conclusions. Scale and squamation characters in about 130 further species of cichlids (from Africa, Madagascar, India, and America) have been investigated. A list of specimens used from those species, which have immediate relevance for the present study, is provided in the Appendix. Methods of investigation and the terminology of squamation patterns and scale morphology used were described in previous papers (Lippitsch, 1989, 1990, 1991, 1992). A PHYLETIC STUDY OF HAPLOCHROMINE FISHES 905 Emphasis was laid on documenting as fully as possible details of the squamation pattern and the surface structure of flank scales. Scales were removed from the flank, usually from the second row below the upper lateral line and at least the sixth scale column behind the insertion of the pectoral fin. In part of the BMNH material (especially fishes acquired during the 1950s) the scale surface had deteriorated as a result of storage in formalin, so that some details could not be determined with certainty. In addition many fishes from all museums had been eviscerated and part of the ventral squamation destroyed. For convenience, throughout this paper the term ‘ Victoria-Edward-Kivu assemblage ’ is used to denote the haplochromines of those lakes as well as other water bodies in connection with them. The generic names proposed by Greenwood (1979, 1980) are used for the assemblage and those of Eccles & Trewavas (1989) for L. Malawi fishes. This does not imply full endorsement of either revision. The term haplochromine will be used, again for convenience only, to cover all taxa considered belonging to or being closely related to, Haplochromis by Regan, including Astatoreochromis and the monotypic genera, but excluding the taxa of Greenwood’s Section II (Serranochromis, Sargochromis, Chetia, Pharyngochromis', Greenwood, 1979). II!. SCALE AND SQUAMATION CHARACTERS: STATES, POLARITY, AND DISTRIBUTION During comparative investigations on cichlid scale and squamation characters conducted for 4 years and encompassing about 190 species from over 85 genera, in addition to the usual scale counts, 96 different characters were established, representing about 300 distinguishable character states (Table I). A discussion, of the respective character states and their polarity is given below. Meristic characters, which are usually given in species descriptions, are omitted since in the present context they seem to provide no phylogenetic insight. Polarity assessment in the case of cichlids is particularly difficult. Monophyletic origin of the family has been well established (Stiassny, 1981), and the monophyly of the maJority of African cichlids has been claimed with strong arguments (Cichocki, 1976; Stiassny, 1990, 1991). It is, however, unclear whether the haplochromines in the broadest sense are a monophyletic assemblage, and no outgroups have been delimited. To circumvent these difficulties, character polarity is discussed with respect to the plesiomorphic conditions of what will be called the ‘ African assemblage \ that is most of the African taxa, but excluding Tylochromis, and Helerochromis (and possibly a few others, to be discussed elsewhere). The plesiomorphic character states of this assemblage have been assessed by using Indian, Malagassy, and American taxa as
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Victorian Cichlid Society Incorporated
    cichlidcichlidthe monthly Volume 29, #2 PREMIUM FLAKE FOOD March 2000 Victorian Cichlid Wardley Total Tropical is the ultimate Society freshwater flake food, created to pro- vide an extraordinary diet that consid- Incorporated ers not only your fishes health of today, Certificate of Incorporation but their nutritional needs for tomorrow. # A12794D Better metabolic responses, faster attraction to the food, brilliant color and improved overall health and vitality are only a few of the benefits of feeding Total Tropical as your everyday staple food. Total Tropical begins where all other staple foods leave off. GLENN LACEY QUALITY PRODUCTS FOR THE AUSTRALIAN FISHKEEPER $1 AUSTRALIA’S PREMIER BRAND R E G I S T E R E D B Y A U S T R A L I A Cover picture: P O S T P P 3 4 2 7 8 0 / 0 0 2 4 ^ ^ BBAAAA NameName ChangChangeses ^ cichlidcichlidWeWe havehave aa fewfewscenescene friendsfriends thatthat ApistogrammaA borelli â Apistogramma reitzigi THE NEXT MEETING will be held on the second Friday of the month at 8 pm sharp (Trading Cichlasoma meeki â Thorichthys meeki Table opensyouyou earlier) inmightmight the Courtyard Roomlikelike at the Nunawadingtoto meetmeet Civic Centre, ...... Whitehorse Haplochromis mloto â Copadichromis azureus Road, Mitcham. Visitors are encouraged to come along. Haplochromis venustus â Nimbochromis venustus Protomelas similis (Red Empress) â Protomelas taeniolatus MINI TALK: `Rams’, Graham Rowe. Protomelas taeniolatus (Steveneye Tiger) â Protomelas sp Steveneye Tiger MAIN TALK:EASTERN`Have Fish, Will DISTRICTS Travel’, Ben and Helen AQUARIUM Carbone. SOCIETY Pseudotropheus lombardoi â Metriaclima lombardoi DOOR PRIZES:MeetsAqualife. on the 4th Friday of month at the Nunawading Pseudotropheus macrophthalmus â Tropheops sp Red Cheek Pseudotropheus sp Albino â Metriaclima zebra DRAW PRIZES:Civic Centre, Whitehorse Rd, Nunawading.
    [Show full text]
  • Downloaded on 2019-01-07T05:41:17Z Fmicb-09-00873 May 4, 2018 Time: 12:22 # 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cork Open Research Archive Title The gut microbiota of marine fish Author(s) Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul Original citation Egerton, S., Culloty, S., Whooley, J., Stanton, C. and Ross, R. P. (2018) 'The gut microbiota of marine fish', Frontiers in Microbiology, 9, 873 (17pp). doi: 10.3389/fmicb.2018.00873 Type of publication Article (peer-reviewed) Link to publisher's https://www.frontiersin.org/articles/10.3389/fmicb.2018.00873/full version http://dx.doi.org/10.3389/fmicb.2018.00873 Access to the full text of the published version may require a subscription. Rights © 2018, Egerton, Culloty, Whooley, Stanton and Ross. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. https://creativecommons.org/licenses/by/4.0/ Item downloaded http://hdl.handle.net/10468/6222 from Downloaded on 2019-01-07T05:41:17Z fmicb-09-00873 May 4, 2018 Time: 12:22 # 1 REVIEW published: 04 May 2018 doi: 10.3389/fmicb.2018.00873 The Gut Microbiota of Marine Fish Sian Egerton1,2, Sarah Culloty2,3, Jason Whooley4, Catherine Stanton5,6 and R. Paul Ross1,5,6* 1 School of Microbiology, University College Cork, Cork, Ireland, 2 School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland, 3 Environmental Research Institute, University College Cork, Cork, Ireland, 4 Bio-marine Ingredients Ireland Ltd., Killybegs, Ireland, 5 Teagasc Research Centre, Fermoy, Ireland, 6 APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals.
    [Show full text]
  • BREAK-OUT SESSIONS at a GLANCE THURSDAY, 24 JULY, Afternoon Sessions
    2008 Joint Meeting (JMIH), Montreal, Canada BREAK-OUT SESSIONS AT A GLANCE THURSDAY, 24 JULY, Afternoon Sessions ROOM Salon Drummond West & Center Salons A&B Salons 6&7 SESSION/ Fish Ecology I Herp Behavior Fish Morphology & Histology I SYMPOSIUM MODERATOR J Knouft M Whiting M Dean 1:30 PM M Whiting M Dean Can She-male Flat Lizards (Platysaurus broadleyi) use Micro-mechanics and material properties of the Multiple Signals to Deceive Male Rivals? tessellated skeleton of cartilaginous fishes 1:45 PM J Webb M Paulissen K Conway - GDM The interopercular-preopercular articulation: a novel Is prey detection mediated by the widened lateral line Variation In Spatial Learning Within And Between Two feature suggesting a close relationship between canal system in the Lake Malawi cichlid, Aulonocara Species Of North American Skinks Psilorhynchus and labeonin cyprinids (Ostariophysi: hansbaenchi? Cypriniformes) 2:00 PM I Dolinsek M Venesky D Adriaens Homing And Straying Following Experimental Effects of Batrachochytrium dendrobatidis infections on Biting for Blood: A Novel Jaw Mechanism in Translocation Of PIT Tagged Fishes larval foraging performance Haematophagous Candirú Catfish (Vandellia sp.) 2:15 PM Z Benzaken K Summers J Bagley - GDM Taxonomy, population genetics, and body shape The tale of the two shoals: How individual experience A Key Ecological Trait Drives the Evolution of Monogamy variation of Alabama spotted bass Micropterus influences shoal behaviour in a Peruvian Poison Frog punctulatus henshalli 2:30 PM M Pyron K Parris L Chapman
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Parte I 70 Genomic Organization and Comparative Chromosome Mapping
    !"#$%&'& ()& Genomic organization and comparative chromosome mapping of U1 snRNA gene in cichlid fish, with emphasis in Oreochromis niloticus* D.C. Cabral-de-Mello1,*, G.T. Valente2, R.T. Nakajima2 and C. Martins2 1UNESP – Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil 2UNESP – Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil Short running title: Genomic organization and mapping of U1 snRNA in cichlid fish * Corresponding author: UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, CEP 18618-000 Botucatu, SP, Brazil Phone/Fax: 55 14 38116264. e-mail: [email protected] *Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C (2012) Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Research 20(2): 279-292. !"#$%&'& (*& Abstract To address the knowledge of genomic and chromosomal organization, and evolutionary patterns of U1 snRNA gene in cichlid fish this gene was cytogenetically mapped and comparatively analyzed in 19 species belonging to several clades of the group. Moreover, the genomic organization of U1 snRNA was analyzed using as reference the Oreochromis niloticus genome. The results indicated a high conservation of one chromosomal cluster of U1 snRNA in the African and Asian species with some level of variation mostly in the South American species. The genomic analysis of U1 revealed a distinct scenario of that observed under the cytogenetic mapping. It was observed just an enrichment of U1 gene in the linkage group (LG) 14, that do not correspond to the same chromosome that harbors the U1 cluster identified under the cytogenetic mapping.
    [Show full text]
  • Hered 347 Master..Hered 347 .. Page702
    Heredity 80 (1998) 702–714 Received 3 June 1997 Phylogeny of African cichlid fishes as revealed by molecular markers WERNER E. MAYER*, HERBERT TICHY & JAN KLEIN Max-Planck-Institut f¨ur Biologie, Abteilung Immungenetik, Corrensstr. 42, D-72076 T¨ubingen, Germany The species flocks of cichlid fish in the three great East African Lakes, Victoria, Malawi, and Tanganyika, have arisen in each lake by explosive adaptive radiation. Various questions concerning their phylogeny have not yet been answered. In particular, the identity of the ancestral founder species and the monophyletic origin of the haplochromine cichlids from the East African lakes have not been established conclusively. In the present study, we used the anonymous nuclear DNA marker DXTU1 as a step towards answering these questions. A 280 bp-fragment of the DXTU1 locus was amplified by the polymerase chain reaction from East African lacustrine species, the East African riverine cichlid species Haplochromis bloyeti, H. burtoni and H. sparsidens, and other African cichlids. Sequencing revealed several indels and substitutions that were used as cladistically informative markers to support a phylogenetic tree constructed by the neighbor-joining method. The topology, although not supported by high bootstrap values, corresponds well to the geographical distribution and previous classifica- tion of the cichlids. Markers could be defined that: (i) differentiate East African from West African cichlids; (ii) distinguish the riverine and Lake Victoria/Malawi haplochromines from Lake Tanganyika cichlids; and (iii) indicate the existence of a monophyletic Lake Victoria cichlid superflock which includes haplochromines from satellite lakes and East African rivers. In order to resolve further the relationship of East African riverine and lacustrine species, mtDNA cytochrome b and control region segments were sequenced.
    [Show full text]
  • Exchange April 2018 Area of Concern—Lake Tanganyika Do You CARE
    The CARES April 2018 Exchange Area of Concern—Lake Tanganyika Do You CARE Crossword Challenge Data Submission Deadline April 30 Welcome to The CARES Exchange. The primary intent of this publication is to make available a listing of CARES fish from the CARES membership to those that may be searching for CARES species. The Cichlid Room Companion is the most It is important to understand that all transac- comprehensive website for reliable cichlid tions are between the buyer and seller and information in the world. For all things cich- CARES in no way moderates any exchanges lid, including information, photos, and videos including shipping problems, refunds, or bad on most CARES Priority List species, visit blood between the two parties. This directo- CRC at www.cichlidae.com. ry merely provides an avenue to which CARES fish may be located. As with all sales, be certain that all the elements of the The CARES Family exchange are worked out before purchasing American Cichlid Association or shipping. Aquarium Club of Lancaster County Brooklyn Aquarium Society No hybrids will knowingly be listed. Capital Cichlid Association Chatham-Kent Aquarium Society There is no cost to place a for sale ad. Your Cichlid Club of York ad may be submitted by contacting the editor, Columbus Area Fish Enthusiasts Greg Steeves, at [email protected]. Danbury Area Aquarium Society Durham Region Aquarium Society If your organization is interested in partici- Federation of Texas Aquarium Societies pating in CARES, review the CARES Startup Grand Valley Aquarium Club tab on the website CARESforfish.org, then Greater Cincinnati Aquarium Society contact Klaus Steinhaus at Greater City Aquarium Society [email protected].
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • Evolutionary Dynamics of Rrna Gene Clusters in Cichlid Fish Rafael T Nakajima1, Diogo C Cabral-De-Mello2, Guilherme T Valente1, Paulo C Venere3 and Cesar Martins1*
    Nakajima et al. BMC Evolutionary Biology 2012, 12:198 http://www.biomedcentral.com/1471-2148/12/198 RESEARCH ARTICLE Open Access Evolutionary dynamics of rRNA gene clusters in cichlid fish Rafael T Nakajima1, Diogo C Cabral-de-Mello2, Guilherme T Valente1, Paulo C Venere3 and Cesar Martins1* Abstract Background: Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results: The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds.
    [Show full text]
  • Guam Marine Biosecurity Action Plan
    GuamMarine Biosecurity Action Plan September 2014 This Marine Biosecurity Action Plan was prepared by the University of Guam Center for Island Sustainability under award NA11NOS4820007 National Oceanic and Atmospheric Administration Coral Reef Conservation Program, as administered by the Office of Ocean and Coastal Resource Management and the Bureau of Statistics and Plans, Guam Coastal Management Program. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration. Guam Marine Biosecurity Action Plan Author: Roxanna Miller First Released in Fall 2014 About this Document The Guam Marine Biosecurity Plan was created by the University of Guam’s Center for Island Sustainability under award NA11NOS4820007 National Oceanic and Atmospheric Administration Coral Reef Conservation Program, as administered by the Office of Ocean and Coastal Resource Management and the Bureau of Statistics and Plans, Guam Coastal Management Program. Information and recommendations within this document came through the collaboration of a variety of both local and federal agencies, including the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS), the NOAA Coral Reef Conservation Program (CRCP), the University of Guam (UOG), the Guam Department of Agriculture’s Division of Aquatic and Wildlife Resources (DAWR), the United States Coast Guard (USCG), the Port Authority of Guam, the National Park Service
    [Show full text]