<<

The history of the inferred from high resolution HLA data. Masterthesisinhumanevolutionarygenetics MajaKrzewińska

Spring2007 CentreforEvolutionaryandEcologicalSynthesis UniversityofOslo,Norway Table of contents Summary ...... 4 1.Introduction ...... 5 1.1.Background ...... 5 1.2.Thehumanleukocyteantigencomplex...... 6 1.2.1.OrganizationofgenesencodingclassIandIImolecules ...... 6 1.3.NomenclatureofHLAcomplex...... 8 1.4.Polymorphisms...... 8 1.5.Inheritance...... 9 1.6.Linkagedisequilibriumandrecombination...... 9 1.7.Populationgenetics ...... 10 2.GenesandPolynesianhistory ...... 11 2.1.Historyandgenes ...... 11 2.2.ThePacificIslandsand...... 11 2.2.1.Mangareva...... 12 2.2.2.Marquesas...... 13 2.2.3.Western...... 13 2.3.WheredidthePolynesianscomefrom?...... 14 2.3.1.Linguisticevidence ...... 14 2.3.2.Farmingandcolonization...... 15 2.3.3.Lapitaculture...... 16 2.4.Aboutmigrations,‘slow’and‘fastboats’...... 16 2.5.Geneticevidence–mitochondrialDNAandYchromosome–2different(his)stories? ...... 18 2.5.1.Classicalmarkers...... 18 2.5.2.Globingenepolymorphisms ...... 18 2.5.3.MitochondrialDNA ...... 18 2.5.4.Ychromosome ...... 19 3.Materialsandmethods ...... 21 3.1DNAsamples ...... 21 3.2Sampleprocessingandconcentration ...... 21

2 3.2.1WholeDNAamplification ...... 21 3.2.2AmplificationofHLAloci...... 21 3.2.3Sequencingofamplifiedproducts...... 22 3.3Statisticalanalyses...... 23 3.3.1Alleleassignmentandallelefrequencies ...... 23 3.3.2Populationcomparisons ...... 24 4.Results ...... 25 4.1.HLAdiversityanddistribution ...... 25 4.1.1.ClassIalleles...... 26 4.1.2.ClassIIalleles ...... 28 5.Discussion ...... 32 5.1.AmerindianallelesdetectedinEasternPolynesia...... 32 5.2.EuropeanallelesdetectedinEasternPolynesia ...... 33 6.Conclusion...... 39 Appendix ...... 40 Acknowledgments...... 43 References ...... 44

3 Summary

Numerousscientificinvestigationshavebeenundertakentoanswerthequestionof Polynesianorigins.Mostarchaeologicalandlinguisticevidenceandpreviousstudiesin populationgeneticssuggestedthatRemotewassettledfromthewest.Thehuman colonizationofthePacificbeganwiththesettlementof andNewGuinea (PNG)atleast40,000yearsago,andwasfollowedbythesettlementofRemoteOceania, startingabout3,500yearsago.MostscholarsagreethatpresentdayPolynesiansoriginatedin Southeast,andfirstenteredtheregionasagriculturalists.Butthequestionsof thecharacterofcolonizationandtheextentoftheMelanesiancontributiontothePolynesian genepool,aswellpossibleSouthAmericancontacts,stillprevail.Certainplants,suchasthe sweetpotatoandbottlegourd,indicatesomecontactswithSouthAmerica.Moreover,the NorwegianexplorerThorHeyerdahlshowedthatavoyagefromSouthAmericawas physicallypossible,eventhoughnodirectevidenceofAmerindianancestryhasbeenfound. Interestingly,recentresearchontheHLAsystemshowedasignificantSouthAmerican geneticcomponentinEasterIsland. InordertoaddresstheissueofpossibleancientcontactsbetweenPolynesiaandSouth America,andtoinvestigatethegeneticaffinitiesoftheEasternPolynesians,52human genomicDNAsamplesfromthreelocationsinEasternPolynesia(SouthernMarquesas, MangarevaandWesternSamoa)weretestedforHLApolymorphisms.Theresultsindicate thattheEasternPolynesiansareprincipallyderivedfromSoutheastAsia.Somerecent Europeanadmixturewasdetected,mostlikelyduetopostEuropeancontacts.Several polymorphismspointtoapossibleNorthAsianconnection(DRB1*0405andDRB1*1201) andother,rareelements(e.g.A*0212,B*3905andDRB1*1402)areclearevidenceofSouth Americanadmixture.NosignificantMelanesianancestrywasfound.Phylogeneticanalysis showedthatthePolynesiansstudieddidnotdiffersignificantlyfromSoutheastAsian populationsofmixedorigins(suchasMalay,Filipino,EastTimoreseand)but haveverylittleincommonwiththepresentdayinhabitantsofPapuaNewGuinea.The results,however,couldbetheeffectofsamplingvarianceorgeneticdriftinPolynesia.In general,theHLApolymorphismsobservedinthisstudygivefurthersupporttothe‘Express train’modelofthecolonizationofthePacific.

4 1. Introduction

1.1. Background

Overdecades,theoriginoftheinhabitantsofRemoteOceaniahasbeenthesubjectof muchscientificscrutiny.ThehumancolonizationofthewesternPacific(Australia,Papua NewGuinea(PNG)andtheSolomonIslands)hasbeendatedtoatleast40,000yearsbefore present(Bellwood,1978;WicklerandSpriggs,1988).Thedescendantsofthoseearlysettlers stillinhabitpresentdayPNGandisland.TheyspeakPapuanlanguageswhichhave beenshowntobeofgreaterantiquityintheregionthanAustronesianlanguages.Thelatter languagegroupissaidtohavebeenintroducedintoOceaniabyNeolithicfarmers.The appearanceofhorticultureintheregionhasbeenassociatedwiththeemergenceoftheLapita culturecharacterizedbynotchedpottery.ThelastwaveofPolynesiansettlementreachedNew Zealandabout800yearsago(Anderson,1991). NumerousscientificstudiesinthefieldofmoderngeneticshaveconfirmedtheAsian ancestryandsignificanthomogeneityofpresentdayPolynesians.AlbeittheAsianoriginof thePolynesiansisundisputed,thereisevidenceofpossibleSouthAmericancontacts,suchas plantsofAmericanorigin(sweetpotato,bottlegourd)(Borrell,2007;Green,2000).Another puzzlingissueistheextentofcontactbetweentheprotoPolynesiansandtheearlier “Melanesian”settlersofNearOceania. DifferenttheorieshavebeenbroughtforwardtoexplainthecolonizationofthePacific. Thus,thedistributionofAustronesianlanguagesandmtDNAanalysissupportan‘Express traintoPolynesia’modelofcolonization(Diamond,1988),accordingtowhichtheexpansion wasrecentandrapid.Conversely,globingenepolymorphisms(andsomeelementsofLapita culture)suggestthatPolynesiawassettledbypeopleofSouthEastAsianoriginwho establishedlonglastingandintenseinteractionsintheregionofIslandMelanesia.Thisisso calledthe‘EntangledBank’modelofcolonization(Terrell,1988). Moderngeneticsenablesustorevealmoreofthehumanpastthanitwaseverpossible. OneofthesystemsusedinthefieldistheMajorHistocompatibilityComplex(MHC),which playsavitalroleintheimmuneresponse.Thecomplex,knowninhumansastheHuman LeukocyteAntigensystem(HLA),isusefulduetoitshighpolymorphism,biparental inheritance,andthefactthatitislesssubjecttolineageextinctionsthantheuniparental mtDNAandYchromosomelineages.HLAanalysis,duetothehighvariabilityofthe complexandrapidtechnicaldevelopmentofhighthroughputandhighresolutiontyping

5 methods,iscapableofdistinguishingbetweenhighlydiversealleles,andhasproventobea powerfultoolinhumanpopulationgenetics(Bugawanetal.,1999). Inthisthesis,IdescribetheanalysisofHLAallelesinthreePolynesianpopulations (SouthernMarquesas,MangarevaandSamoa),toestablishtheextentofgeneflowfromother geographicalregions.Thisstudyincluded52humanDNAsamples,with20samplesfrom SouthernMarquesas,15fromMangarevaand17fromWesternSamoa(currentlySamoa). ThegeneticdatawereobtainedusinghighresolutionHLAtyping,andconsistedofalleles from5loci(HLAA,HLAB,HLAC,HLRDRB1andHLADQB1). Inthefollowingsection,IshalldescribethestructureoftheHLAcomplexandgivean accountofitsusefulnessinpopulationgeneticstudies.

1.2. The human leukocyte antigen complex

HumanMajorHistocompatibilityComplex(MHC)inhumansiscalledHuman LeukocyteAntigenComplex(HLA).ItissituatedinacontinuousstretchofDNAonthe shorterarmofchromosome6.TheclassicalHLAcomplexcoversaround3.6Mb,with224 describedgenesofwhich128arethoughttobeexpressed.TheextendedHLAcomplex, containingpartsofcentromericandtelomericregions,coversatotalof8Mb.Thecomplexis responsibleforthedevelopmentofimmuneresponses,susceptibilitytodiseasesand autoimmuneresponses.Itisthemostpolymorphicregioninthehumangenome. HLAgenesareorganizedintoregionsandencodethreedifferentclassesofgenes: classIHLAgenes(HLAA,HLAB,HLAC),classIIHLAgenes(HLADR,HLADQ, HLADP)andclassIIIHLAgenes(secretedproteinsassociatedwithimmuneresponsese.g. complement(C’)proteinsandthetumournecrosisfactors,TNFαandTNFβ)(Kuby,1997). TheHLAcomplexisthemostgenedenseregionofthehumangenome. ThestructureandfunctionofbothHLAclassIandIImoleculesarecloselyrelated. Botharemembraneboundglycoproteinspresentingantigenmoleculesonthecellsurface. TheyformstablecomplexeswithantigenicpeptidesonthecellsurfaceforTcellsto recognize.BothHLAclassesformthreedimensionalstructures.

1.2.1. Organization of genes encoding class I and II molecules

EachdomainoftheMHCmoleculeisencodedbyseparateexons.ClassIgenesare usuallyencodedbya5’leaderexon(encodingasignalpeptide)followedby56exons encodingtheαchainofthemolecule.ForHLAclassItypingpurposes,exonstwoandthree areusuallysequenced.

6 Figure 1 GenomicorganisationofHLAcomplexanditslocalisationontheshorterarmofchromosome6 (BrumesterandPezzutto,2003).TheexpressionproductsofcomplementingfactorsarecalledclassIIIantigens (box1).GenesencodingclassIIImoleculesarelocatedbetweenclassIandclassIIMHCgenes(box2). StructurallyrelatedgenesarelocatedinthevicinityofDP,DRandDQgenes(box3).ClassIImoleculesare encodedbydifferentgenelociwhichnumberandstructurediffersfromoneindividualtonextdependingon haplotype.Heredifferentcombinationsofβ–chainencodingregionsareshowntoresultindifferentDRantigens (box4).Geneconfiguration:thegeneisdividedintoexonsencodingfornumerousdomains(box5).

InthegenesencodingClassIImolecules,exonsareorganizedintoseriesthat correspondwiththedomainstructureofthetwochains(αandβchain).Thegenesstartwith a5’leaderexonthatisfollowedby 45exonsencodingtheαandβchainsofthemolecule (Kuby,1997).ForHLAclassIItypingpurposes(HLADRB1andHLADQB1),exontwoof therespectivegeneisusuallysequenced.

7 1.3. Nomenclature of HLA complex

ThenomenclatureofHLAisdirectlyrelatedtothetypingmethodused.Thus, serologicalnomenclatureconsistsoflettercoding,describingtheclasstypeagivenmolecule belongsto(genelocus),andnumericcharacterizationoftheantibodyrecognizingtheHLA molecule(e.g.DR4,A10).Traditionally,theletterswereassignedtothedifferentloci accordingtotheorderinwhichthelociwerediscovered(A,B,CandD)andthenumber representedtheindividualallelewithinthegroup.Butwithtime,asthespecificitycouldbe morepreciselydefined(e.g.A10couldspiltintoA25(10)andA26(10)),thenomenclature becametooconfusingandhadtobereplacedwithnewnomenclature(Browningand McMichael,1996;BrumesterandPezzutto,2003). IntroductionofclassificationbasedonallelicdefinitionresolvedtheproblemofHLA nomenclature.AllelesdefinedbyDNAtyping(genomicallydefinedalleles)arenamedafter locusnameandfollowedbyanasteriskandanumberindicatingtheparticularallele(e.g. DRB1*0401).Thenumberusedusuallyconsistsoffourdigitswherethefirsttwodigits definespecificityandthefollowingdigitsarethealleleassignedwithinthisspecificity(e.g. A*0205definesallele5ofHLAA2)(BrowningandMcMichael,1996).Thenamecan consistofupto8digits(e.g.HLADRB*13010102).Insuchcases,asixdigitnamedescribes allelesdifferingbysynonymousmutationsandeightdigitnamesdescribeallelescontaining mutationsoutsidethecodingregion.

1.4. Polymorphisms

MHClociarehighlypolymorphic(multipleallelesoneachgeneticlocus).The polymorphismsareclusteredwithinsequencesencodingforapeptidebindinggrooveand tendtobenonsynonymous.Inotherwords,theytendtoalterthesequenceorconformation ofthepeptide(BrowningandMcMichael,1996).MHClociarealsocloselylinkedand thereforeeachindividualinheritstwosetsofalleles–onefromeachparent.Suchasetof allelesiscalledahaplotype(Kuby,1997).TheHLAallelesarecodominant(bothallelesare functionalandaretranslatedintoproteins).Theallelesoneachgeneticlocuscandifferbyup to20aminoacidresidues(sequencedivergenceof510%).Ithasbeenshownthat polymorphicdifferencesarenotuniquesequencemotifs. ‘Instead, most alleles gain their uniqueness through a mosaic of conserved polymorphic differences, each defined at a particular hypervariable region, resulting principally from gene conversion, recombination and exon shuffling events’ (BrowningandMcMichael,1996).

8 ExistenceandmaintenanceofhighHLAgenepolymorphisminpopulationsis influencedbyseveralagentssuchaspopulationsize,nonrandommating,mutation,selection (e.g.asaresponsetopathogenicpressure(BrowningandMcMichael,1996)),recombination orgeneconversion(e.g.from pseudogenes)andrandomdrift.

1.5. Inheritance

Independentinheritance,asdescribedbyMendel,ispossibleonlywithgeneslocated ondifferentchromosomes.TheMHCallelesarecodominantlyexpressedmeaningthatboth haplotypes(maternalandpaternal)areexpressedequallyinthedescendant.Inanoutbred populationthereisaoneinfourchancethatsiblingswillinheritthesameparentalhaplotypes (ifdifferent)andbecomehistocompatible(Kuby,1997).Inotherwords,sincethesegenesare tightlylinkedtheytendtobeinheritedasahaplotype.Thishaplotypespecificinheritance enablespopulationstructureanalysisandcanleadtoinferenceofgenealogiesfromknown haplotypicstructure.

1.6. Linkage disequilibrium and recombination

OneofthemostimportantfactorsinfluencingtheinheritanceofHLAgenesisthe phenomenonoflinkagedisequilibrium.Iftwolinkedlociareoccupiedmoreoftenbyalleles frequentlyoccurringtogether(associated)onahaplotypethanexpectedbychance,the situationisoftenreferredtoaslinkagedisequilibrium(HedrickandKumar,2001).The phenomenonoflinkagedisequilibriumisalsoknownasgameticassociation(Browningand McMichael,1996)orcosegregationofloci.Anumberoffactorssuchasgeneflow,distance betweentheloci,migration,directionalselection,populationgrowthormutationcanbe responsibleforlinkagedisequilibrium. Cosegregationheavilydependsontherecombinationfraction(θ)thatuses recombinationfrequenciesasitsmeasure.Therelationbetweentherecombinationfraction andlinkagedisequilibriumisrathercomplicatedandrecombinationhotspotshavebeen observedbetweenlociinstronglinkagedisequilibrium.Recombinationhotspotshavebeen observedinclassicalHLAcomplex,DQDPregionandBTNFsection.However,no crossovereventshavebeendescribedintheintervalsbetweenBCandDRB1DQA1which mayreflectselectionforparticularallelesandallelecombinations(BrowningandMcMichael, 1996).

9 Themeasureoflinkagedisequilibriumisthedegreeoflinkagedisequilibrium(D).It isthedifferencebetweenobservedandexpectedhaplotypefrequencybasedonindividual allelefrequencies(HedrickandKumar,2001). Bothrecombinationrateandlinkagedisequilibriumdifferthroughoutgenomeandthe degreeoflinkagedisequilibriumisparticularlyhighintheHLAcomplexcausingthealleles tooftenoccurinparticularcombinations.

1.7. Population genetics

Asmentionedabove,eachindividualinheritstwohaplotypes–onefromeachofthe parents.Themoreoutbredthepopulation,themoreheterozygousindividualsitwillhave (eachspecimenwillgenerallybeheterozygousateachlocus).Incontrast,themoreinbredthe population,themorehomozygotesareobserved(thelessdifferenthaplotypesarepresentin thegenepoolofthepopulation)(Kuby,1997). HighallelicdiversityofHLAgenesisusefulinpopulationstudies.Populationdata canbeusedtohelpunderstandhumanevolutionandmigrationpatternsaswellasthe selectiveforcesoperatingonHLAloci,e.g.restricteddiversityonsomeofthelocicouldbe consistentwithpopulationbottlenecksinfoundingpopulations(BrowningandMcMichael, 1996). SomealleliccombinationsbetweenclassIandclassIImoleculesorwithintheclasses havebeenproventorepresenthaplotypesspecificforparticularethnicgroups.Such populationspecific,uniqueallelescanbeusedinsearchforancestralallelesandthereforeare veryinformativeinpopulationgenetics.Populationstudiescanrevealnewalleles,andthe operationofselectiveforcesontheHLApolymorphism,suchassymmetricbalancing selectionorpositivedirectionalselectionforaspecificallele(Bugawanetal.,1999). SymmetricalbalancingselectionispostulatedtooperateonDRandDQallelefrequencies (BrowningandMcMichael,1996)

10 2. Genes and Polynesian history

2.1. History and genes

Genetically,PolynesiansaremostsimilartoAsianandotherPacificpopulationsand quitedifferentfromNativeAmericans,whichappearstorejectHeyerdahl’shypothesisofa NeworiginofPolynesians(Relethford,2003).ButifPolynesiansactuallycamefrom Asia,whereshouldwesearchfortheirorigins?Asdescribedinthefollowingsection, linguisticanalysispointstoandsouthernastheplaceoforigin.Archaeology basedonLapitafindings,pointstothesoutherncoastofChina.Someelementsoftheculture areevensaidtopointtoMelanesiaasthebirthplaceofNeolithicvoyagers.Outofthethree locations,Taiwanseemstohavegreatestscientificsupportasthestartingpoint.However,Su andcolleaguesexaminedYchromosomehaplotypesinTaiwan,SoutheastAsia,and Polynesia(Suetal.,2000)andfoundthatthePolynesianYchromosomeswereasubsetof SoutheastAsianYchromosomes,anddifferedsignificantlyfromtheTaiwaneseY chromosomes.Inthiscase,bothTaiwaneseandPolynesianpopulationsshouldbeclassified asdescendantsofaSoutheastAsianpopulation,butTaiwanshouldnotbeviewedastheplace oforiginofPolynesians.Thisdemonstratesthatgeneticinferencesaboutthehumanpastare complicatedandshoulduseasmuchavailableinformation(archeolinguisticevidence)as possible.Eventhen,theanalysismightbeincompleteduetothefactthatthegenetic compositionofmoderndayPolynesianpopulationsmusthavechangedovertime.Therefore, itisdifficulttoanalyzeancestralhumanpopulationsonthebasisofmodernhuman populations.Manyhumanlineagesmighthavedisappearedovertimeandthereforemodern peopleshouldnotbetreatedasaccuratereflectionoftheirancestors.

2.2. The Pacific Islands and Polynesia

TheislandsofthePacificareusuallyreferredtoas‘NearOceania’and‘Remote Oceania’andaretraditionallydividedintoPolynesia,Melanesiaand.Near OceaniaincludessuchislandsasNewGuinea,NewIrelandandNewBritain(Bismarck Archipelago),allofwhichwerefirstsettledbetween40,00011,000yearsagobyhunters gatherersthatcamefromthewest(Bellwood,1978;Diamond,1988). Furthertotheeast,thefirstevidenceofoccupationappearsaround3,500yearsago. ‘Intervisibility’oflandmassesissaidtohaveplayedaveryimportantroleinthecolonization ofRemoteOceania.ThecolonizationofthePacificisassociatedwiththeappearanceofthe

11 Lapitacultureintheregionandachangeintheecologyoftheislands(habitatmodification, introductionofdomesticatedplantsandanimals,andhuntinganimalstoextinction,e.g.the giantmoaofNewZealand).

Figure 2 MapofthePacificwithmarkedpositionsoftheislandsinthestudy(http://faculty.washington.edu/ plape/pacificarchwin06/pacificarchschedule.htmfromKeegan,WilliamF.andJaredDiamond(1987) Colonizationofislandsbyhumans:abiogeographicalperspective. Advances in Archaeological Method and Theory 10:4992).

2.2.1. Mangareva

MangarevaislocatedinFrenchPolynesiaandisthecentralandmostimportantisland oftheGambierIslands.Itissurroundedbyothersmallerislands:Taravaiinthesouthwestand AukenaandAkamaruinthesoutheastandothersmallerislandsalsolocatedinthenorth.It coversapproximately18km 2 (about56%ofthelandareaofthewhole Gambiergroup). Rikitea,whichisthelargestvillageontheisland,isalsothechieftownoftheGambier Islands.Mangarevawasonceheavilyforestedandsupportedalargepopulationthattraded withotherislandsviaoceangoingcanoes.However,excessiveloggingbytheislanders duringthetenthtofifteenthcenturiesresultedindeforestationoftheisland,withdisastrous resultsforenvironmentandeconomy.Mangarevahasbeenfirstsettledfromthenorthby settlersfromSouthernMarquesasaround1,200A.D.(Jennings,1979),anditspopulationwas estimatedto860inhabitantsduringthe1996census.

12 2.2.2. Marquesas

TheMarquesasalsolieinFrenchPolynesia.Thearchipelagoconsistsoftwogroupsof islands:NorthernMarquesas(,,MatuIti,MatuOa,MatuOne,NukuHiva,Ua Huka,UaPu)andSouthernMarquesas(FatuHiva,FatuHuku,HivaOa,MohoTani,Motu Nao,,Terihi). Thegroupisformedbypeaksofanelevatedsubmarinevolcano.Theislandswere discoveredbytheSpanishnavigatorAlvaroMendanainJuly1595.Almost200yearslater,in 1774,Cookrediscoveredthesouthernislands,andin1791thenortherngroupwassightedby JosephIngraham.ThefirstsettlerscamefromSamoatothenorthernislandgrouparound A.D.300andspreadtothesoutherngroupsometimeafterA.D.600(Jennings,1979).Pre Europeanhistoryoftheislandscanbedividedintofourdistinctculturalphases,butgenerally archaeologicalmaterialshowsthatinhabitantsfishermenandfarmerslivinginthevalleys (Bellwood,1987).Itisnotclearwhethertheywerealsopotterymakerssincetheanalysisof theveryfewpotsherdsdiscoveredsuggestedthatpotterymighthavebeenimportedfrom or(Jennings,1979).TheroleofMarquesasIslandsinearlyPolynesianprehistoryis fairlywellsupportedbyarchaeologicalevidenceandithasbeenshownthattheislandgroup wasmostprobablyadispersalcentrefortherestofEastPolynesia(NewZealand,Society Islands,Mangareva,HendersonandPitcairn).ThepreEuropeanpopulationofMarquesaswas estimatedat80,000inhabitants,butthenumberwasdrasticallyreduceduntil1926whenit reachedacritical2,000.The1970censuspopulationwasestimatedtohaveincreasedto5,400 (Jennings,1979). Theislandgrouphadbeenprovisioningplaceforwhalerssincethe1790’s,andthe exportofsandalwoodsince1815causedmuchinterestintheregion.Thefirstmissionaries camein19 th century.Theislandgroupwasannexedbyin1842(Campbell,1989)

2.2.3. Western Samoa

WesternSamoaisofficiallyknownastheIndependentStateofSamoaorSamoa,and wascalledWesternSamoabetween1914and1997.Beforethattime(between1900and 1919)itwasoftenreferredtoasGermanSamoaandNavigatorIslands(beforethe20 th century).ThepopulationofSamoawas176,710inhabitantsin2001.Samoaisanislandgroup ofvolcanicoriginanditstwolargestislands(Savai’iandUpolu)lieinthewesternpartofthe archipelago.ThegroupwasfirstdiscoveredbyRoggeveenin1722andBougainville(1768) butneitherofthemcameashore.ThefirstEuropeantovisittheislandswasLaPérouse(1787)

13 (Fischer,2002).SamoawasprobablysettledtogetherwithTongaaroundBC1,500.Samoan prehistorysinceaboutAD200hasbeenaceramic(Bellwood,1987). ContactwithEuropeansintensifiedafterthe1830s,whenEnglishmissionariesand tradersbeganarrivingintheregion.MissionworkinSamoahadbeguninlate1830byJohn Williams,oftheLondonMissionarySociety(Campbell,1989).Bythelatenineteenthcentury SamoawasvaluedbytheFrench,theBritish,theGermanandtheAmericanmerchantsasa refuellingstationforcoalfiredshipping(Fischer,2002).AsGermanybegantoshowmore interestintheSamoanIslands,theUnitedStateslaiditsclaimtothem.Britainalsoexpressed itsinterest.Bytheendof19thcentury,theislandsweresplitintotwo:theeasterngroup becameaterritoryoftheUnitedStatesandaretodayknownasAmericanSamoa;thewestern islandsbecameknownasGermanSamoa(until1914).Between1918and1962Samoawas controlledbyNewZealand(Campbell,1989).

2.3. Where did the Polynesians come from?

2.3.1. Linguistic evidence

ThelanguagesspokeninthePacificregionareusuallydividedintotwodifferent groups:AustronesianandPapuanlanguages.Theformergroupnumbersabout1,200 languageswhichformtensubgroups:nineofthesesubgroupsareonlyfoundinTaiwan(26 languages),andthetenthsubgroup(MalayoPolynesian)includesalltheremaining1,174 Austronesianlanguages,whicharespokenoutsideTaiwan(fromtoeast Polynesia)(Diamond,2000).ThePolynesiansspeakover30closelyrelatedlanguagesforming aminorbranch(Oceanicsubgroup)ofthewholeAustronesianlanguagefamily. Thesecondlanguagegroup(Papuan)consistsoflanguagesspokeninNewGuinea, largepartsoftheBismarcksandSolomons.Theselanguagesprobablydescendfromthe languagesofthefirstsettlersthatcametotheregionsame40,000yearsagoandareunrelated toAustronesian(Bellwood,1987).Papuanlanguagesrepresentagroupoflanguages belongingtodifferentlanguagefamiliesanditisnotknowniftheyshareacommonproto languageornot.Buttheydoshowahighdegreeofstructuralsimilaritywhichenablesusto distinguishthisgroupfromAustronesianlanguagefamily(Dunnetal.,2005). Earlylanguagestudiesoftenconcentratedonfindingcorrelationsbetweenlanguage patternsandobservedanthropologicalcharacteristicsofthenatives.Basedonlanguage analysis,ithasbeensuggestedthatthefirstinhabitantsofNearOceaniaspokenon AustronesianlanguagesandthatPapuanlanguagesaredescendantsofthoseearlylanguages.

14 Moreover,EarlyAustronesianspeakershavebeenidentifiedasthesourceofPolynesian genes.However,furtherstudiesofthePolynesiansshowedthatinMelanesia,forinstance, manyAustronesianspeakingpopulationsareofAustraloidoriginandthatthereisno oneto onecorrelationbetweenMongoloidpopulationsandAustronesianlanguages(Bellwood, 1987). ThereconstructedvocabularyofProtoMalayoPolynesianlanguagerepresents agriculturalsocietiesthatgrew,madepots,livedinwellbuilttimberhousesandkept domesticatedanimals.Itcontainswordssuchas,,,yam,sagoand ;andothers,suchasthetermsforpottery,canoesandseveralcomponentsof timberhouses(Bellwood,1991).Traditionally,botharchaeologistsandlinguistspointto TaiwanorsoutherncoastofChinaastheplacesoforiginfromwhichAustronesianexpansion started.Fromthere,theexpansioncontinuedtothe,andthePacific Ocean.

2.3.2. Farming and colonization

TheAustronesianexpansionbeganabout5,000yearsagofromTaiwanintothe PhilippinesandIndonesia.Thefirstartefactstoappearinthe westernPacificcanbedatedto between3,500and6,000yearsago.Theseartefacts,whichincludepottery,polishedstone ,knives,spearpointsetc.,areofChinesetype.Fromthatperiod,someevidence forrice cultivationandforinlandforestclearanceisalsoavailable(Bellwood,1991). Vocabularyreconstructionsshowthattaro,yams,banana,breadfruitandricewere cultivatedinIslandSouthEastAsiaasearlyas2,500BC,andthatthepeopledomesticated pigs,and.Thematerialcultureofthoseearlysettlersconsistedofpottery, canoeswithandpolishedstonetools.ThissuggeststhatthePolynesians enteredthePacificfromSoutheasternAsiaasNeolithichorticulturistsandfishermenandthat theprocessofcolonizationwasgreatlyfacilitatedbycanoebuildingandsailingtechniques (Bellwood,1987). ThepatternofthespreadofAustronesianspeakersdifferedinremoteOceaniaandin otherislandswhichwerealreadyinhabited.Itwasacomplexprocessaccompaniedbygene exchangeinplaceswherethenewcomersmetalreadywellestablishedanddensepopulations withdevelopedagriculture(NewGuinea,NorthernMelanesia)(Bellwood,1991).Incontrast, thecolonizationofthePacificandMicronesiabyNeolithicsettlerswasanexpansioninto empty,previouslyuninhabitedareas,unaccompaniedbygeneflow.

15 2.3.3.

TheLapitacultureisthetypeofcultureassociatedwithcharacteristicnotchedpottery, domesticatedanimalsandnavigationalskills.Onthebasisof‘protoOceanic’language reconstructionandespeciallyreconstructionofthevocabularyrelatedtooceanicvoyaging,it hasbeensuggestedthatLapitapotterymakersalsospokelanguagesthatbelongedtothe Oceaniclanguages(Joblingetal.,2004).TheLapitacultureisrelatedtoasimilaronethat existedinTaiwanandSouthChinaabout6,000yearsagobutsomeofitselementshavebeen derivedfrommorelocalpractices. The‘Lapitaperiod’lastedfrombetween3,6002,500yearsago(Bellwood,1987)and ithasbeengenerallyassumedthattheLapitahomelandandtheprotoOceanichomelandwas oneandthesame.IttheremotePacific,Lapitacanbeidentifiedasanelementofcolonization process.Mostprobably,nosecondwaveofcolonizationfollowedthosefirstsettlersandwe canthusassumethatpresentdayPolynesians(andtheirlanguages)aredirectdescendantsof theLapitasettlers(Irwin,1992).Aftertheinitialcolonization,Polynesianscontinued travellingbetweendistantarchipelagos.

2.4. About migrations, ‘slow’ and ‘fast boats’

TheprehistoriccolonizationofthePacificwasa two-phase process .Thefirstpeople toarriveintheregionwerethehuntergatherers.Thesecondphaseof colonizationconsistedofNeolithicfarmerswhoexpandedfromChinaandTaiwanaround 6,000BC(GrayandJordan,2000;OppenheimerandRichards,2001)andfurthertothe Pacific.Inordertoexplainthesecondprocess,differentmodelsofcolonizationofthePacific byAustronesianspeakershavebeensuggested.Twomaincontrastinghypothesesare:the ‘Expresstrain’andthe‘Entangledbankmodel’(GrayandJordan,2000).Thetheories accountfordifferentdegreesoftheextentandnatureofcontactbetweenthenewcomersand thealreadyinhabitingpartsoftheregion. The ‘Express train model’ (Diamond,1988),alsocalled‘OutofTaiwan’model, assumesthatthesecondNeolithicexpansionwasveryrapid,thatitpassedbyMelanesiaand thatittookthenewcomersaslittleas2,100yearstoreachthewesternPolynesiaoutliers.The Austronesianexpansionwaspossiblebecauseoftheoutstandingnavigationalskillsofthe newcomers(afactsupportedbythearchaeologicalevidenceofobsidianexchangeandits transportovervastdistances),anditwasrootedinthedevelopmentofagriculture(Bellwood, 1991).

16 The ‘Entangled bank model’ (Terrell,1988),ontheotherhand,representsaslightly differentmodelofexpansion,inwhichmoreemphasisisputoninteractionsbetweenthe Pacificpeoples,MelanesiansandtheinhabitantsofSouthEastAsia,thanoncolonization itself.Inthistheory,theobservedsimilaritiesbetweenPolynesiansandMelanesiansare probablytheresultofsignificantinterbreedinginnorthernIslandMelanesia(Irwin,1992). ThismodelemphasizestheroleofNearOceania,asaproximateoriginoftheinhabitantsof RemoteOceania. Anothermodelofcolonization,proposedbyKayser et al .(Kayseretal.,2000)isthe ‘Slow boat model’ ,whichassumesthattheancestorsofmoderndayPolynesiansoriginated inChina/TaiwanbutmixedextensivelywithMelanesiasontheirwaytoRemoteOceania. ThisresultedinappearanceofMelanesiangenesinPolynesiangenepool,aswellas introductionofPolynesiangenestoIslandMelanesia. Thethreemodelsarenotmutuallyexclusive.Andeventhoughthelanguagetreefits ‘theexpresstrainmodel’best,archaeologicalandgeneticdatasuggestthatpopulation interactionhasprobablyoccurredevenbetweenverydistantarchipelagos (GrayandJordan, 2000),yieldingsupporttotheotherhypotheses. Itisworthmentioningthatsomescholarshavesomewhatdifferentviews of Polynesianorigins.AccordingtoOppenheimerandcolleagues,Polynesianoriginscouldbe somewherebetweenNewGuineaandtheWallace’sline (OppenheimerandRichards,2001). OthermodelsareintermediateanddifferintherespectiverelativecontributionsofSoutheast AsianandNearOceaniangenestothesettlersofRemoteOceania.Amongthose,Jobling et al. mentionsthe‘SlowTrain’and‘TripleI’models.

17 2.5. Genetic evidence – mitochondrial DNA and Y chromosome – 2 different (his)stories?

2.5.1. Classical markers

TheanalysisofclassicalmarkersinPolynesiadidnotgiveunanimousresultsonthe originsofPolynesianpeoples.Onthecontrary,CavalliSforza’sgenetictreeof31populations fromPacificIslandsconstructedusinggeneticdistancesshowssignificantdeviationfromthe classicalclassificationofPacificislandsintoPolynesia,MelanesiaandMicronesia.Thiscould betheresultofhighlevelsofpostsettlementgeneflowbetweenNearandRemoteOceania. However,theauthorobservedsomeclusteringamongEasternPolynesians(Society,Cook, NewZealandandEasterIsland)andfewsimilaritiesbetweenAustraliaandNewGuinea.The patternsobservedhavebeeninterpretedasaresultofpostsettlement,regionspecific migrations.Ingeneral,theanalysisofclassicalmarkersprovideslittleinformationabout settlementofRemoteOceaniabutclearlyexcludespossibleSouthAmericanoriginand provesitveryunlikely(CavalliSforzaL.L.,1996).

2.5.2. Globin gene polymorphisms

Deletionsoftheαglobingenesresultinginαthalassemiahaveprovedtobe informativemarkersinthePacific.Theytendtobegeographicallyspecific.Globindeletions appeartoprotectagainstmalariaandarepresentatnotablefrequenciesamongstPacific populationslivinginareasaffectedbythedisease(e.g.NewGuineato)thatisabsent fromlocationsinRemoteOceania.Polynesianscarryhaplotypesthatarecommoninother populationsbutnotNearOceania(sometimescalled‘Mongoloid’ααhaplotypes)andothers thatarecommoninNearOceaniabutabsentorveryrareinotherpopulations(e.g.theα3.7 III deletion).ThisisthoughttobeevidenceofaMelanesiancontributiontoPolynesiangenepool andthedualoriginofinhabitantsofRemoteOceania(O'Shaughnessyetal.,1990).

2.5.3. Mitochondrial DNA

MitochondrialDNA(mtDNA)diversityinRemoteOceaniaismostoftenbasedon variationobservedinthehypervariableregionI.Inaddition,inasectionofnoncoding mtDNA(betweenthecytochromeoxydaseII(COII)andthelysyltransferRNAgenes)there isaspecific9bpsequence(CCCCCTCTA).Thissequenceinsomepeoplecanbedoubled (formingaspecific18bpsequence)andinotherpeopleoneofthetwoadjacentcopiesofa9 bpsequencecanbemissing,formingamarkerknownas9bpdeletion.Thisdeletionis

18 abundantinpresentdayAsianpopulations(540%)(Hagelbergetal.,1994)andoftenusedas ageneticmarkerforEastAsianancestry,sinceithasbeenfoundinalmostallEastAsian populations,NativeAmericans,PolynesiansandalsoinPygmiesfrom(Reddetal., 1995).ThedeletionfrequencyinAboriginalAustraliansislessthan1%(ReddandStoneking, 1999). InPolynesians,thedeletionisoftenaccompaniedby3specificnucleotide substitutionsinmtDNAsequence(atpositions16217,1647and16261),givinga characteristicpatternknownasthe ‘Polynesian motif’ (HagelbergandClegg,1993;Melton etal.,1995;Reddetal.,1995).AccordingtoAlanReddandcolleagues,themotifbecomes moreandmoreprominentinPolynesianpopulations,reachingapeakoffrequencyinSamoa. IthasbeenshownbyHagelbergandcolleaguesthatcarryeitherthe‘Polynesian motif’orahaplotypewhichisdirectlyancestraltothemotif(Hagelbergetal.,1999).The motifisabsentinhighlandNewGuineaandamongAustralianAborigines(Reddetal.,1995; Relethford,2003),norwasitdetectedinAmericasuggestingthattherewasprobablylackof significantprehistoriccontactbetweenPolynesiaandthe(Hagelbergetal.,1994). OthermtDNAlineagesfoundinRemoteOceaniatendtobelocatedeitherinIsland SoutheastAsiabutnotinhighlandNewGuineaortheotherwayaround(e.g.mtDNA lineagesPandQ).TheexistenceofsuchaclearcutdistinctionbetweenobservedmtDNA lineagesenablesdiscussionaboutpopulationoriginsandseemstofavourDiamond’s‘Express trainmodel’asthemostlikelymodelofcolonization(Hagelbergetal.,1999).SomemtDNA typessharedbyPolynesiansandNativeAmericanpopulationsarealsofoundinAsian populations,butthereisnoevidenceofNativeAmericancontributiontomaternallineageson theremoteislandofRapa(Hurlesetal.,2003).

2.5.4. Y chromosome

AfewYchromosomelineageshavebeendescribedinPolynesia.AdditionalEuropean admixtureinlast250years(mainlybysailors,whalers,traders,missionaries,etc.)might obscurethepictureoftheoriginalsettlement.Butthisgeneflowiseasytoidentify,since therearedifferentdegreesofadmixture(mostlyfromnorthwest)ondifferentislands. TheremaininglineagesmustthereforebepaternalPolynesianlineages.Thepredominant lineageinRemoteOceaniaisCwhichcanbetracedbacktoIslandSoutheastAsia (Joblingetal.,2004).CookIslandersappeartocarryjust3Ychromosomehaplotypes.The DYS390.3del/RPS4Y711Thaplotypewasfoundin82%ofCookIslandersstudied.Thesame haplotypeisalsopresentinotherpopulationssuchasIndonesianandMelanesian,but

19 surprisinglyitiscompletelyabsentfrompopulationsinEastandSoutheastAsiaandAustralia (Kayser,2000).This ‘Oceanic motif’ (characterizedbydeletionwithinmicrosatellite DYS390,uniquealleleattheminisatelliteMSY1andanadditionalSNP,M38)exhibitsthe greatestvariationwithinwhereitoccurstogetherwithotherhaplogroupC chromosomes.Therefore,Wallaceaisalikelycandidateforplaceoforiginofthis‘Oceanic motif’.Accordingtothosefindings,thebestmodeltoexplainthecolonizationofPolynesiais the“slowboat”modelinwhichAustronesianpeoplesmovingeastwardsintoPolynesia ‘pickedup’someMelanesiangenesontheway. NativeAmericanYchromosomesdetectedintheislandofRapawereexplainedtobe theresultof19 th centuryPeruvianslaveinPolynesiaratherthanprehistoricmigration andsettlementfromSouthAmerica(Hurlesetal.,2003).Generally,Polynesianmigration seemstoshowsexdependantpatterns.MtDNApointsbacktoAsiaandTaiwanasthepoint oforiginofPolynesianpopulations,andtheYchromosomepointstoMelanesia.

20 3. Materials and methods

3.1 DNA samples

ThesamplesusedinthisthesiswereobtainedfromProf.ErikaHagelbergandwerea giftofProf.J.B.Clegg,WeatherallInstituteofMolecularMedicine,UniversityofOxford, UK.TheDNAswerepreviouslyusedinstudiesofglobinpolymorphisms(O'Shaughnessyet al.,1990).Thesamplesetconsistedof52humangenomicDNAsamples:20sampleswere fromSouthernMarquesas(FrenchPolynesia),14fromMangareva(FrenchPolynesia)and17 fromWesternSamoa.TheDNAswereextractedfrombloodsamplesusinga phenol/chloroformextractionmethod.Mostofthesampleshadnotpreviouslybeensubjected tohighresolutionHLAtyping.

3.2 Sample processing and concentration

3.2.1 Whole DNA amplification

TheDNAsampleswerefirsttreatedwitha"GenomiPhiDNAAmplificationKit" (AmershamBiosciences)(Table3)intoamplifytheamountofgenomicDNA,whichwas laterusedforHLAtyping.Theprotocolwasthestandardprotocolsuppliedbythe manufacturer.Beforetheprocedure,theDNAconcentrationofthesampleswasmeasured, andfoundtorangefrom0.75ng/l(sampleMA057,whichlaterfailedtoyieldresults)toa maximumof264ng/l(sampleSM021)(seeResultschapter).

3.2.2 Amplification of HLA loci

ThesamplesweretypedforfiveHLAloci(HLAA,HLAB,HLACw,HLADRB1 andHLADQB1)polymorphismsusinghighresolutionsequencebasedtyping(SBT)(Sayer etal.,2004b).Inbrief,PCRamplificationwithlocusspecificamplificationprimers(forthe listoftheprimersseeAppendix;Table1)wasperformed.Thesamplesweresequencedonan ABI3730SequenceAnalyzer.TheresultswereinterpretedusingASSIGNSBTsoftware (ConexioGenomics,Applecross,Australia)(Sayeretal.,2004a). Foreachlocus,differentsetsofprimers,PCRreagentsandPCRprogrammeswere used.TheprimersandPCRreagentsarelistedinTable2andTable3respectively (Appendix).Inbrief,HLAA,HLABandHLACwereamplifiedintotalvolumesof25l (thetemplateDNAbeing5l)with0.25lofeachamplificationprimerdesignedfor

21 respectiveloci.Foreachlocusonemastermixwaspreparedcontainingbothforwardand reverseprimers.TheprogrammeschosenforPCRamplificationdifferedsignificantlybut theyallstartedwithonedenaturationcycleof96 oC(56min),followedby30cyclesof96 98 oC(1030s),6070 oC(30s)and72 oC(12min).Thelaststepwasprolongedextension cycleof72 oC(10min).ThePCRfinishedwith4 oCaccordingtotheprotocolsdevelopedin house. HLADRB1PCRamplificationwasperformedintotalvolumeof12.5lpersample (with2.5loftemplateDNA)containingdifferentamountsofall8amplificationprimers (Sayeretal.,2004b).ThePCRprogrammeofchoicestartedwithonecycleof95 oC(15min) andwasfollowedby30cyclesof95 oC(20s),62 oC(10s)and72 oC(90s).Thefinishing extensioncyclewaslongerandlasted8min(72 oC)followedby‘4 oCforever’option. Finally,forPCRamplificationofHLADQB1locustwodifferentmastermixeswere preparedbecauseoftwoprimersetscontainingtwodifferentreverseprimers.Thetotal volumeofeachreactionwas15lwith3loftemplateDNA.ThePCRprogrammeusedwas thesameforbothamplificationmixes(regardlessofthereverseprimerused)andconsistedof onecycleof96 oC(15min),followedby35cyclesof96 oC(20s),66 oC(10s)and72 oC(90s). Thecyclesweresucceededbyanother5roundsof96 oC(20s),59 oC(10s)and72 oC(90s)and theprogrammefinishedwith4 oC. AllPCRamplificationswereperformedaccordingtotechniquesandprotocolsusedatthe ImmunologyInstituteatRikshospitaletRadiumhospitaletMedicalCenter,anddetailed protocolscanbemadeavailableonrequest. Theproductlengthwasdeterminedbygelelectrophoresison1%agaroseforHLAC, HLABon1%agarosegel(GeneRuler TM 1kb;Fermentas),1.5%agarosegelforHLAAand HLADRB1(GeneRuler TM 1kband50bprespectively)and2%agarosegelforHLADQB1 (GeneRuler TM 50bp).Electrophoresiswasperformedat80Vfor40minin1xTBEbuffer.

3.2.3 Sequencing of amplified products

AllthesamplesthatshowedpositivePCRamplificationunderwentExo/SAP purification(usingExonucleaseIandShrimpAlkalinePhosphatase).Exo/SAPpurificationof PCRproductspriortosequencingisessentialtoobtainingacleanread.Exo1isintendedto degradeanyexcessprimerfromtheoriginalPCR,whiletheSAPwilldephosphorylatedNTPs fromtheoriginalPCR.Duringtheanalysis,5lofPCRproductwerepurifiedwith0.1lof Exo1(20U/l)and1.0lofSap(1U/l).

22 BigDye ®TerminatorKitv3.1withreducedamountofBigDye®TerminatorReagent (reducedto1/4forclassIMHCmoleculesandto1/8forclassIImolecules)(Applied Biosystems)wasusedforlabellingofthePCRproduct.BigDye®Terminatorcontainsfour differentfluorescentdyesthatlabelddNTPs,whichthenselectivelyterminatechain elongationatA,C,GorT.Reactionswereperformedin8lvolumes.Theproductswere precipitatedin50lof96%and70%ethanolinsteadof30land60lrespectively.The sampleswerefurtherdissolvedinHiDi TM Formamide(AppliedBiosystems).Sequencing wasperformedonanABI3730DNASequencerwithPOP7TMpolymerand36cmlong capillaries(AppliedBiosystems).ResultswereanalysedwithSeqScapev.2.5(Applied Biosystems).

3.3 Statistical analyses

3.3.1 Allele assignment and allele frequencies

TheresultswereinterpretedusingASSIGNSBTsoftware(ConexioGenomics, Applecross,Australia)(Sayeretal.,2004a).Whenpoororambiguousresultsoccurred(e.g. morethanoneallelewasapossiblematchataparticularposition)theprocedurewas repeated.Ifallelesorhaplotypecombinationswerestillunclear,aseriesofmeasureswas takentoavoidambiguityandamongalleleschosenforfurtheranalysis,thefollowingcases werefavoured: 1)AllelespreviouslydescribedinPolynesianpopulations; 2)Alleleswiththelowernumberwerefavouredoverothers,rarealleleswithextremelyhigh numbers(e.g.wherebothB*0801andB*0819werepossibleallelesatthesamepositionthe formerhadbeenusedforstatisticalanalysis); 3)Ifstillmorethanonepossibilitywasavailablethemostfrequentallelehadbeenchosen. Informationabouthaplotypesandallelesdiscussedinthisthesis,andtheirrespective frequenciesindifferentpopulations,hasbeencomparedwith,andcollected(incaseofother populationsthanstudied,usedinnumerouscomparisons)fromonlinealleledatabasessuch as:MHCanthropologydatabase(dbMHC;http://www.ncbi.nlm.nih.gov/mhc/),EMBL NucleotideSequenceDatabase(IMGT/HLADatabase:http://www.ebi.ac.uk/imgt/hla/)and theAlleleFrequenciesdatabase(http://www.allelefrequencies.net/test/).Theinformationwas additionallysupplementedwithdatafoundinthearticlescited. HLAclassIandclassIIallelefrequencieswerecalculatedbydirectcountingusingthe followingformula:

23 n thenumberofindividualsstudied;Note.InafewcasesaparticularDNAsampledidnot givearesultforeverylocustested.

3.3.2 Population comparisons

Twoormorelocushaplotypefrequenciesandlinkagedisequilibriumvalueswere calculatedusingArlequin3.1Software(Excoffieretal.,2005).Duetolimitedsamplesize andthefactthatallsamplesrepresentthreedifferentpopulations,readydesignedsoftware wasnotalwayssufficientanderroneous.Therefore,significantamountofanalysiswasdone manuallybydirectcounting.

24 4. Results

TheconcentrationofgenomicDNAwasmeasuredbeforeamplification.The measurementwasperformedusingaNanoDrop ®ND1000UVVisSpectrophotometer.The Tableofconcentrationsisenclosedbelow.GenomicDNAwasthensuccessfullyamplifiedin mostofthesamplesusingthe"GenomiPhiDNAAmplificationKit"(Amersham Biosciences).AllsamplesweresubsequentlygenotypedusinghighresolutionHLA genotypingforthreeclassIandtwoclassIIMHCmolecules.Fifteenofthe52original samplesfailedtobegenotypedforallthelocitested,andonesamplefailedtoproduceany results.

Sample Conc.ng/l Sample Conc.ng/l Sample Conc.ng/l Sample Conc.ng/l SM009 264.07 SM137 5.12 MA001 44.24 WS5 6.05 SM013 110.85 SM145 16.53 MA002 56.96 WS11 19.88 SM015 129.97 SM213 137.75 MA003 10.84 WS13 18.86 SM021 246.07 MA005 38.97 WS14 16.41 SM023 129.58 MA007 6.9 WS21 9.18 SM025 135.04 MA019 172.97 WS25 29.25 SM027 128.17 MA021 204.24 WS34 4.33 SM051 15.21 MA022 69.63 WS41 38.76 SM063 46.96 MA024 244.63 WS42 28.47 SM065 43.86 MA036 161.6 WS43 30.73 SM089 10.74 MA048 53.76 WS53 46.61 SM103 71.36 MA049 3.35 WS55 12.79 SM105 6.81 MA052 21.36 WS9 35.09 SM109 9.29 MA054 89.33 WS63 16.58 SM115 11.37 MA057 0.75 WS76 20.84 SM117 3.3 WS82 16.13 SM125 4.38 WS97 13.54 Table 1 ListofconcentrationsofgenomicDNAinthesamplesbeforeamplification.SM:SouthernMarquesas, MA:Mangareva,WS:WesternSamoa.

4.1. HLA diversity and distribution

HighresolutiongenotypingoftheHLAlocirevealedthatmostoftheislandersstudied carriedallelesandhaplotypespreviouslydescribedinPolynesia,andthereforethesampleset canbesaidtobecharacteristicallyPolynesian(Bugawanetal.,1999;Gaoetal.,1997;Mack etal.,2000;Velickovicetal.,2002). SomeoftheallelesobservedaretypicalofAsianandOceanicpopulations,buttend toberareinother(dbMHC),e.g.B*4001,B*5502,B*5602,DRB1*1401, DQB1*0502(Bugawanetal.,1999;Gaoetal.,1997;Gaoetal.,1992;Macketal.,2000;

25 Maitlandetal.,2004;TraceyandCarter,2006;Velickovicetal.,2002).Therelative frequenciesofthoseallelesinthisstudyareasfollows:B*4001–20.4%,B*5502–10.2%, B*5602–6.12%,DRB1*1401–10%,DQB1*0502–10.7%. Thetotalnumberofpotentialfull(extended)haplotypeswas769(whenallthree populationsweretreatedasdifferentsamplesets),obtainedusingArlequin3.1.software. Table7isalistofmostcommonhaplotypes;frequency≥0.01.Nonovelalleleswere observed,butseveralnonPolynesianandnonAsianallelesandnovelalleliccombinations weredetected.

4.1.1.Class I alleles

HLAA Table2showsfrequenciesofallelesobservedonthelocus.Eventhoughvariationat thislocuswasrelativelyhigh(19differentalleles),over90%oftheallelicdiversityconsisted ofthefourallelicgroupsHLAA*24(A*2402/07/09N/11N/40N/43),HLAA*02 (A*0201/03/06/12),HLAA*11(A*1101/12)andHLAA*3401withrelativefrequenciesof 39.6%,28.1%,14.6%and9.4%respectively.Mostofthealleleswerepreviouslyobservedat highfrequenciesinPolynesia(Gaoetal.,1997;Maitlandetal.,2004;Seversonetal.,1997). OtherallelegroupsofHLAAconstitutedonly7.3%ofthevariation. Southern Western Southern Western Island Marquesas Mangareva Samoa Island Marquesas Mangareva Samoa (2n) (n=20) (n=14) (n=17) (2n) (n=20) (n=14) (n=17) A*0101 1(0.036) A*24 1(0.025) 5(0.178) 9(0.265) A*02 7(0.175) 3(0.107) 6(0.176) A*2402 3(0.075) 7(0.25) 8(0.265) A*0201 2(0.05) 1(0.036) A*2411N 2(0.05) 1(0.029) A*0203 1(0.025) A*2443 1(0.025) A*0206 3(0.075) 2(0.072) 1(0.029) A*2501 1(0.029) A*0212 1(0.025) A*26 1(0.036) A*0301 2(0.05) A*3301 2(0.05) A*11 2(0.05) 2(0.072) 2(0.059) A*3401 2(0.05) 1(0.036) 6(0.176) A*1101 6(0.15) 2(0.072) A*6811N 1(0.025) A*1112 1(0.036) Table 2 HLAAClassIallelefrequenciesinSouthernMarquesas,MangarevaandWesternSamoa(frequencies aregiveninparentheses). Interestingly,oneoftheallelesobservedonSouthernMarquesas(HLAA*0212)has beenusedasamarkerofAmerindianadmixture.ThehighestallelicdiversityontheHLAA locuswasobservedinSouthernMarquesas,andthelowestdiversityinWesternSamoa,with only8allelesofthemostcommonallelicgroupsshownabove.Themostcommonallelewas HLAA*2402.

26 HLAB HigherlevelsofvariationwereobservedonlocusB.Generally,therewasa significantdifferencebetweentheislands,butthemostfrequentHLABalleleswere:HLA B*4001(20%),HLAB*4010(12%),HLAB*5502(10%),HLAB*3901(9%)andHLA B*5602.AllthealleleswerepreviouslydescribedinPolynesiaandtherelativefrequencies observedhereweresimilartoearlierobservations.ThecommonestallelewasHLAB*4001. ThemostunusualHLABalleledetectedherewasHLAB*3905.Thisallele,previously reportedinPolynesia(Gaoetal.,1997;Lieetal.,2007;Maitlandetal.,2004),isoftenusedas proofofAmerindianadmixture,andinthepresentstudyitwasdetectedinMangareva(1 donor)andSouthernMarquesas(2donors). Southern Western Southern Western Island Marquesas Mangareva Samoa Island Marquesas Mangareva Samoa (2n) (n=20) (n=14) (n=17) (2n) (n=20) (n=14) (n=17) B*07 1(0.025) B*3503 1(0.025) B*0702 1(0.025) B*3901 5(0.125) 4(0.143) 2(0.059) B*0801 1(0.025) B*3905 2(0.05) 1(0.036) B*1402 2(0.05) B*4001 2(0.05) 4(0.143) 14(0.412) B*1501 2(0.05) 4(0.143) 1(0.029) B*4002 2(0.05) 3(0.088) B*1502 1(0.025) B*4010 6(0.15) 4(0.143) 2(0.059) B*1506 2(0.059) B*4056 1(0.029) B*1517 1(0.036) B*4801 4(0.1) 1(0.036) 3(0.088) B*1801 1(0.036) B*5502 5(0.125) 4(0.143) 1(0.029) B*2704 1(0.029) B*5601 1(0.025) B*2705 1(0.025) B*5602 2(0.071) 4(0.118) B*35 1(0.025) Table 3 HLABClassIallelefrequenciesinSouthernMarquesas,MangarevaandWesternSamoa(frequencies aregiveninparentheses). HLACw Outofalllocitested,thegreatestdiversitywasobservedonHLACw,withmore than20alleles.ThegreatestHLACwdiversitywasinSouthernMarquesas,andthelowestin Mangareva.Almostallallelicgroups(9)werefoundonWesternSamoa,Mangarevalacked HLACw*14andHLACw*15,andSouthernMarquesaslackedHLACw*03.The commonestgroupswereHLACw*04,HLACw*03,HLACw*01andHLACw*07,with relativefrequenciesof20%,18%,18%and16%.ThemostcommonallelewasHLA Cw*0102.

27 Southern Western Southern Western Island Marquesas Mangareva Samoa Island Marquesas Mangareva Samoa (2n) (n=20) (n=14) (n=17) (2n) (n=20) (n=14) (n=17) Cw*0102 5(0.125) 7(0.25) 6(0.176) Cw*0709 1(0.025) Cw*0202 1(0.025) Cw*0727 2(0.071) Cw*0303 2(0.071) 1(0.029) Cw*0801 5(0.125) 1(0.036) 2(0.059) Cw*0304 2(0.071) 12(0.323) Cw*0802 2(0.05) Cw*0309 1(0.029) Cw*0810 1(0.029) Cw*0311 1(0.036) Cw*1202 1(0.025) 1(0.029) Cw*04 1(0.029) Cw*1203 1(0.025) 2(0.071) 1(0.029) Cw*0401 4(0.1) 5(0.178) Cw*1402 1(0.025) Cw*0403 4(0.1) 4(0.143) 3(0.088) Cw*15 1(0.029) Cw*07 1(0.025) Cw*1502 1(0.025) 1(0.029) Cw*0701 1(0.025) Cw*1503 1(0.029) Cw*0702 8(0.2) 2(0.071) 2(0.059) Cw*1507 2(0.05) Table 4 HLACwClassIallelefrequenciesinSouthernMarquesas,MangarevaandWesternSamoa (frequenciesaregiveninparentheses).

4.1.2. Class II alleles

HLADRB1 ThethreemostcommonHLADRB1allelicgroupswereHLADRB1*09(23%), HLADRB1*14(19%)andHLADRB1*04(14%).Therelativefrequencydifferedbetween islands,butthemostcommonalleleswereHLADRB1*0901,HLADRB1*0403andHLA DRB1*1401.Interestingly,oneallele(HLADRB1*070101)foundathighfrequency(14%) inMangarevawasabsentintheothertwoislands.Theparticularalleleistypicalof Caucasians. Southern Western Southern Western Island Marquesas Mangareva Samoa Island Marquesas Mangareva Samoa (2n) (n=20) (n=14) (n=17) (2n) (n=20) (n=14) (n=17) DRB1*0102 1(0.025) DRB1*1202 1(0.025) DRB1*0301 2(0.05) DRB1*1203 1(0.036) DRB1*0403 4(0.1) 6(0.214) 3(0.088) DRB1*1205 1(0.036) DRB1*0405 1(0.029) DRB1*1206 1(0.029) DRB1*0701 4(0.143) DRB1*1301 1(0.036) DRB1*0802 1(0.025) DRB1*1302 1(0.036) DRB1*0803 2(0.05) 3(0.107) 5(0.147) DRB1*1401 6(0.15) 2(0.071) 1(0.029) DRB1*0901 6(0.15) 3(0.107) 15(0.441) DRB1*1402 1(0.025) DRB1*11 2(0.05) 1(0.036) 2(0.059) DRB1*1407 1(0.025) DRB1*1101 2(0.05) 3(0.107) 1(0.029) DRB1*1408 2(0.05) 3(0.088) DRB1*12 3(0.075) DRB1*1501 1(0.025) 1(0.029) DRB1*1201 1(0.025) 2(0.071) Table 5 HLADRB1ClassIIallelefrequenciesinSouthernMarquesas,MangarevaandWesternSamoa (frequenciesaregiveninparentheses). 28 HLADQB1 Thisexhibitedthelowestdiversity,withonly11allelesobserved,within5allelic groups.ThecommonestalleleswereHLADQB1*0301andHLADQB1*0303. Southern Western Southern Western Island Marquesas Mangareva Samoa Island Marquesas Mangareva Samoa (2n) (n=20) (n=14) (n=17) (2n) (n=20) (n=14) (n=17) DQB1*0201 1(0.025) 4(0.143) DQB1*0402 2(0.05) DQB1*0301 9(0.225) 5(0.178) 3(0.088) DQB1*0501 3(0.075) DQB1*0302 5(0.125) 6(0.214) 1(0.029) DQB1*0502 7(0.175) 2(0.071) DQB1*0303 6(0.15) 3(0.107) 8(0.235) DQB1*0503 5(0.125) 2(0.071) 2(0.059) DQB1*0309 1(0.025) DQB1*0601 1(0.025) 6(0.176) DQB1*0401 2(0.059) Table 6 HLADQB1ClassIIallelefrequenciesinSouthernMarquesas,MangarevaandWesternSamoa (frequenciesaregiveninparentheses).

23% 58% 6% 10% 4% 8% 30% 4% 8% 2% 76% 1% 17% 4% 6% 1% 4 % 5% 1% 64% 18% 2% 5% 17% 63% 2% 5% 1% 19% 10% 78 % 97% 23% 10 % 18%

Figure 3 MostcommonallelesfoundoneachlocusinEasternPolynesiaandtheirdistributioninsixother populationsthroughouttheworld(Malayfrom,ShonafromZimbabwe,CentralEuropeanrepresented bytheFinnandCzech,G.KaiowafromBrazil,CanoncitofromNewMexicoandYupikfromAlaska).The percentagevaluesshowrelativefrequencyoftheseallelesinthepopulations.Thevaluessmallerthan1%have notbeenincluded.(Themapwasfromhttp://worldatlas.com).Thefigurealsodepictsrelativelylow(reduced) heterozygosityamongPacificislanders.

29 Inconclusion,thepresenceofAsianelementssuchasDRB1*0405and1201among theclassIImoleculesobserved,couldpointtoaPolynesianoriginfurthernorththanSouth EastAsia.Moreover,thehighfrequencyofDRB1*0403suggestsaMelanesiancontribution tothePolynesiangenepool,sincethisalleleiscommonincostalMelanesians(Gaoetal., 1992).ThedistributionoftheallelebecomesmoreprominentinEasternPolynesiaand reachesitshighestfrequencypeakintheislandofMangarevaandlowestinWesternSamoa. Suchdistributioncouldbetheresultof‘Expresstrain’modelofcolonizationfollowedby subsequentfoundereffectsandpopulationbottlenecks. ‘Unique to Polynesians among Oceanic populations was the presence of DRB1*0802, described previously only in Amerindians; other Polynesian features were the relatively high frequencies of DRB1*0901, a common allele in East Asians and the novel DRB1*1408’ (Gaoetal.,1992).Interestingly,in thisstudytheDRB1*1408alleledescribedbyGaoetal.hadthehighestfrequencyonSamoa andSouthernMarquesasbutwascompletelymissingfromMangareva. HLAA HLAB HLACw HLADRB1 HLADQB1 Frequency Possibleorigin A*02 B*4001 Cw*0304 DRB1*0901 DQB1*0303 0.0392 Polynesian A*24 B*4001 Cw*0304 DRB1*0901 DQB1*0303 0.0196 Polynesian A*24 B*3901 Cw*0303 DRB1*0701 DQB1*0502 0.0196 SEAsian/Oceanic A*1101 B*4010 Cw*0403 DRB1*0403 DQB1*0302 0.0392 Polynesian Table 7 Mostfrequenthaplotypes–allofPolynesianorigin(Arlequin3.1)

Thepopulationcomparisonanalysiswasperformedasdifference/distanceanalysis betweenthepopulationsofSamoa,MangarevaandMarquesas.Later,thesampleswere groupedtoformonesampleset,calledtheEasternPolynesiansample,andcomparedtoother populationsfromdifferentcontinents,usingdatafromdbMHC(http://www.ncbi.nlm.nih.gov /mhc/)toassessthephylogeneticrelationshipsbetweenthepopulationsandinfertheorigins ofEasternPolynesians. PopulationpairwiseFstvalueanalysisshowedthatSouthernMarquesasand Mangarevaaremostsimilar(Fst=0.00513)andSouthernMarquesasandWesternSamoaare mostdifferentpopulationsinthisstudy(Fst=0.06019).Thiscouldbeduetogeneticdrift withinFrenchPolynesiaandadmixturewithinthearchipelago,aswellasgeographical distancefromSamoa.

30 Figure 4NeighborJoiningtreerepresentingthethreepopulationsandtherelationshipsbetweenthembasedon pairwiseFstvalues. Forallthreeislands,homozygositywasalittlelowerthanexpected,butsignificant deviationsof FwereonlyobservedintheclassIIloci(Table3).Interestingly,thereduced heterozygosityofDQB1inSamoahasbeenreportedpreviously(Macketal.,2000; Velickovicetal.,2002)andissaidtoreflectbalancingselectioninthispopulation. Locus Population Observed Expected Pvalue Significance heterozygosity heterozygosity HLAA* Marquesas 0.77778 0.92540 0.00601 n.s. Mangareva 0.76923 0.88615 0.12225 n.s. Samoa 0.76471 0.83066 0.09594 n.s. HLAB* Marquesas 0.73684 0.94168 0.03345 n.s. Mangareva 0.76923 0.90462 0.21045 n.s. Samoa 0.70588 0.82888 0.10311 n.s. HLACw* Marquesas 0.78947 0.91181 0.03581 n.s. Mangareva 0.78571 0.88889 0.71014 n.s. Samoa 0.82353 0.86096 0.19977 n.s. HLADRB1* Marquesas 0.78947 0.94168 0.04312 n.s. Mangareva 0.78571 0.91534 0.00043 <0.05 Samoa 0.76471 0.78253 0.19903 n.s. HLADQB1* Marquesas 0.80000 0.87692 0.80204 n.s. Mangareva 0.45455 0.84416 0.00023 <0.05 Samoa 0.45455 0.79221 0.00194 <0.05 Table 8 Heterozygosity( F)valuesforalltheloci.Mostvalueswerenotsignificant(n.s.)duetosmallsample size.

HLAA HLAB HLACw HLADRB1 HLADQB1 Possibleorigin Observedin 1 26 3905 0401 11 0503 Amerindian/Mixed Mangareva 2 0201 3905 1203 1407 0402 Amerindian/Unknown S.Marquesas 3 0212 4010 1402 0901 0303 Mixed S.Marquesas 4 1101 3905 0702 0802 0402 Hispanic/Amerindian S.Marquesas Table 9 HaplotypescontainingAmerindianalleles(Arlequin3.1).Thehaplotypeswereobservedontwoofthe islandsstudiedandeachofthemoccurredonlyonce.

31 5. Discussion

5.1. Amerindian alleles detected in Eastern Polynesia

InthisanalysisofHLAvariationinEasternPolynesia,themostfrequenthaplotypes detectedwereclearlyPolynesian.However,fourhaplotypescontainedtheAmerindianalleles B*3905andA*0212(showninTable9).Boththesealleleshavebeenshowntobeof Amerindianancestry(Belichetal.,1992;Layrisseetal.,2001;MartinezArendsetal.,1998) andarerareinPolynesianandnonAmerindianpopulations(Bugawanetal.,1999;Gaoetal., 1997).Thedetectionofthesealleles,thoughttobeofSouthAmericanorigin(Belichetal., 1992;Watkinsetal.,1992),intheEasterIslandpopulation,hasbeensuggestedasproofof prehistoricmigrationsintothePacificofSouthAmericannavigators(Lieetal.,2007).Itis feasiblethattheirpresenceinMangarevaandSouthernMarquesasisalsoindicativeofSouth Americancontacts. Thehaplotypiccontextofindividualallelescanyieldimportantinformationontheir origins,asHLAlociarecloselylinkedandtendtobeinheritedasahaplotype.Moreover, linkagedisequilibriumbetweenlociresultsinrecombinationatdifferentfrequencieswithin theHLAencodingregion.Itcanbeassumedthatrecombinationhappensovertimeandthe haplotypeswillbecomegraduallydifferentfromtheoriginalparentallineages. Followingthislineofreasoning,Isearchedtheavailablepublisheddataforthe typicalhaplotypicsurroundingsoftheallelesdetectedinthisstudy.Thesearchforthe combinationofB*3905Cw*0401,asseenonhaplotypeNo.1(Table9),showedthat8outof 10hitsinthedbMHCanthropologydatabasearerepresentedbySouthAmericanAmerindians (GuaraniKaiowa).ThecombinationofA*0201andB*3905,asseenonhaplotypeNo.2,is alsoverycommonamongAmerindians,andwasdetectedin28%ofthehitsforB*3905inthe database,mostlyinpeopleofAmerindianorigin,whilejustonesinglehitforB*3905 Cw*1203wasdetectedinaHispanicpopulation.Asearchforthetwolocuscombination B*3905andCw*0702asseenonhaplotypeNo.4resultedin52hitsofmainlyAmerindian origin(38individuals),buttheexactcombinationofthethreeobservedlociA*1101B*3905 Cw*0702wasonlyseenintwosubjects,bothUSAHispanics(Caoetal.,2001).The4locus haplotype:B*3905Cw0702*DRB1*0802DQB1*0402(haplotypeNo.4)hasonlybeen detectedinAmerindianspreviously.AndtheclassIIhaplotypeDRB1*0802DQB1*0402, occurringonthesameextendedhaplotype,wasobservedinaMexicanpopulation,

32 andbothNorthandSouthAmericanpopulations(GarciaOrtizetal.,2006;PetzlErleretal., 1997). Therefore,itishighlyprobablethattheAmerindianallelesobservedinthisstudy werebroughtintoPolynesiaduringprehistory,astheyoccurondifferenthaplotypic backgrounds.Moreover,theallelesareusuallyinnovelcombinations,suggestingthat significanttimehaselapsedsincetheirintroductionintothegeneticpooloftheislanders,as forexampleinthecaseofhaplotypeNo.3. IftheArlequinanalysisisdisregarded(asthefollowinghaplotypeswerenotlisted amongmostfrequentextendedhaplotypes),thetwoB*3905allelesinSouthernMarquesas samplecouldbeinterpretedasbelongingtothehaplotypesB*3905Cw*0702DQB1*0402. Thiscombinationhasbeenshowntooccuratafrequencyof5.6%intheSouthAmerican tribesGuaraniNandewaandGuaraniaKaiowa(dbMHCAnthropologyDatabase). AlleleDRB1*1402foundinSouthernMarquesasgave357hitsondbMHC,ofwhich mostwerenativeinhabitantsofbothAmericasandafewAboriginalAustralians.Onlyfour individualswereAfricansandoneofmixedorigin.Thealleliccombinationonwhichthis alleleoccurred(DRB1*1402DQB1*0301)waspreviouslydetectedinAmerindian populations. AnotherAmerindianallelefoundintheMarquesasandSamoawasB*4801(Petzl Erleretal.,1997),previouslyshowntooccuratsignificantfrequenciesinSamoa(Seversonet al.,1997).However,ithasbeensuggestedthattheHLAB*48allelesprobablyreflect commonAsianancestryratherthandirectcontactbetweenPolynesiaandSouthAmerica (Gaoetal.,1992). RegardingtheA*0206B*2705C*0202allelecombinationobservedonceinSouthern Marquesas,whilemostofthealleleshavewidegeographicaldistributionandcannotbecalled populationspecific,thecombinationitselfhasonlybeenobservedinindigenousinhabitants ofNorthernAmerica. Inconclusion,numerousallelesandallelecombinationsdetectedduringthisanalysis pointtopossibleprehistorictransPacificcontactsbetweenPolynesiaandtheAmericas.

5.2. European alleles detected in Eastern Polynesia

Asmentionedabove,someoftheallelesdetectedinthisstudywerepreviously described,andduetotheirpopulationspecificitycanbeusedasindicatorsofpossible ancestry.SeveralallelesdetectedinthisstudycanbeusedasEuropeanmarkers.Comparison ofthepresumed“European”alleleswiththeavailabledatabasesrevealedthefollowing

33 results:Cw*0802allelegavemanyhitsinpopulationsdescribedasHispanic,Europeanand SubSaharanAfricans.OnlythreesuchalleleswerefoundinOceaniaandAustralia.Inmy samplesetthealleleoccursonthefollowinghaplotypesfromtheSouthernMarquesas: HLAA HLAB HLACw HLADRB1 HLADQB1 Possibleorigin Observedin 1 24 1402 0802 0803 0503 Hispanic,European S.Marquesas /AboriginalAustralian, PNGHighlander 2 3301 4002 0802 1408 0501 European/Mixed S.Marquesas 3 11 1501 0304 0701 0303 European/Mixed Mangareva 4 0201 1517 0304 1302 0201 European Mangareva Table 10 Haplotypescontaining“Caucasoid”alleles(Arlequin3.1) Itisworthmentioningthatof256hitsforB*1402indbMHCdatabase,onlyonewasa Filipino,andallotherdonorsmostlyofEuropeanandAfricanorigin(withapredominanceof Europeanalleles).Itisthereforeinterestingthatthefirsthaplotypeinthetableaboveappears ahybridofEuropeanandAboriginalAustralianhaplotypes(Macketal.,2000;Velickovicet al.,2002). TheEuropeanDRB1*070101allelewasfoundinfourindividualsofMangareva.The searchforthealleleinvariousdatabasesresultedinfindsofmostlythatorigin.Almostallthe alleliccombinationsofthisalleleinMangarevahavebeendescribedintheIrish.Forexample, haplotypeA*0101B*1501Cw*0304DRB1*0701obtainedduringdirectobservation analysiswasfoundtobeaperfectmatchamongtheIrish.Whilethiscouldbeproofof Europeanadmixture,itshouldbenotedthatDRB1*0701(theshortenednumericversionof theallelename)producedmanymorehits,ofmanypopulations,possiblyasaresultofthe differenttypesofmethodsusedfordeterminingalleles.Thepresenceoftheallelemightbe theresultofAfrican,AmerindianorAsianorigin,orofadmixture,sinceitwaspreviously describedinPolynesianpopulations(Macketal.,2000).

34

Figure 5The‘rarest’allelesfoundinEasternPolynesiaandtheirdistributioninsixotherpopulationsthroughout theworld(MalayfromSingapore(noneoftheallelesobserved),ShonafromZimbabwe,CentralEuropean representedbytheFinnandCzech,G.KaiowafromBrazil,YucpafromVenezuela(Layrisseetal.,2001), CanoncitofromNewMexicoandYupikfromAlaska).Theallelestendtobepopulationspecificandtherefore theboxesalsorepresenttheirprobableorigins.RelativefrequenciesoftheallelesareshowninFigure6.(The mapwasfromhttp://worldatlas.com).

0,4 0,35 0,3 A*0212 B*1517 0,25 B*3905 0,2 B*4801 0,15 Cw*0802 0,1 DRB1*1402 0,05 0 Eastern Zimbabwe Brazil Central New Alaska Venezuela Polynesia Europe Mexico

Figure 6Thetableshowsrelativefrequenciesof‘rare’allelesfoundinPolynesiaandtheirdistributionin differentpopulations.Asexpected,mostofthealleleswerepreviouslydescribedinNativeAmerican populationsandpossiblyaroseasaresultoftransPacificcontactsbetweentheAmericasandPolynesia. ThealleleB*1517couldprobablybemoreinformativesinceitisfoundmainlyin EuropeanandAfricanpopulations,andonlyrarelyinAsia.Notably,inthePacificithasonly beenobservedinAustralianwhites(Gaoetal.,1997).AlleleB*1517wasassignedby

35 ArlequinanalysistohaplotypeA*0201B*1517Cw*0304DRB1*1302DQB1*0201.The searchforhaplotypesconsistingoftheA/B/Cwlociresultedintwoexactmatches,oneof AmerindianandoneofEuropeanorigin.Ofthetwo,thelatterseemstobemoreprobable sourcesinceitalsocarriedtheDRB1*1302allele(ofmainlyAfrican,EuropeanandAsian ancestry).Moreover,thecombinationofDRB1*1302DQB1*0201hasonlybeendescribedin AfricanandEuropeanpopulations(withonedonorfromAsia).Itisthereforelikelythatthis particularallelemightberesultofrecentEuropeanadmixture. Itisworthmentioningthattheaboveanalysiswasmainlybasedonthehaplotypes generatedbyArlequin3.1.Whileprecautionsweretakentoavoidambiguities,theprogram cannotbefullytrustedsinceitisdesignedforlargersamplesets.Moreover,theanalysiscould bebiasedastheprogramreads0(noallele)as0allele(allelecalled‘0’)andcreates haplotypesonthebasisofnonexistingalleles.Theprogramwasusedinordertoobtain recurrentresults,butadditionalmanualanalysiswasperformed.Manualanalysis,though subjective,resultedinamuchmoreexhaustivelistofmostfrequenthaplotypes,mostof whichwerepreviouslydescribedinPolynesiainotherstudies.Thehaplotypesarenot mutuallyexclusive,sinceArlequindisplaysonlythemostfrequenthaplotypes,butthe possiblehaplotypesgreatlyexceedlistedresults.Itisprobablethattheextendedlistof haplotypesproposedbyArlequininfactcontainshaplotypesidenticaltothosedetectedby directanalysis. HLAA HLAB HLACw HLADRB1 HLADQB1 Possibleorigin A*24 B*4001 Cw*0304 DRB1*090102 DQB1*030302 Polynesian A*1101 B*4010 Cw*0403 DRB1*0403 DQB1*0302 Polynesian A*24 B*3901 Cw*0702 DRB1*1401 DQB1*050201 Polynesian A*02 B*5502 Cw*0102 DRB1*12 DQB1*0301 Polynesian A*3401 B*4002 Cw*15 DRB1*1408 DQB1*050301 Australia/ Oceania A*24 B*4001 Cw*0401 DRB1*1101 DQB1*0301 Polynesian A*11 B*5602 Cw*0102 DRB1*090102 DQB1*030302 Polynesian A*0201 B*1501 Cw*0304 DRB1*070101 DQB1*0201 European Table 11 Mostfrequenthaplotypesobtainedbydirectcounting. PhylogeneticanalysiswasperformedusingthePHYLIPpackageavailableonline (Felsenstein,2004).Genefrequencybaseddistancematrixwasintroducedtotheprogramand aconsensustreewasplottedtoestablishtherelationshipbetweenthepopulationsinthisstudy andotherglobalpopulations.ANeighborJoiningtreewasgeneratedusingPHYLIP.Aswas thecasewiththeanalysisofpairwiseFst’s,WesternSamoaandMangarevatendtocluster morecloselythanWesternSamoaandSouthernMarquesas.ButthepopulationsofSouthern

36 MarquesasandMangarevaweremostcloselyrelated,notsurprisinginviewofgeographical proximityandthefactthatMangarevawassettledfromMarquesas.Thedifferencebetween SouthernMarquesasandWesternSamoaisprobablyduetothedramaticpopulationcollapse of19 th century,followingEuropeancontacts.Europeansbroughtdisease(measles,venereal diseasesandinfluenza),warandforcedlabour,andagreatfamineoccurredin1804.The populationofMarquesasdecreasedfromaround100,000in1773tojust4279in1897 (Campbell,1989).Sucheventsmusthavehadprofoundconsequencesforthepatternsof geneticvariationobservedinpresentdaypopulations.

Figure 7 NeighborJoining (A)andConsensus(B)treesrepresentingphylogeneticrelationshipsbetweenseven populationstestedonthebasisof5locipolymorphisms.Thetreeswereconstructedusingpairwisedifferences betweenpopulationscalculatedfromobservedallelefrequencies. AsseeninFigure7,thetopographyofphylogenetictreessuggeststhattheEastern Polynesianclusterismostcloselyrelatedtoanddistinctlyseparatedfromboth AmerindianpopulationsandtheAfricanone.However,thetreesshouldbeinterpretedwith

37 caution.HLAalleles,thoughveryinformativeinpopulationstudies,aresubjecttoselective pressureswhichcaninfluencetherelativefrequenciesofallelesandconsequentlydistortthe overallpictureofpopulationrelationships.Forexample,positiveselectivepressurefor A*2402inPNGhighlandsmaybeduetoresistancetodiseasepathogens. ThefinalanalysisusedArlequin3.1totestthesignificanceofthepairwisedifferences between9OceanicpopulationsforwhichdatawasavailableondbMHC.Unfortunately,most ofthedataavailableconsistedofjustthreelocusHLApolymorphisms(HLAA,HLADRB1 andHLADQB1).Nevertheless,thethreepopulationsofthisstudywerecomparedtoMalay, Filipino,Moluccan,EastTimorese,PNGHighlanderandPNGLowlanderpopulations,totest widerrelationships,albeitonanarrowersetofloci.Theresultsshowednosignificant differencesbetweenthepopulations,withtheexceptionofPNGHighlandersandPNG Lowlanders,whonotonlydifferedfromotherpopulationsbutweresignificantlydifferentto oneanother.TheonlyotherpairofsignificantlydifferentpopulationswastheMoluccanand Filipino.ThissuggeststhatEasternPolynesiansofthisstudyarenotsignificantlydifferent fromthepopulationsofIndonesiaandthePhilippinesbutdifferfromtheNewGuineans.This issimilartotheresultsobtainedusingmtDNAanalyses,andisconsistentwithan‘Express trainmodel’ofthecolonizationofthePacific.

38 6. Conclusion

ThethreehumanDNAsamplesfromEasternPolynesiaexhibittypicalPolynesian HLAalleles.Butother,rarealleles,pointtopossiblepastadmixturewithAmerindiangenes inSouthernMarquesasandMangareva,andEuropeangenesinMangareva.Theanalysisof thehaplotypesonwhichthoserareallelesoccurredshowthattheAmerindianallelesusually occurinnovelhaplotypiccombinationstogetherwithPolynesianalleles,andtherefore predatetheEuropeanelements,whichgenerallyappearinEuropeanhaplotypiccombinations. Inotherwords,theAmerindianallelesappeartohavebeenintroducedintothePolynesian genepoolmuchearlierthantheEuropeanalleles.Lackofgenealogicalinformationonthe individualsincludedinthisstudypreventedtheestimationoftherelativetimeofadmixture. Therefore,itisnotpossibletoconcludedefinitivelywhethertheadmixtureistheresultofthe 19 th centuryPeruvianslaveraids,aswassuggestedfortheislandofRapa(Hurlesetal., 2003),orduetoprehistorichumanmigrationsassuggestedfortheAmerindianalleles detectedinEasterIsland(Lieetal.,2007). ThisstudyconfirmsthewidelyheldviewthatpresentdayPolynesiansoriginatedin Asia,andsupportsthe‘Expresstrainmodel’ofthecolonizationofthePacific.Butitdoesnot ruleoutthepossibilityoftransPacificcontactsinprehistory.Thisstudyshouldbe complementedbyadditionalanalysesofmtDNAandYchromosomestoshedlightonthe originofthematernalandpaternallineagesinEastPolynesia.

39 Appendix

Table 1. Amplification primers LOCUS PRIMER ANNEALING SEQUENCE POSITION HLAA 1) HLAA5APM13F 5UTR TGTAAAACGACGGCCAGTTCTCCCCAG ACGCCGAGGATGGCC 3AE4.658M13R Exon4 CAGGAAACAGCTATGACCAGTCCTGGG TCTGGTCCTCCCCAT HLAB 2) BIN1CGM13F Intron1 TGTAAAACGACGGCCAGTCGGGGGCGC AGGACCCGG BIN1TAM13F Intron1 TGTAAAACGACGGCCAGTGGCGGGGGC GCAGGACCTGA BIN37DM13R Intron3 CAGGAAACAGCTATGACCAGGCCATCC CSGSCGAYCTAT HLAC1) HLACM13F Intron1 TGTAAAACGACGGCCAGTAGCGAGGKG CCCGCCCGGCGA HLAC+15M13R Intron3 CAGGAAACAGCTATGACCGGAGATRGG GAAGGCTCCCCACT HLA CAGGAAACAGCTATGACCCCCACAGCA DRB13) DRB152.1 CGTTTCTTGGAGTACTCTA CAGGAAACAGCTATGACCTGAGACGCA DRB101 CGTTTCTTGTGGCAGCTTAAGTT CAGGAAACAGCTATGACCTGAGACGCA DRB104 CGTTTCTTGGAGCAGGTTAAAC CAGGAAACAGCTATGACCTGACCAGCA DRB109 CGTTTCTTGAAGCAGGATAAGTT CAGGAAACAGCTATGACCTGAAGACCA DRB110 CGTTTCTTGGAGGAGG CAGGAAACAGCTATGACCTGAGACTCA DRB115 CGTTTCCTGTGGCAGCCTAAGA CAGGAAACAGCTATGACCTGAGACTCA DRB107 CGTTTCCTGTGGCAGGGTAAGTATA TGTAAAACGACGGCCAGTGCTYACCTC REVERSE GCCKCTGCAC HLA DQB1PF2_M13F TGTAAAACGACGGCCAGTCCYCGCAGA DQB11) Intron1 GGATTTCGTG DQB5/6_M13R CAGGAAACAGCTATGACCCTCTCCTCT Exon2 GCARGATCCC DQB2/3/4_M13R CAGGAAACAGCTATGACCCTCGCCGCT Exon2 GCAAGGTCGT 1) B.A.Lie,personalcommunication;PrimersequencesbasedonunpublishedresultsandIHWGstrategies (http://www.ihwg.org/) 2) PrimersdesignedupondimorphicprimersbyCerebetYoungandIHWGstrategies(http://www.ihwg.org/) 3) (Sayeretal.,2004b)

40 Table 2. Sequencing primers LOCUS PRIMER ANNEALING SEQUENCE POSITION HLAA ASEQ3 Intron3 TCGGACCCGGAGACTGTG GTTTCATTTTCAGTTTAGGCC ASEQ5 Intron1 A TGTTGGTCCCAATTGTCTCCC 3Aln366 Intron3 CTC GAAACSGCCTCTGYGGGG 5Aln146 Intron1 AGAAGCAA HLAB E2 Intron2 AACTGAAAATGAAACCGGGT E3 Intron2 ACCCGGTTTCATTTTCAGTT M13F M13tail TGTAAAACGACGGCCAGT M13R M13tail CAGGAAACAGCTATGACC HLAC M13F TGTAAAACGACGGCCAGT M13R CAGGAAACAGCTATGACC GGAGRCGTGACCTGCGCCCCR HLACSEQR123 Intron2 GG CF1CSEQ Intron2 CGGGGGGGGGGCCAG HLADRB1 M13F TGTAAAACGACGGCCAGT M13R CAGGAAACAGCTATGACC HLADQB1 M13F TGTAAAACGACGGCCAGT M13R CAGGAAACAGCTATGACC

41 Table 3. Reagents Product Locus Supplier ProductNumber GenomiPhi™ All AmershamBiosciences, 25660001 AmplificationKit 50bpGeneRuler HLADRB1, Fermentas,OntarioL7N3N4, SM0372 DQB1 1kbGeneRuler HLAA,C,B Fermentas,OntarioL7N3N4,Canada SM0311 SAP(Shrimp All RocheDiagnosticsNorgeAS, 1758250 Alkaline 0607Oslo,NO Phosphatase) EXO1(Exonuclease All SigmaAldrich,St.Louis,MO63103,USA M0293L I) Agarose All SigmaAldrich,St.Louis,MO63103,USA A9311 EthidiumBromide All Mercury,PretechInstrumentsKB,19144 5450 Sollentuna,Sweden BigDye ®Terminator All AppliedBiosystems,FosterCity,CA94404,USA 4337456 Kitv3.1 Ethanol100% All SigmaAldrich,St.Louis,MO63103,USA 32205 HiDi TM Formamide All AppliedBiosystems,FosterCity,CA94404,USA 4311320 Platinum®Taq HLAC,B InvitrogenCorporation, 10966034/ DNAPolymerase Carlsbad,CA92008,USA 11509015 Platinum®MgSO 4 InvitrogenCorporation, 10966034/ Carlsbad,CA92008,USA 11509015 Platinum®10X HLAC,B InvitrogenCorporation, 11509015 PCR xAmplification Carlsbad,CA92008,USA11509015 Buffer Platinum®10X HLAC,B InvitrogenCorporation, 11509015 PCR xEnhancer Carlsbad,CA92008,USA Solution dNTPs All BiolineLtd.,LondonNW26EW,GB BIO39026 DNATechnology 10xNH 4based HLADRB1 BiolineLtd.,LondonNW26EW,GB BIO21040 ReactionBuffer BIOTAQ™ HLADRB1 BiolineLtd.,LondonNW26EW,GB BIO21040 MgCl2Bioline HLADRB1 BiolineLtd.,LondonNW26EW,GB BIO21040 10xbuffer HLADQB1 PromegaU.S., M1668 WI53711,USA TaqDNA HLADQB1 PromegaU.S., M1668 Polymerase WI53711,USA MgCl 2 HLADQB1 PromegaU.S., M1668 WI53711,USA(NerlinesMeszansky) PfuTurbo®DNA HLADQB1 Stratagene, 600252 Polymerase LaJolla,CA92037(MedProbe) BovineSerum HLADQB1 NewEnglandBiolabs B9001S Albumin(BSA) Ipswich,MA019382723 Primers All MedProbe, Custommade N0131Oslo,NO

42 Acknowledgments

IwishtothankProf.ErikaHagelbergformtheDepartmentofBiology,Universityof Oslo,forhereverlastingsupportandkindness,Prof.J.B.Clegg,WeatherallInstituteof MolecularMedicine,UniversityofOxford,whokindlysuppliedthecollectionofsamples. IsincerelythankProf.E.ThorsbyfromtheInstituteofImmunologyatRikshospitalet RadiumhospitaletMedicalCenter,whoenabledmeaccesstoInstitute’sfacilities,and BenedicteA.Lieforhercontributiontothisstudy.Iwouldliketoexpressmydeepest gratitudetothewholecrewattheInstituteofImmunologyfortheirsupportandadvice, especiallytoSiriT.FlåmforherhelpwithhandlingthesamplesandHLAgenotyping. Iwouldalsoliketothanktheoriginaldonorsofthesamplesfortheirinvaluablecontribution tothiswork.

43 References

Anderson,A.(1991).ThechronologyofcolonizationinNewZealand.Antiquity 65 ,767795. Belich,M.P.,Madrigal,J.A.,Hildebrand,W.H.,Zemmour,J.,Williams,R.C.,Luz,R.,Petzl Erler,M.L.,andParham,P.(1992).UnusualHLABallelesintwotribesofBrazilianIndians. Nature 357 ,326329. Bellwood,P.(1978).Man'sConquestofthePacific.ThePrehistoryofSoutheastAsiaand Oceania(Auckland,WilliamCollinsPublishersLtd.). Bellwood,P.(1987).ThePolynesians.Prehistoryofanislandpeople(London,Thamesand HudsonLtd.). Bellwood,P.(1991).TheAustronesianDispersalandtheOriginofLanguages.ScienAm70 75. Borrell,B.(2007).Drifterscouldexplainsweetpotatotravel;Anunsteeredmayhave deliveredcroptoPolynesia.Nature. Browning,M.,andMcMichael,A.(1996).HLAandMHC:genes,moleculesandfunction (Oxford,BiosScientificPubl.). Brumester,G.R.,andPezzutto,A.(2003).ColorAtlasofImmunology(Stuttgard,NewYork, Thieme). Bugawan,T.L.,Mack,S.J.,Stoneking,M.,Saha,M.,Beck,H.P.,andErlich,H.A.(1999). HLAclassIalleledistributionsinsixPacific/Asianpopulations:evidenceofselectionatthe HLAAlocus.TissueAntigens 53 ,311319. Campbell,I.C.(1989).AHistoryofthePacificIslands(Berkeley, LosAngeles,UniversityofCaliforniaPress). Cao,K.,Hollenbach,J.,Shi,X.,Shi,W.,Chopek,M.,andFernandezVina,M.A.(2001). AnalysisofthefrequenciesofHLAA,B,andCallelesandhaplotypesinthefivemajor ethnicgroupsoftheUnitedStatesrevealshighlevelsofdiversityintheselociandcontrasting distributionpatternsinthesepopulations.HumImmunol 62 ,10091030. CavalliSforzaL.L.,M.P.,PizzaA.(1996).TheHistoryandGeographyofHumanGenes (NewJerseyPrincetonUniversityPress). Diamond,J.M.(1988).ExpresstraintoPolynesia.Nature 336 ,307308. Diamond,J.M.(2000).Taiwan'sgifttotheworld.Nature 403 ,709710. Dunn,M.,Terrill,A.,Reesink,G.,Foley,R.A.,andLevinson,S.C.(2005).Structural phylogeneticsandthereconstructionofancientlanguagehistory.Science 309 ,20722075.

44 Excoffier,Laval,L.G.,andSchneider,S.(2005).Arlequinver.3.0:Anintegratedsoftware packageforpopulationgeneticsdataanalysis.EvolutionaryBioinformaticsOnline 1 ,4750. Felsenstein,J.(2004).PHYLIP(PhylogenyInferencePackage)version3.6.(Seattle, DepartmentofGenomeSciences,UniversityofWashington),pp.Distributedbytheauthor. Fischer,S.R.(2002).AHistoryofthePacificIslands(NewYork,Palgrave). Gao,X.,Lester,S.,Boettcher,B.,andMcCluskey,J.(1997).DiversityofHLAgenesin populationsofAustraliaandthePacific.Paperpresentedat:HLAGeneticdiversityofHLA FunctionalandMedicalImplication(EDK:MedicalandScientificInternationalPublisher). Gao,X.,Zimmet,P.,andSerjeantson,S.W.(1992).HLADR,DQsequencepolymorphismsin Polynesians,Micronesians,andJavanese.HumImmunol 34 ,153161. GarciaOrtiz,J.E.,SandovalRamirez,L.,RangelVillalobos,H.,MaldonadoTorres,H.,Cox, S.,GarciaSepulveda,C.A.,Figuera,L.E.,Marsh,S.G.,Little,A.M.,Madrigal,J.A. , et al. (2006).HighresolutionmolecularcharacterizationoftheHLAclassIandclassIIinthe TarahumaraAmerindianpopulation.TissueAntigens 68 ,135146. Gray,R.D.,andJordan,F.M.(2000).Languagetreessupporttheexpresstrainsequenceof Austronesianexpansion.Nature 405 ,10521055. Green,R.C.(2000).Arangeofdisciplinessupportadualoriginforthebottlegourdinthe Pacific.JournalofPolynesianSociety,191197. Hagelberg,E.,andClegg,J.B.(1993).GeneticpolymorphismsinprehistoricPacificislanders determinedbyanalysisofancientboneDNA.ProcBiolSci 252 ,163170. Hagelberg,E.,Kayser,M.,Nagy,M.,Roewer,L.,Zimdahl,H.,Krawczak,M.,Lio,P.,and Schiefenhovel,W.(1999).Moleculargeneticevidenceforthehumansettlementofthe Pacific:analysisofmitochondrialDNA,YchromosomeandHLAmarkers.PhilosTransR SocLondBBiolSci 354 ,141152. Hagelberg,E.,Quevedo,S.,Turbon,D.,andClegg,J.B.(1994).DNAfromancientEaster Islanders.Nature 369 ,2526. Hedrick,P.,andKumar,S.(2001).MutationandlinkagedisequilibriuminhumanmtDNA. EurJHumGenet 9 ,969972. Hurles,M.E.,Maund,E.,Nicholson,J.,Bosch,E.,Renfrew,C.,Sykes,B.C.,andJobling, M.A.(2003).NativeAmericanYchromosomesinPolynesia:thegeneticimpactofthe Polynesianslavetrade.AmJHumGenet 72 ,12821287. Irwin,G.(1992).PrehistoricandColonisationofthePacific(NewYork, CambridgeUniversityPress). Jennings,J.D.,ed.(1979).ThePrehistoryofPolynesia(Canberra,AustralianNational UniversityPress).

45 Jobling,M.A.,Hurles,M.,andTylerSmith,C.(2004).Humanevolutionarygenetics: origins,peoples&disease(NewYork,GarlandScience). Kayser,M.,Brauer,S.,Weiss,G.,Underhill,P.A.,Roewer,L.,Schiefenhovel,W.,and Stoneking,M.(2000).MelanesianoriginofPolynesianYchromosomes.CurrBiol 10 ,1237 1246. Kuby,J.(1997).Immunology,3edn(NewYork,Freeman). Layrisse,Z.,Guedez,Y.,Dominguez,E.,Paz,N.,Montagnani,S.,Matos,M.,Herrera,F., Ogando,V.,Balbas,O.,andRodriguezLarralde,A.(2001).ExtendedHLAhaplotypesina CaribAmerindianpopulation:theYucpaofthePerijaRange.HumImmunol 62 ,9921000. Lie,B.A.,Dupuy,B.M.,Spurkland,A.,FernandezVina,M.A.,Hagelberg,E.,andThorsby, E.(2007).MoleculargeneticstudiesofnativesonEasterIsland:evidenceofanearly EuropeanandAmerindiancontributiontothePolynesiangenepool.TissueAntigens 69 ,10 18. Mack,S.J.,Bugawan,T.L.,Moonsamy,P.V.,Erlich,J.A.,Trachtenberg,E.A.,Paik,Y.K., Begovich,A.B.,Saha,N.,Beck,H.P.,Stoneking,M. , et al. (2000).EvolutionofPacific/Asian populationsinferredfromHLAclassIIallelefrequencydistributions.TissueAntigens 55 , 383400. Maitland,K.,Bunce,M.,Harding,R.M.,Barnardo,M.C.,Clegg,J.B.,Welsh,K.,Bowden, D.K.,andWilliams,T.N.(2004).HLAclassIandclassIIallelefrequenciesandtwolocus haplotypesinMelanesiansofVanuatuandNewCaledonia.TissueAntigens 64 ,678686. MartinezArends,A.,Layrisse,Z.,Arguello,R.,Herrera,F.,Montagnani,S.,Matos,M., Ross,J.,Dunn,P.,Marsh,S.G.,andMadrigal,J.A.(1998).CharacterizationoftheHLAclass IgenotypesofaVenezuelanAmerindiangroupbymolecularmethods.TissueAntigens 52 , 5156. Melton,T.,Peterson,R.,Redd,A.J.,Saha,N.,Sofro,A.S.,Martinson,J.,andStoneking,M. (1995).PolynesiangeneticaffinitieswithSoutheastAsianpopulationsasidentifiedby mtDNAanalysis.AmJHumGenet 57 ,403414. O'Shaughnessy,D.F.,Hill,A.V.,Bowden,D.K.,Weatherall,D.J.,andClegg,J.B.(1990). GlobingenesinMicronesia:originsandaffinitiesofPacificIslandpeoples.AmJHumGenet 46 ,144155. Oppenheimer,S.J.,andRichards,M.(2001).Polynesianorigins.SlowboattoMelanesia? Nature 410 ,166167. PetzlErler,M.L.,Gorodezky,C.,Layrisse,Z.,Klitz,W.,Fainboim,L.,Vullo,C.,Bodmer, J.G.,Egea,E.,Navarrete,C.,Infante,E. , et al. (1997).AnthropolgyreportforRegion America:Amerindianandadmixedpopulations.Paperpresentedat:HLAGeneticdiversityof HLA;FunctionalandMedicalImplication(EDKMedicalandScientificInternational Publisher).

46 Redd,A.J.,andStoneking,M.(1999).PeoplingofSahul:mtDNAvariationinaboriginal AustralianandPapuaNewGuineanpopulations.AmJHumGenet 65 ,808828. Redd,A.J.,Takezaki,N.,Sherry,S.T.,McGarvey,S.T.,Sofro,A.S.,andStoneking,M. (1995).EvolutionaryhistoryoftheCOII/tRNA Lys intergenic9basepairdeletioninhuman mitochondrialDNAsfromthePacific.MolBiolEvol 12 ,604615. Relethford,J.H.(2003).Reflectionsofourpast:howhumanhistoryisrevealedinourgenes (Boulder,Colo.,WestviewPress). Sayer,D.C.,Goodridge,D.M.,andChristiansen,F.T.(2004a).Assign2.0:softwareforthe analysisofPhredqualityvaluesforqualitycontrolofHLAsequencingbasedtyping.Tissue Antigens 64 ,556565. Sayer,D.C.,Whidborne,R.,DeSantis,D.,Rozemuller,E.H.,Christiansen,F.T.,andTilanus, M.G.(2004b).Amulticenterinternationalevaluationofsingletubeamplificationprotocols forsequencingbasedtypingofHLADRB1andHLADRB3,4,5.TissueAntigens 63 ,412 423. Severson,L.D.,Crews,D.E.,andLang,R.W.(1997).ApplicationofSSP/ARMStoHLA classIlociinSamoans.Paperpresentedat:HLAGeneticdiversityofHLA;Functionaland MedicalImplication(EDKMedicalandScientificInternationalPublisher). Su,B.,Jin,L.,Underhill,P.,Martinson,J.,Saha,N.,McGarvey,S.T.,Shriver,M.D.,Chu,J., Oefner,P.,Chakraborty,R. , et al. (2000).Polynesianorigins:insightsfromtheY chromosome.ProcNatlAcadSciUSA 97 ,82258228. Terrell,J.E.(1988).Historyasafamilytree,historyasanentangledbank:constructing imagesandinterpretationsofprehistoryintheSouthPacific.Antiquity 62 ,642657. Tracey,M.C.,andCarter,J.M.(2006).ClassIIHLAallelepolymorphism:DRB1,DQB1and DPB1allelesandhaplotypesintheNewZealandMaoripopulation.TissueAntigens 68 ,297 302. Velickovic,Z.M.,Delahunt,B.,andCarter,J.M.(2002).HLADRB1andHLADQB1 polymorphismsinPacificIslandspopulations.TissueAntigens 59 ,397406. Watkins,D.I.,McAdam,S.N.,Liu,X.,Strang,C.R.,Milford,E.L.,Levine,C.G.,Garber, T.L.,Dogon,A.L.,Lord,C.I.,Ghim,S.H. , et al. (1992).NewrecombinantHLABallelesina tribeofSouthAmericanAmerindiansindicaterapidevolutionofMHCclassIloci.Nature 357 ,329333. Wickler,S.,andSpriggs,M.(1988).PleistocenehumanoccupationoftheSolomonIslands, Melanesia.Antiquity 62 ,703706.

47